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X-ray dark field imaging
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1. Introduction

In a broad sense, dark-field imaging is the study of objects

with the use of radiation that the objects themselves direct

to a detector; in contrast to bright-field imaging, no radiation

from any external sources is detected directly in this case.

In other words, unscattered photons do not produce a

contribution to images of any form [1].
Common X-ray images are obtained under direct illu-

mination (i.e., based on absorption bright-field contrast).
However, absorption contrast is often insufficient to resolve

fine details of samples associated with small density changes

or local deformations. Dark-field imaging techniques then

come to the aid of a researcher. These methods have

found application in medicine [2], in the study of composite

materials [3] and mineral building materials [4], and in

luggage screening at airports [5].
Measurement methods may be divided tentatively into

direct and indirect ones. By direct methods we mean

measurements in which the sought-for parameter value

is determined directly from experimental data. Indirect

measurements are those in which the numerical value of

the quantity to be measured is determined using a known

functional dependence involving other quantities that may

be evaluated by direct measurements.

X-ray microscopy [6,7] and the Laue analyzer method [8]
should be classified as direct X-ray dark-field imaging

methods. Indirect dark-field methods include multimodal

X-ray imaging techniques, such as the propagation-based

method [9], Talbot interferometer [10], the edge illumination

method [11], the Bragg analyzer method [12], the speckle-

based method [13], and the single-grid method [14].
The purpose of the present review is to familiarize the

reader with the operating principles, specific features, and

capabilities of both direct and indirect methods of X-ray

dark-field imaging.

2. Direct dark-field imaging methods

Let us assume that thin (
”
pencil“) monochromatic X-ray

beam A (Fig. 1, a) illuminates statistically homogeneous

plate B with a spatially unresolved subpixel microstructure.

As a result of passing through plate B, the unresolved

microstructure will expand the beam into fan C with
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Figure 1. Illustration of changes in the shape and direction of

pencil monochromatic X-ray beam A(E) incident onto statistically

homogeneous plate B with a spatially unresolved microstructure

(sample F containing a spatially inhomogeneous macrostructure).
The transmitted beam expands into SAXS fan C(G). D — detector,

J — blanking element for the direct beam, 1 — sample−detector

distance, L — image blurring, θ — C(G) cone angle, and α —
refraction angle [15].
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Figure 2. Optical circuit of an STXM: 1 — point X-ray source

(focus formed by a condenser), 2 — objective lens, 3 — sample

under study, 4 — scattered radiation, 5 — detector, and 6 — blank

for blocking unscattered radiation.

cone angle θ. This expansion is associated with small-

angle X-ray scattering (SAXS) that occurs when transmitted

X-rays undergo multiple refraction/scattering by random

structures in a sample.
”
SAXS fan“ expansion angle θ and

distance 1 between plate B and detector D specify image

blurring L [15]:

L(x , y) = θ(x , y)1. (1)

Since plate B is statistically homogeneous, the SAXS

fan expansion angle does not depend on transverse posi-

tion (x , y) of the X-ray beam illuminating the plate.

If a sample has a spatially unresolved random microstruc-

ture with its statistical properties varying with position

within the sample, it is also natural to assume that the

sample exhibits macrostructural changes that are modeled

by X-ray refraction (phase shift) and vary with transverse

beam position (x , y). Under the influence of structural

inhomogeneities of sample F, incident monochromatic X-

ray beam E is in this case (Fig. 1, b) refracted at angle α to

optical axis H and is scattered into fan G [15].
For the detector to record the dark-field signal only, one

just needs to place blank J in front of it in the direct beam

trajectory. This principle is utilized in the design of X-ray

scanning microscopes.

2.1. X-ray microscopy method

X-ray microscopy allows one to obtain an image of the

object being studied in real space with the use of focusing

optics elements [7,16]. Two main types of transmission

X-ray microscopes are known: scanning transmission X-

ray microscopes (STXMs) and conventional transmission

X-ray microscopes (TXMs), which are often referred to

as full-field X-ray microscopes. In an STXM (Fig. 2),
an objective lens focuses an X-ray beam into a small

spot on a sample, the sample is raster scanned, and the

output intensity at each scanning position is recorded by

a detector. Most STXMs use detectors without spatial

resolution that integrate radiation transmitted through the

sample.

A combination of a detector and a blank may be replaced

by a segmented detector [17,18]. Figure 3, a presents the

external view of a detector with seven segments. Segments

1−3 record the cone of light coming from the studied

object and produce bright-field contrast [18]. Segments

4−7 may be used to obtain dark-field images. Figure 3, b

demonstrates the superiority of dark-field imaging (an image

is formed by the difference in X-ray intensities recorded

by segments 4, 5 and 6, 7) over bright-field contrast (all
segments are illuminated by X-rays) [17].

