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Justification of empirical constitutive equations of a material state under
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A modified model of the acoustoplastic effect is proposed. Within its framework, the processes of elastic and

plastic deformation of materials are considered. The conditions under which it leads to widely used empirical models

for the dependence of stress on deformation (Johnson–Cook, Voce, and Hollomon models) are analyzed. The

features of using these empirical models are revealed. The relationship between the constants used in these empirical

models and such material parameters as internal friction stress, activation volume of defects, their relaxation time

and their equilibrium concentration, as well as with the parameter characterizing the degree of interaction of defects,

is determined.
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1. Introduction

Analysis of stress behavior in a sample due to defor-

mation set by loading test machines, is widely used to

determine a set of important mechanical properties of the

material. Experimentally, these dependences are obtained

using loading machines, which specify a certain strain rate

and record a value of applied stress corresponding to the

deformation [1,2]. Such experiments execution in a region

of elastic and plastic deformations of the material ensures

determination of its Young’s modulus, as well as yield stress

and parameters characterizing its deformation strengthening.

Transition from elastic deformation to plastic deformation is

accompanied by complex physical processes of formation,

interaction and movement of defects.

To describe properties of materials in the region of plastic

deformations a set of empirical dependences was suggested

and is widely used. Using them the material behavior in the

region of plastic deformations is quantitatively characterized

by a set of parameters, physical meaning of which is

frequently unclear. At the same time, in paper [3] it was

shown that under the acoustoplastic effect it is possible

to describe the material behavior during transition from

the region of elastic deformations to the region of plastic

deformations. At that, it was necessary to set the stress-

strain law in the plastic region basing on some a priori

considerations. In paper [4] we showed that this depen-

dence, in principle, can be determined from consideration of

relaxation properties of defects considering their interaction

as per activation mechanism.

Due to this the main objective of the present paper is

studying possibility to obtain the known empirical relations

linking the stress in a sample with deformations in the

plastic region, based on the approaches used to explain

acoustoplastic effects.

2. Model description

Under the acoustoplastic effect the description of the

dynamics of stress behavior σ in the sample at its nonsta-

tionary deformation is based on the following equation [3–5]

1

E
∂σ

∂t
= ε̇ − ε̇p, (1)

where E is the Young’s modulus of material, ε̇ is the object

total strain rate driven externally, ε̇p is the plastic strain rate

of the material.

In order to determine the plastic strain rate ε̇p, it is usually

assumed that defects in the material are generated as per an

activation law of Arrhenius, and it can be found from the

relationship

ε̇p = ε̇v exp

(

�(σ − σf − σp(ε))

kBT

)

, (2)

where σf is stress due to internal friction presence for

defects; σp(ε) is stress in the sample, associated with defects

generation in it; the factor ε̇v describes material strain rate

due to dislocation movement, and generally is supposed to

be constant; � is the activation volume of a defect; kB is

Boltzmann constant; T is the sample temperature.

Determination of dependence σp(ε) on strain requires

special consideration. In major cases the dependence is

selected empirically in a form of slowly changing function

of strain. In particular, in paper [3] stress σp(ε) was

assumed proportional to
√
ε. The analysis of this approach
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shows that it is limited and does not allow one to obtain

a relationship between stress and strain in the form widely

used in empirical relationships, for example, those proposed

in [6–8]. Thus, more detailed consideration of this issue

concerning the dependence of stress σp(ε) on strain is

nessesary. In paper [4] we determined the behavior of

defects concentration in material during deformation under

relaxation approximation. It was shown that, taking into

account the change in the activation energy of defects due

to their interaction, defect concentration is determined by

the equation

n(ε) = nr

(

1− exp(−(ε/ε̇vτ )β)
)

, (3)

where nr is the equilibrium concentration of defects, τ is the

time of defects relaxation, β is the coefficient characterizing

degree of defects interaction [4,9].
Equation (3) describes a law of defect accumulation

during deformation that differs from the purely exponential

law. Coefficient β is in range 0 ≤ β ≤ 1. Case β = 1

corresponds to low concentration of defects and absence of

their interaction. From further consideration it follows, that

the coefficient β for actual materials generally are in the

range of 0.2 to 0.5. Within the framework of our proposed

model β is considered to be a constant determined from

comparison of the theoretical results and the experimental

data.

Knowledge of the behavior of defect concentration during

deformation ensures stress σp(ε) determination. For this it

is possible to use the expression

σp(ε) ≃ σf�n(ε) − n(ε)ep, (4)

where ep is the energy of plastic deformation per one defect.

Regarding Eq. (4) it is necessery to note the following.

Generally it is assumed that defect formation in the material

leads to the occurrence of the additional stress E�n [10].
But, when considering material behavior in the region of

plastic deformations we consider as more correct the use

of σf instead of E . The last term in Eq. (4) reflects the

stress change in sample due to the energy release ep near

the defect.

