
Semiconductors, 2024, Vol. 58, No. 5

Weak antilocalization in HgTe double wells with massive Dirac fermions
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The HgTe double quantum well is a two-dimensional topological insulator in which the bulk carriers are massive

Dirac fermions with a vanishingly small Berry curvature. Accordingly, the nature of quantum corrections to the

conductivity in such a system should be determined by the presence of two factors: a near-zero Berry phase

and spin-orbit scattering. In particular, the vanishing Berry curvature in the HgTe double quantum well should,

according to the theory, lead to the observation of negative magnetoresistance, while in a single HgTe quantum well

with massless Dirac fermions and a non-zero Berry phase, the theory always predicts antilocalization corrections to

the conductivity (positive magnetoresistance) regardless of the strength of the spin-orbit interaction. In the present

work, contrary to expectations, similar antilocalization corrections to the conductivity of positive magnetoresistance

were also found in the double HgTe quantum well, which indicates the dominance of the spin-orbit relaxation

mechanism in quantum transport, leading to weak antilocalization. Thus, the results of our study of interference

corrections to the conductivity in the system of massive Dirac fermions indicate that the physics of localization

in two-dimensional topological insulators is determined by the competition of such factors as the spin texture, the

mass of the quasiparticle, and the intensity of spin-orbit scattering.
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1. Introduction

It’s commonly believed that in a disordered two-

dimensional (2D) system the charge carriers are always

localized irrespective of the disorder force [1]. The

main reason for this is quantum interference which at

small disorder leads to weak-localization corrections to

conductivity which is a precursor for a strong localization.

The issue of versatility of weak localization (WL) and weak

anti-localization (WAL) concepts for 2D fermion systems,

in general, still remains unclear, including topological

insulators with massless or massive Dirac fermions that have

been discovered for the last 15 years [2–6].
Thus, the 3D topological insulators (3DTI) are character-

ized by availability of a band gap in the 3D spectrum and

gapless conducting surface states. These states, in terms

of topology, are protected against back scattering ([6,7])
because back scattering cannot occur without simultaneous

spin flip (topological states with an opposite pulse have

an opposite spin). At the same time in such system the

interference between the trajectories propagating clockwise

and counterclockwise turns out to be destructive because

of Dirac fermions system-specific Berry phase mechanism

which leads to the weak anti-localization behavior of the

surface states [8–10]. Transition from WL to WAL is

expected to occur in 3DTI films depending on the film

thickness. This is because hybridization of upper and

lower surface states results in manifestation of Dirac mass

fermions and Berry phase deviation from π [11]. Thus,

the sign of interference correction to conductivity depends

on the mass of the quasi-particle: for zero mass or at

its small values correction corresponds to WAL, which

is peculiar to the topological insulators, and with large

masses the correction corresponds to WL, as in conventional

mass fermion system. It should be, however, stressed that

the required mass variation range is quite extensive which

makes it unlikely to get the adjusted topological transition

WL-WAL on the base of 3DTI films [12,13].
Another version of 2D Dirac fermions system is a

quantum well (QW) on the base of HgTe. When the

width of HgTe d well is close to its critical value,

d ∼ dc ≈ 6.3 nm, the spectrum becomes gapless and at low

levels of energy looks like Dirac spectrum for the massless

fermions ε±(k) = ±Ak , where k — wave vector, two signs

correspond to the electron and hole bands, and A —
parameter that can be obtained from effective Hamiltonian

for a narrow symmetrical QW HgTe [3]. In quantum wells

with the width different from the critical one the dispersion

law is written as follows:

ε±(k) = Dk2 ±
√

A2k2 + (M + Bk2)2, (1)

where M, B , D — positive parameters which depend on

material, at that B > D. Parameter M is positive at d < dc

(conventional insulator) and negative at d > dc (topological
insulator). At low energy values the dispersion of mass
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Dirac fermions is almost parabolic, and at high energy

values it is more of a linear dependence of the wave

vector. Thus, the theory may predict transition from WL

to WAL with growing Fermi energy provided the sample

has appropriate parameters [10].
Multiple experiments in 3DTI in fact demonstrate be-

havior specific for WAL [14–16], however, this may be a

cumulative effect caused by contributions of surface and

3D states [13]. In this sense the results from HgTe

quantum wells are interpreted more unambiguously, since

contribution into transport is provided only by the carriers

with dispersion expressed by equation (1), irrespective of

whether Fermi level being in valence band or in conduction

band [17–21]. At that, despite the fact that, as mentioned

above, theory [10] predicts transition from WL-like behavior

to WAL with the growth of carriers concentration, the

experiments in weak magnetic fields [17,21] demonstrated

that there’s only WAL behavior in both, normal (d < dc),
and inverted (d > dc) band spectrum.

