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Expressions for functions approximating experimental data on temperature depend-ences of thermal conductivi-

ties and specific resistances of 17 metals from the main subgroups Ia−Va of the Periodic system of D.I.Mendeleev

are proposed. They allow not only to calculate the specified properties of metals, but also to predict, in particu-lar,

the peak of thermal conductivity of calcium in the vicinity of absolute zero. The mathematical model does not

describe the nonlinear behavior of the specific electrical resistance of barium, so a separate function is proposed to

describe it. It is shown that the Wiedemann−Franz−Lorentz law is not fulfilled even approximately at temperatures

below the Debye temperature for each metal. On between the Debye temperature and the melting point of the

metal, it is satisfied when the dimensionless Lorentz number is approximately equal to one.
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1. Introduction

Wide use of metals in various branches of human activity

attracts researches permanent attention to their properties

for long time period. Development of new highly intelligent

technologies requires not only creation of tabulated data

bases, but also use of analytical relationships between the

characteristics of metals and external parameters.

Currently in solid state physics the electron-phonon

model of metals predominates. But in theory of thermal

properties (Einstein, Debye models and their modifica-

tions [1–4]) it does not comply at temperatures above

300K with determined experimental data [5–12] being

in agreement with modern data bases on thermophysical

properties of substance [13]. In particular, the model fore-

casts that temperature curve of thermal capacity will reach

the horizontal straight line corresponding to Dulong−Petit

law. Unlike the theory the experiment demonstrates further

rise of thermal capacity with temperature increasing for

a series of metals. Besides, the model does not explain

the presence of features on the thermal capacity curve in

form of step changes of the base line, peaks and pits.

Their presence and physical nature were described in model

of the two-phase system [14–16].

A similar picture is observed when describing the tem-

perature dependences of thermal conductivity and resistivity

of metals. Drude–Lorentz theory of free electrons (see for

example [17,18]) and its modification by Sommerfeld ex-

plained Ohm, joule–Lenz, Wiedemann–Franz–Lorenz laws

and other effects in metals [19–22]. But presentation, e. g.,

of thermal conductivity of sample as two terms linked with

contributions of free electrons and lattice oscillations, does

not result in relationships describing the test data. Use of the

methods of Fermi-Dirac quantum mechanics and statistics to

describe the behavior of free electrons shows that as they

approach the absolute zero on the Kelvin scale, their energy

below a certain threshold temperature remains constant.

This means the possibility to observe in the experiment

the residual values of thermal conductivity and resistivity

of some metals upon reaching the temperature T = 0K.

One of the methods describing the experimental data is

search of the approximation functions [23], this corresponds
to the present paper task. Besides, for solid metals from

main subgroups Ia−Va of Mendeleev Periodic System it

is necessary to check execution of Wiedemann−Franz law

on thermal conductivity λ [W/(m ·K)] link with resistivity

σ [�−1
·m−1], and to determine type of thermal depen-

dence of Lorentz number Lo [W ·�/K2]. Presence of

analytical expressions removes some negative statements

of authors [24] on impossibility to forecast the thermal

and electrical conductivities of the alloy as per known

characteristics of components, and on use of unreasonable

assumptions.

2. Functions describing thermal
conductivity and resistivity of metals
of main subgroups Ia−Va

The main subgroups Ia−Va of the Periodic System of

D.I. Mendeleev comprise the following metals: Ia —
lithium Li, sodium Na, potassium K, rubidium Rb, ce-
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Figure 1. Thermal conductivities (a, c, e) and resistivities (b, d, f ) of sodium Na (a, b), calcium Ca (c, d) and aluminium Al (e, f ) in solid

state.

sium Cs, francium Fr (not presented here due to its ra-

dioactivity); IIa — beryllium Be, magnium Mg, calcium Ca,

strontium Sr, barium Ba, radium Ra (not presented due

to its radioactivity); IIIa — aluminium Al, gallium Ga

(not presented due to absence of reliable test data),
indium In, thallium Tl; IVa — tin Sn, lead Pb; Va —
antimony Sb, bismuth Bi.