Use of Eqs. (3) and (4) and transition from integration

over time to integration over strain ensures determination of

the solution of equation (1) in form

σ (ε) = Eε −
kBT
�

ln

[

1 +
�E
kBT

ε̇v

ε
∫

0

dε′

×
1

ε̇′
exp

(

�(Eε′ − σf −�σfn(ε′) + n(ε′)ep(ε′))
kBT

)]

. (5)

The integration region in Eq. (5) can be divided into

two parts. The first part integration is the strain range

of 0 to εe, where εe is the maximum strain in the elastic

region. In this region the integral term is significantly less

than 1, and behavior of stress σ (ε) corresponds to elastic

part. Integration over the range from εe to ε corresponds to

zone of plastic deformation. As empirical relations are used

for the analysis of experimental data exactly in this section,

then further behavior of σ (ε) is analyzed at ε ≥ εe. In this

region the second term under the sign of logarithm becomes

above 1. Besides, during integration we can consider that

main contribution to the integral is made by the first term

in the exponent. Then the factor with the rest terms in

the exponent can be taken out from under the integral at

ε′ = ε. According to numerical calculations the maximum

error of such approximation takes place in the plastic region

at low β, and does not exceed 0.1%. Considering the said

facts for stress behavior in the zone of plastic deformations,

we obtain the following result from Eq. (5):

σ (εp) ≃ −
kBT
�

ln
ε̇v

ε̇p
+ σf + �σfn(εp) − n(εp)ep. (6)

If we consider that in order to move a dislocation

it is necessary to overcome an energy barrier ep, then

in quasistatic conditions we can determine the relation

between ε̇p and ε̇v from relationship exp
(

− ep
kBT

)

≃ ε̇p
ε̇v
. Then

Eq. (6) is converted to the form

σ (εp) = (σf + �σfn)

(

1 +
kBT
�σf

ln
ε̇p

ε̇v

)

. (7)

In the Johnson–Cook model [6–8] for stress–strain curve

for a material at permanent temperature the relationship is

used

σ (εp) = (A + Bεm
p )(1 + C ln ε̇∗p ), (8)

where A, B,C and m are material constants, ε̇∗p is the

dimensionless strain rate normalized to 1.0 s−1.

If condition εp ≤ ε̇vτ is met, than for the concentration n
from Eq. (3) we obtain

n(εp) ≃ nr(εp/ε̇vτ )β . (9)

After the substitution Eq. (9) in Eq. (7) and transforma-

tion of logarithm ln
ε̇p
ε̇v

= ln ε̇∗p + ln ε̇v
ε̇0

(where ε̇0 = 1 s−1),

Eq. (7) looks like Johnson-Cook relationship with following

values of material constants:

A=σf

(

1 +
kBT
�σf

ln
ε̇0

ε̇v

)

, B =
�σfnr

(ε̇vτ )β

(

1 +
kBT
�σf

ln
ε̇0

ε̇v

)

,

C =
kBT
�σf

(

1 +
kBT
�σf

ln
ε̇0

ε̇v

)

−1

, m = β.

The papers [11,12] showed that for Al and Cu at

temperature 273K the behavior of stress on deformation

is well approximated by the relationship

σ (εp) = σ0 + σ1

[

1− exp

(

−
εm
p

εc

)]

, (10)

where σ0, σ1 and εc are the material constants depending

on temperature.
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Comparison of Eqs. (7) and (10) shows that their forms

coincide if condition ε̇p ≃ κε̇v is met, where κ is the

proportionality coefficient, and substitution for n(ε) from

Eq. (3). Then, for the material constants included in

Eq. (10) we obtain

σ0 = σf +
kBT
�

ln κ, σ1 = nr(�σf + kBTκ),

εc = (ε̇vτ )β , m = β.

Note that at m = β = 1 Eq. (10) corresponds to Voce’s

law first suggested in [13] (see also [14]), and at

εp < ε̇vτ corresponds to Hollomon’s law [15,16]

σ (εp) = σ0 + Kεm
p , (11)

where

σ0 = σf +
kBT
�

ln κ, K =
nr(�σf + kBT )

(ε̇vτ )m
, m = β.

3. Conclusion

The obtained results show that the use of the modified

theory of the acoustoplastic effect allows us to obtain em-

pirical laws that are widely used in physics and mechanics

to describe the stress–strain relationship in the region of

material plasticity. At that the obtained within framework of

the acoustoplastic effect results for the stress dependence

on deformation ensure linking of the values of parame-

ters used in the empirical approaches with such material

characteristics as yield stress, activation volume of defects

participating in process, their equilibrium concentration and

relaxation time, degree of interaction of defects. Besides, the

obtained results show limits of applicability of the empirical

models. Thus, the Johnson-Cook and Hollomon models are

best used in the analysis of plastic deformations in materials

with slow relaxation processes (condition εp ≤ ε̇vτ ). On the

other hand, models of type used in papers [11,12] are better

suitable for analysis of plastic deformations in materials

with not too slow relaxation processes (do not require

meeting of the condition εp ≤ ε̇vτ ). This result is indirectly
confirmed by the fact that last model well operates during

materials deformation at elevated temperatures [12], when

the relaxation processes accelerate. At the same time the

model of Voce type [13] to describe deformation processes

at elevated temperatures requires modification [17]. For

most actual materials the use of empirical relationships

leads to parameter values m in range of 0.2 to 0.5. From

the approach based on acoustoplastic effect it follows that

for all empirical models m = β, at that the parameter β

characterizes the interaction degree of defects (case β = 1

corresponds to interaction absence). So, the approach

within the framework of the acoustoplastic effect shows that

this range of values of parameter m corresponds to rather

strong interaction of defects during plastic deformation of

materials, and can be used as its quantitative characteristic.
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