The double quantum wells (DQW) represent a typical

example of a two-layer system, where two QWs are

separated by a tunnel-transparent barrier with a thickness

of t (Figure 1, a). Due to additional binary degree of

freedom because of possible tunneling effect between the

layers the phase portrait becomes quite diverse and energy

spectrum has some singularities [22–24]. In particular,

Dirac fermions (DF) become massive and the spectrum is

delineated by the following dispersion:

ε±(k) = Dk2 ± k2
√

B2 + A2k2. (2)

At that parameters of DQW dispersion may greatly differ

from the respective parameters used in single QW [25].
In Figure 1, b, c the spectra are given for two different DQWs

used in our study. The calculation of DQW spectrum

with the use of effective Hamiltonian 6× 6 with Luttinger

parameters is given in papers [26,27]. The energy spectrum

of DQW looks like a spectrum of the bilayer graphene [28],
because single HgTe quantum well can be described by

effective Hamiltonian of BHZ model [3], which leads to

a graphene-like Dirac cone in spectrum [29–31] for d ∼ dc .

However, in contrast to the bilayer graphene, in HgTe DQW

in gapless phase no any valley degeneration is observed and

the numerically calculated spectrum at low energy may be

described by equation (2) with appropriate parameters.

For massive Dirac fermions the Berry phase is equal

to zero and, hence, in weak magnetic field the behavior

corresponding to WL and characterized by positive mag-

netic conductance shall be observed. Thus, observation

of WL in HgTe DQW with massive DF, in contrast to WAL

for massless DF in single HgTe wells, could demonstrate

the relationship between various mechanisms defining the

nature of interference corrections to conductivity in Dirac

fermions system, such as spin texture, mass of quasi-

particles and spin-orbit interaction (SOI).
This paper outlines the findings from the study of a weak-

field magnetic conductivity in HgTe DQW. Samples having

both, gapless semi-metallic energy spectrum and a band
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Figure 1. a — band spectrum profile for symmetric DQW

HgTe [013] with d = 6.5 nm, t = 3 nm and Cd xCd = 0.65 content.

b — energy dispersion of 2D sub-bands in two directions of

the wave vector k in growth plane xy , ky = 0 ([10]) and

ky = kx ([11]) for DQW HgTe [013] with d = 6.5 nm, t = 3 nm

and Cd xCd = 0.65 content (gapless sample). c — energy

dispersion of 2D sub-bands in two directions of the wave vector k

in growth plane xy , ky = 0 ([10]) and ky = kx ([11]) for DQW

HgTe [013] with d = 6 nm, t = 3 nm, with Cd xCd = 0.37 content

and integrated electrical field E = 13 kV/cm (gapped sample).
Edge state spectrum is not shown. (A color version of the figure

is provided in the online version of the paper).
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gap spectrum for 3D states were studied. In both groups

of samples WAL-like behavior with negative magnetic

conductivity was observed which experimentally proves the

prevailing role of the spin-orbital scattering in HgTe double

quantum wells.

2. Berry phase in HgTe double
quantum well

To describe the low-energy states in DQW we may use a

2D Hamiltonian in the two states basis (H1, H2) obtained

from the form corresponding to the four-state basis (E1,
H1, H2, E2) in [22], projection of the distant states E1, E2
on the low-energy states H1, H2. It is expressed as follows:

Ĥ =

(

−Dk2 + 1/2− Bk2 Ak3
−

Ak3
+ −Dk2 − 1/2 + Bk2

)

,

where 1 — states splitting energy H1, H2, occurring when

a mirror symmetry of DWQ is broken by the transverse

electrical field. Energy reference point is taken in the middle

of the gap (if 1 is non-zero) or in the contact point of

bands H1 and H2 at k = 0 (if 1 is zero). The spectrum

corresponding to Ĥ, looks as follows:

ε±(k) = −Dk2 ±
√

(Bk2 − 1/2)2 + A2k6

or, if 1 = 0,

ε±(k) = −Dk2 ± k2
√

B2 + A2k2,

where + and − correspond to the states of conduction band

and valence band. In case of non-zero 1 a dispersion of

”
Mexican hat“ type may be obtained.