During mathematical modeling of temperature behavior

of thermal conductivities and resistivities ρ = 1/σ [� ·m]
of the listed metals we need to consider thermal expansion

of samples [18]. Besides, consider the formation of peak

of thermal conductivity upon absolute zero approaching by

temperature (T = 0K). Its occurrence may be associated

with scattering of free electrons on defects and impurity
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Figure 2. Temperature dependences of thermal conductivity (a, c, e) and resistivity (b, d, f ) of thallium Tl (a, b), lead Pb (c, d) and

antimony Sb (e, f ) in solid state.

centers or with dipole fields of such quasi-particles as

exciton, polaron and other objects of similar type [25]. In

the latter case, the metal can have dielectric properties at

rather low temperatures T [K]. The thermal conductivity

peak decreases when doping elements content in metal

increases, metal purity decreases, grain size decreases and

upon other factors.

To describe said thermal changes in metal itis suggested

in temperature range from absolute 0K to melting point

Tph [K] to approximate the experimental data [5–12] by
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Figure 3. Changes in Lorentz number Lo with temperature for metals of main subgroups Ia−Va in solid state: sodium Na (a), calcium
Ca (b), aluminium Al (c), thallium Tl (d), lead Pb (e), antimony Sb (f ).

formulas
{

λ(T ) = aT exp(−bT ) + λ0s [1 + α1s (T − Tph)],

ρ(T ) = ρ0s [1 + α2s(T − Tph)],
(1)

where a, b, λ0s , α1s , ρ0s , α2s — constant coefficients. The

first term in the first equation (1) describes contribution to

thermal conductivity of electron-like subsystems (electrons,

singly negatively charged impurity centers etc.). In vicinity

of absolute zero we can decompose the exponent into

Maclaurin row, and then the first term is presented

as aT exp(−bT ) ≈ aT − abT 2. Therefore, parameter a
determines electron thermal conductivity coefficient, and

parameter b (in product with a) — thermal conductivity

coefficient of electron-like subsystem. The second term in
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the first equation (1) is associated with thermal expansion of

sample. Parameter λ0s sets value of thermal conductivity of

atomic-like subsystem Tph, and parameter α1s — thermal

expansion of metal. Parameters ρ0s and α2s in second

equation of system (1) for resistivity have same physical

meaning. From system (1) it is obvious that when tempera-

ture reaches T = 0K the thermal conductivity and resistivity

of metal reach residual values λ(0) = λ0s [1− α1s Tph] and

ρ(0) = ρ0s [1− α2s Tph] respectively. On second boundary

of the temperature range at T = Tph they are equal to

λ(Tph) = aTph exp(−bTph) + λ0s and ρ(Tph) = ρ0s .