Eigen states:

9+ =
1√
1 + η

(√
ηe−3iϕ

1

)

, 9− =
1√
1 + η

(

1

−√
ηe3iϕ

)

,

where ϕ — angle defining the direction of the wave vector, a

η =

[

Ak3

Bk2 − 1/2 +
√

(Bk2 − 1/2)2 + A2k6

]2

,

or, when 1 = 0,

η =

[

Ak

B +
√

B2 + A2k2

]2

.

Berry phase for these eigen states is equal

Ŵ+ = −Ŵ− =
6πη

1 + η
.

It may basically vary from 0 to 3π, but Ŵ+ = 3π (at
1 = 0) is implemented in a quite specific case B = 0, which

is hard to reach or, perhaps, even impossible. A is probably

small compared to B , and hence, η is also small.
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Figure 2. Berry phase versus parameter B for the gapless

DQW and gapped DQW with parameters: A = 375meV · nm2,

k = 0.2 nm−1 and 1 = 20meV.

It is interesting to note that, although Ĥ spectrum (at
1 = 0) is similar to the spectrum of bilayer graphene, Ĥ in

terms of topology differs from the low-energy Hamiltonian

of bilayer graphene the Berry phase of which is constant

and equal 2π. Therefore, the analogy between HgTe DQW

and bilayer graphene is not full.

Despite the fact that dispersion equation is defined only

by three parameters D, B and A, their determination by

matching the low-energy spectrum with the exact spectrum

calculated by Kane model may be ambiguous. In this case it

is useful to have a representation of possible range of these

parameters variation.

The expression for parameters of the reduced Hamilto-

nian 2× 2 Ĥ via parameters of Hamiltonian 4× 4 from

paper [22] is written as

D =
1

2

(

A2
1

εE1

+
A2
2

εE2

)

, B =
1

2

(

A2
1

εE1

−
A2
2

εE2

)

,

A =
A1R1

εE1

−
A2R2

εE2

+
S0A1A2

εE1εE2

,

where εE1 and εE1 — energies of quantization of electron-

like sub-bands E1 and E2 at k = 0.

Figure 2 shows Berry phase versus B parameter. It

is seen that Ŵ quickly goes down at B > 100meV · nm2

in the gapless DQW and at B > 300meV · nm2 in the

gapped DQW. For samples used in this paper we consider

B ≈ 1000meV · nm2, therefore the Berry phase in the

studied double quantum wells is expected to be close to

zero [22]. In this case the sign of quantum corrections

to conductivity shall correspond to localization effect, i.e.

it shall differ from WAL-corrections to conductivity in

single QW with massless Dirac fermions [8–10].
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Figure 3. From the left — layer-by-layer structure diagram. From the right — top view of sample and resistance versus voltage curve on

the gate for various measurement configurations and for different samples. Black lines correspond to resistance dependencies measured in

gapless DQW, and red lines — in gapped DQW. The dashes designate the quantized resistance 5
9

h/e2.

3. Samples

Structures containing HgTe quantum wells with surface

orientation [013] separated by barriers CdxHg1−xTe were

grown by method of molecular-beam epitaxy (MBE).
A schematic representation of samples’ layer-by-layer struc-

ture with a well 6.5 nm wide is given in Figure 3 (left).
The use of substrates with non-singular orientations may

contribute to the growth of more improved structures.

Therefore, to grow the structures mainly substrates with

surface orientation [013] differing from [001] by ∼ 19◦

were used. The layers thicknesses were defined by

ellipsometry method during MBE growth process with

an accuracy of ±0.3 nm. The experimental samples

intended for multiterminal measurements had 9 contacts

and consisted of three sequential segments W = 3.2µm

wide and having different length L (2, 8 and 32 µm)
(Figure 3, top).

Ohmic contact in HgTe quantum well is fabricated

similarly to its fabrication in other 2D systems, such

as GaAs quantum wells: the contacts were shaped by

burning in of Indium directly on the surface of contact pads.

The modulation-doped HgTe/CdHgTe quantum wells are

generally grown at a temperature of 180◦C. Therefore, in

contrast to III-V compounds, during fabrication of contacts

indium was heated not so extensively. On each contact pad

DQW parameters HgTe/CdxHg1−xTe

d, nm t, nm xCd VCNP(B) Properties

6.5 3 0.65 −4.0 Gapless DQW

6.0 3 0.37 −2.5 Gapped DQW

indium diffuses top to bottom, thus providing the ohmic

contact with both quantum wells with contact resistance in

the range of 10−50 kOhm. When measuring the alternating

current the Y -component of impedance never exceeds 5% of

the total impedance which indicates good ohmic properties

of contacts.

A layer of dielectric SiO2 200 nm later coated by TiAu

gate was applied on the sample surface. Variation in

the carriers concentration depending on gate voltage was

0.86 · 1011 cm−2. Transport measurements were carried

out in the temperature range from 4.2 to 20K using

conventional four-point system applying alternating current

of 1−13Hz 1−10 nA through the sample allowing to

avoid heating effects. Two types of samples were studied.

Table gives parameters of these samples including gate

voltage corresponding to the charge neutral point (CNP)
at T = 4.2K. The two samples of each type were tested.

Measurements on samples of the same type provided

equivalent results.
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4. Experimental results

Figure 3 illustrates dependencies of local resistance in

zero magnetic field for samples manufactured from struc-

tures from d = 6.5 and 6.0 nm. In local configuration cur-

rent I flows between contacts 1 and 5, and voltage V varies

between the closely located 2 and 3, RL = R2,3
1,5 = V2,3/I1,5

or distantly related potentiometric contacts 3 and 4,

RL = R3,4
1,5 = V3,4/I1,5 . When voltage changes on the gate

due to Fermi level displacement from the conduction band

into valence band the transition from electron conductivity

to hole conductivity is observed. Resistance in maximum

for dependencies, corresponding to the short segment has

a value of ∼ 5/9(h/e2), which is expected in case of

a purely ballistic transport of edge states for the used

resistance measurement configuration [23]. This observation
is consistent with the edge state transport theory in 2D topo-

logical insulators (TI), according to which back scattering

is prohibited at sufficiently low temperatures [2–6]. At

the same time, peak resistance measured for the longer

segment R3,4
1,5 is much higher than 5/9(h/e2) demonstrating

the absence of ballistic nature [23]. Absence of steady edge

state ballistic transport was observed by many experimental

groups [32]. Many explanations of such behavior have been

suggested recently [33]. A detailed discussion of existing

theoretical models is out of the scope of this article.

The specifics of electron transport in DWQ structures

with d = 6.5 and 6.0 nm has been earlier studied in [23]
based on resistance temperature dependence near the

charge neutrality point (CNP), which was different in these

DQWs: with the growth of T the resistance (in CNP) in

d = 6.5 nm samples grows indicating the metallic gapless

type of conductivity, while resistance in d = 6.0 nm samples

goes down at T > 10K, thus indicating the presence

of 1 = 11meV activation gap. Calculations of energy

spectrum for asymmetric DQWs prove these conclusions

and indicate that the observed gap can be generated by a

transverse electrical field E = 13 kV/cm (Figure 1, c) which

may appear because of an accidental deviation from the

symmetrical doping of DQW that could occur during its

growth by MBE method [23]. Moreover, the transport

properties of 2D fermion systems in HgTe DQW in

both, gapless semi-metallic phase and topological insulator

phase, were also studied in perpendicular acting magnetic

field [24], where multiple intersections of Landau levels

of different sub-bands were observed. The dynamics of

observed Landau levels intersection is well consistent with

the theoretical analysis for the corresponding phases.

It should be noted that semi-metallic DQW samples

and DQW samples in 2DTI phase demonstrate different

behavior even with higher electrons density, away from

the charge neutrality point: gapless DQWs have higher

resistance and, consequently, lower mobility of the charge

carriers. This may be related to the uncontrolled difference

in the growth conditions. To grow the high-quality DQWs

based on HgTe materials is still a challenge up to now. The

observed quantized resistance near CNP is also noted to be
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Figure 4. Experimental (round symbols) and theoretical (solid
lines) dependencies of magnetic conductivity corresponding to

various voltages on the gate for (a) DQW with a band gap and for

(b) gapless DQW at T = 4.2K.

consistent with the portrait of edge state ballistic transport

in 2DTI, since resistance measured for the short segments

between the potentiometric contacts doesn’t depend on the

sample’s 3D properties. It should be stressed that the edge

states exist both, in the gapless semi-metallic phase, and in

the topological dielectric phase with a band gap [22,23].