Tables 1 and 2 show the values of constant coefficients

for calculating the values of the approximating functions

of system (1). Table 1 does not show parameters to

calculate the resistivity of barium, as the experimental data

Table 1. Parameters of temperature dependence of thermal

conductivity and resistivity of solid metals from the main subgroups

Ia−IIa of Periodic System

Subgroup Ia

� Metal

Parameters of approximating functions

a b ·103
λ0s α1s ·10

3

Tph
ρ0s ·10

8 α2s ·10
3

1. Li 139.8164 76
64.0 −1.6

453.69
15.55 2.53

2. Na 1015.994 160
126.0 −0.5

371.01
6.37 2.9

3. K 2492.357 430
105.4 1.0

336.86
6.37 2.9

4. Rb 136.0975 340
55.2 −0.5

312.47
12.0 3.3

5. Cs 756.14 152
136.0 −0.09

301.59
4.8 3.8

Subgroup IIa

6. Be 466.0197 36
33 −3

1558
44.9 0.73

7. Mg 1877.93103 124
140 −0.2

923
14.9 1.12

8. Ca 500.3643 146
97 −1.2

1112
14.2 0.93

9. Sr 48.4127 46
22 −0.8

1041
45.9 0.95

10. Ba 3.53597 60
7 −3

998
− −

Table 2. Parameters of temperature dependence of thermal

conductivity and resistivity of solid metals from the main subgroups

IIIa−Va of Periodic System

Subgroup IIIa

� Metal

Parameters of approximating functions

a b·103
λ0s α1s ·10

3

Tph
ρ0s ·10

8 α2s ·10
3

1. Al 6445.05435 102
214.0 −0.23

933.61
10.2 1.14

2. In 6109.0033 402
71 −1.15

429.78
13.4 2.39

3. Tl 2732.175 460
30 −2

576.2
40.8 1.93

Subgroup IVa

4. Sn 27875.1622 303
54 −1.2

505.12
21.5 2.1

5. Pb 1910.3738 316
29 −0.7

600.65
46.8 1.75

Subgroup Va

6. Sb 105.06092 84
15.5 −0.79

903.5
154.1 1.16

7. Bi 379.83015 157
6.9 −1.25

544.59
210.7 1.77

are described by nonlinear dependence

ρ(T ) = 0.08T exp(−0.00123T ). (2)

The rest characteristics of metals of main subgroups Ia−Va
are rather well approximated by functions of system (1),
which is represented by solid lines in Figures 1 and 2
(sources of experimental data and their notations are shown

in right bottom corner of Figures). Besides, from Figure 1, e
it is evident that the proposed functions allow us to predict

the behavior of the thermal conductivity of calcium in the
vicinity of absolute zero.

3. Check of fulfillment of relation in form
of Wiedemann−Franz−Lorentz law

If there are analytical expressions for electronic compo-
nent of thermal conductivities λe and resistivities ρ of metals

it is easy to check the approximated Wiedemann–Franz–
Lorentz law written as

λe/(σT ) = λe ρ/T ≈ Lo, (3)

where Lo — Lorentz number, equal as per Sommerfeld to

2.47 · 10−8 W ·�/K2.
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Law (3) determines relation of metal thermal conductivity

to its electrical conductivity in form of linear function

of temperature. However, the constancy of the angular

coefficient Lo is observed only in certain temperature

range ([8], p. 68−69 and [9] p. 208). Beyond this range the

Lorentz number depends on temperature, this is associated

with increase of contributions to thermal conductivity of

electrons scattering in impurity centers at low tempera-

tures, and increase in role of lattice component at high

temperatures. So, definite interest is linked with check of

relation of form (3) for relation of thermal conductivity λ

of sample to its electrical conductivity. Figure 3 shows

design temperature dependences of Lorentz functions for

metals from different main subgroups. Figure 3, a−f

shows that relation (3) is not met even approximately

in region below Debye temperature TD (for example, for

sodium TD = 155K [26]) due to nonlinear temperature

dependences of Lorentz functions, this is confirmed by

the experimental data, e.g. for alkali metals ([8], p. 68,
Figure 23). For calcium Ca (Figure 3, b), thallium Tl

(Figure 3, d), lead Pb (Figure 3, e) and antimony Sb (Figu-
re 3, f ) relation in form of Wiedemann−Franz−Lorentz law

is not met in all temperature range of solid state existance.

Calculations show that the closer the dimensionless number

L(T ) = Lo(T )/Lo(Tph) is to 1 in range from Debye temper-

ature TD to melting point Tph, the more accurate the relation

in form of Wiedemann−Franz−Lorentz law is met.

4. Conclusion

When developing new technologies for extracting metals

from ores, treating metals, creating new alloys and solving

other problems, it is important to know such characteristics

of metals as thermal conductivity and electrical resistivity.

Used theoretical models, unfortunately, do not result in ana-

lytical expressions that adequately describe the experimental

data. As result the mathematical approximation is applied.

Functions suggested in the paper not only rather well

describe the arrays of test data, but also ensure prediction of

behavior of said characteristics in temperature ranges where

experiments are not executed. Besides, they give possibility

to check fulfillment of Wiedemann−Franz−Lorentz law for

the relation of sample thermal conductivity to its electrical

conductivity. Note also the universalism of the suggested

temperature dependences, as they ensure description f

behavior of thermal conductivities and resistivities of metals

from different main subgroups from different main sub-

groups of Mendeleev Periodic System (excluding resistivity

of barium).
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