Thus, the transport measurements made in the previous

studies prove that the structures with d = 6.5 and 6.0 nm

correspond to the gapless semi-metallic phase and topolog-

ical insulator phase, respectively, with the energy spectra

given in Figure 1, b, c.

From Figure 3 we may see that resistance correspond-

ing to the electron part of the spectrum at voltages of

Vg −VCNP > 1V becomes less (h/5e2) which complies with

the weak localization conditions [34].

Figure 4, a, b illustrates the dependencies of magnetic

conductivity 1σ (B) = σ (B) − σ (0) (σ = 1/ρ = L
WR ) as a

function of magnetic field and gate voltage measured

between the contacts 3 and 4 in (a) DQW with 2DTI

and (b) in the gapless semi-metallic DQW. In both samples

negative magnetic conductivity (1σ (B) < 0) is observed
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within the entire gate voltages. A that, the amplitude

of magnetic conductivity greatly increases as Fermi level

is displaced from CNP to higher energies. Negative

magnetic conductivity corresponds to WAL corrections

to conductivity. Transition from the weak localization (WL)
conductivity corrections to WAL type corrections with the

change of charge carriers density was not observed in the

experiment. The steady behavior corresponding to WAL

instead of WL expected in DQW because of zero Berry

phase (see. sect. 2) can be explained by the prevailing role

of strong spin-orbit interaction in HgTe quantum well.

5. Discussion and comparison with
theory

The quantitative analysis of the obtained results is based

on Hikami−Larkin−Nagaoka theory modified allowing for

the spin-orbit interaction [35]. The expression for magnetic

conductivity is as follows

1σ (B) − 1σ (0) =
e2

2π2ℏ

{

ψ

(

1

2
+

Hϕ

B
+

HSO

B

)

+
1

2
ψ

(

1

2
+

Hϕ

B
+

2HSO

B

)

−
1

2
ψ

(

1

2
+

Hϕ

B

)

− ln
Hϕ + HSO

B
−

1

2
ln

Hϕ + 2HSO

B
+

1

2
ln

Hϕ

B

}

, (3)

where

Hϕ =
cℏ

4eDτϕ
, HSO =

cℏ

4eDτso
,

τϕ — phase coherence time, τso — spin relaxation time,

D = 1
2
v2Fτtr — diffusion constant, τtr — pulse relaxation

time, ψ — digamma function.

By default we could expect that in a double quantum well

the tunneling between the wells would lead to a significant

change of quantum corrections to conductivity. In particular,

the tunnel coupling gives to an electron an additional degree

of freedom, possibility of tunneling between the layers

which reduces the interference effects [36,37]. Corrections

are generally defined by the ratio of phase coherence time

and life time in well or tunneling time τt . However,

in ultimate cases this theory may be simplified. For

example, DQW may be considered as a structure with one

quantum well, when τt ≪ τϕ , or as a system with two non-

related quantum wells, when τt ≫ τϕ . In the last case the

quantum corrections to conductivity represent only a sum of

corrections for every individual well. Corrections to negative

magnetoresistance (WL) have been studied earlier for the

double quantum wells GaAs/AlGaAs [38,39].
Its’ evident that adaptation to the theory of one magne-

toresistance curve for simultaneous determination of several

sample parameters doesn’t provide the reliable results. It

should be however expected that because of high difference

in energies in symmetry and non-symmetry states in our

DQW 1SAS ≈ 20meV, the time of tunneling in it is low

and by comparing the theory and experiment we may use

approximation of one QW. According to our assessment,

τt ∼ ℏ/1SAS ≈ 10−13 s. This time is much less than τϕ , that,

in 2D electron systems is expected to be ∼ 10−10 s [38].
Given this ratio, to describe the observed negative magnetic

conductivity let’s use the equation (3). Figure 4, a, b shows

the results of comparing experimental results with AALKh

theory with the use of only two adaptation parameters

Lϕ =
√

Dτϕ and Lso =
√

Dτso. Figure 5, a, b illustrates

the phase and spin relaxations lengths versus electron

density for both, gapless semi-metallic phase and topological

insulator phase. In the same figure we may see the free path

length Ltr = vFτtr versus Ns, where vF — Fermi velocity.

We may see that in the available interval of electron density

the following relationship between the relaxation lengths is

true: Ltr < Lso < Lϕ . The characteristic lengths Lso and Lϕ
become comparable only at low densities. Since Ltr < Lϕ ,
we may apply diffusion theory WAL to our samples, while

in the samples with higher mobility it’s often required
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Figure 5. Experimental data Lϕ (black symbols), Lso (red
symbols) and Ltr (blue lines) depending on electron density for

DQW with 2DTI (a) and for gapless DQW (b), T = 4.2K.
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Figure 6. Experimental time of phase coherence τϕ (black
symbols) and τso (red symbols), τϕ (black curve) calculated

from equation (3), and transport relaxation time τtr (blue curve)
versus electrons density for DQW with 2DTI (a) and for gapless

DQW (b), T = 4.2K.

to use a more common theory in ballistic and diffusion

approximation [34].
Comparing the characteristic relaxation lengths obtained

in the gapless DQW and in DQW with 2DTI, we find

that Lso and Lϕ have almost the same values, while Ltr

is larger in 2DTI. Also, let’s consider the characteristic

relaxation times. Figure 6, a, b shows the relaxation times

τϕ , τso and τtr versus electronic density for both types of

samples. The principal mechanism of the phase relaxation

in 2D system is the electron-electron interaction in presence

of disorder [34,40].
Phase relaxation time is found from the following equa-

tion:
1

τϕ
=

(

kBT
ℏ

)(

e2/h
σ

)

ln

(

σ

e2/h

)

, (4)

where kB — Boltzmann constant. Figure 6, a, b shows

theoretical dependencies of the phase relaxation time as a

function of the carriers concentration. For a gapped DQW

there’s a good consistency of experimental and theoretical

data, while theoretical values calculated for the gapless

DQW turn to be lower than experimental data. Such

discrepancy may be explained by lower charge carriers mo-

bility in a gapless semi-metallic DQW (see Figure 3), which

we attribute to additional scattering mechanism due to the

sample inhomogeneity. It should be taken into account,

that the studied samples have mesoscopic dimensions and

their transport includes contributions from both, the edge

and 3D states. At that, conductivity contribution from the

edge states prevails near CNP, whereas with higher electron

concentrations the decisive role plays the contribution from

3D states. The scattering between the electrons of the edge

and 3D states may be sufficiently enhanced because of

disorder [32]. Since WAL — is a 3D conductivity-related

effect, the phase relaxation time shall be definitely defined

by the 3D conductivity which may be higher here.

In 2D systems fabricated from the inversion center-

free (HgTe) crystalline structures, the spin splitting of

spectrum, also includes the linear Dresselhaus term, apart

from the cubic Dresselhaus term in the wave vector.

Moreover, in the gapped DQW because of asymmetry

induced by internal electrical field, there also shall be

present the k-linear Rashba splitting. However, as mentioned

above the values Lso for both types of structures are almost

equal.

It is well-known that in HgTe structures the spin-orbital

interaction plays an important role [41]. In particular, it was

predicted that WAL corrections remain constant within a

wide concentrations range in the conduction band which is

consistent with our observations. For HgTe single quantum

wells in 2D topological insulator phase both effects, spin-

orbit interaction and Berry phase, may result in WAL, that

makes it quite difficult to define the individual contribution

from each mechanism. The model offered in [41] suggests
to use modified corrections WAL taking into account

contributions from both effects. Since in our DQW Berry

phase is equal to zero, we may expect the observed WAL

effects to be defined only by SOI contribution.

6. Conclusion

For massless Dirac fermions in HgTe single quantum

wells the theory predicts weak anti-localization correc-

tions (WAL) to conductivity because of non-zero Berry

phase. On the contrary, in HgTe double quantum wells be-

cause of Berry phase being close to zero we could expect to

observe positive magnetic conductivity (WL). However, in
this study in HgTe double quantum wells negative magnetic

conductivity was observed (WAL). Observation of WAL in

double quantum well structures indicates the decisive role

of SOI, which, similar to non-zero Berry phase, may result

in WAL. Further experimental and theoretical studies are

required to differentiate between the contributions of SOI

and Berry phase into conductivity corrections for massless
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and massive Dirac fermions in HgTe single and double

quantum wells.
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