The optical circuit of a TXM (Fig. 4) is very similar to

the one of a conventional light microscope. A TXM features

a condenser (not shown) and an objective lens. The latter

produces an enlarged image of a sample in the detection

plane that is recorded by a pixel detector (a charge-coupled

device (CCD) is normally used for this purpose).

Figure 4, b demonstrates that a dark field is formed in a

TXM with sample illumination by a hollow cone (a hollow

X-ray cone may be produced by capillary optics [19]) by

installing annular aperture diaphragm 4 to block unscattered

radiation [20]. Another way to form a dark field is to use a

condenser with a high numerical aperture (greater than the

numerical aperture of zone plate 3 [6,7]). Only the X-ray

radiation scattered by a sample reaches the detector in this

case (Fig. 4, a).

2.2. Laue analyzer method

The studied sample is positioned between the crystals

of a double-crystal diffractometer (Fig. 5, a). Its first

(monochromator) crystal limits the angular and spectral

divergence of the primary X-ray beam and forms a

wide plane-wave front. The second (analyzer) crystal,

which is located between the sample and a detector,

serves as an angular filter that cuts out only a nar-

row angular interval from a beam passing through the

sample. Phase gradients present in the sample deflect

X-rays locally from the direction of initial propagation.

This implies that unrefracted X-rays from the object do

no longer propagate in the direction of the transmitted

beam.

Two-dimensional refraction-based X-ray imaging with an

analyzer has been demonstrated for the first time by Ingal

and Belyaevskaya [21,22] (dark-field and bright-field images

in these studies were obtained simultaneously).

The greatest phase contrast here is to be expected when

the operating point is positioned on the slopes of the rocking

curve (points 1, 2 in Fig. 5, b) of the analyzer. At the same

time, it is impossible to suppress the dynamic background

completely in these conditions.

Provided that the absorption is zero and the diffraction

is symmetric (the angles between the inward normal to the

surface and the directions of propagation of incident and

diffracted beams are equal), the intensity of diffracted IR(W )
and transmitted IT (W ) X-ray beams may be written as [8]

IT (W ) = sin2
(

tπ
(

1 + W 2
)1/2

/3
)

/
(

1 + W 2
)

, (2)
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Figure 3. (a) Detector with seven active segments [18]. (b) Bright-field (left) and dark-field (right) images of a phytoplankton cell [17]
(see text).
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Figure 4. Optical TXM circuits operating in the dark-field mode.

1 — Hollow conical X-ray beam formed by a condenser, 2 —
sample, 3 — objective Fresnel zone plate, 4 — ring blocking

unscattered radiation, and 5 — detection plane [18].

IR(W ) =
{

cos2
[

tπ
(

1 + W 2
)1/2

/3
]

+ W 2
}

/ (

1 + W 2
)

,

(3)

IT (W ) + IR(W ) = 1, (4)

3 = λ cos θB/C|χhr |, (5)

χhr = −
(

reλ2/πV
)

Fhr , (6)

where t, W, 3 are the analyzer thickness, the deviation of

an angle from the exact Bragg condition, and the extinction

depth, respectively; W = 23 sin θ(1θB + 1θ0)/λ; 1λB is the

angle of deviation from Bragg angle θB; 1θ0 is the Bragg

angle correction for X-ray refraction; χhr is the real part

of the Fourier component of crystal polarizability; polar-

ization factor C = 1 for wave field components polarized

perpendicular to the scattering plane (σ -polarization) and

C = cos 2θB for components polarized within this plane (π-
polarization); V is the unit cell volume; re = e/mc2 is the

classical electron radius; and Fhr is the real part of structural

amplitude.

If the operating point, which characterizes the relative

angular position of the monochromator and the analyzer, is
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Figure 5. (a) Schematic diagram of the Laue analyzer method:

1 — monochromator crystal, 2 — analyzer crystal, 3 — object

under study, 4 — detectors, and T, R — transmitted and diffracted

beams that produce dark-field and bright-field images, respectively;

(b) rocking curve of a single crystal: positioning of the operating

point on the slopes (1, 2) and at the top (3) of the rocking curve

(ω is the width of the rocking curve, ω = 2C|χhr |/ sin 2θB).

a b

Figure 6. Insect imaged in dark-field (a) and bright-field (b)
modes (the field of view is 5× 5mm in size) [8].

at the peak of the rocking curve (i.e., W = 0; point 3 in

Fig. 4, b), formulae (2) and (3) take the following form:

IR(W = 0) = cos2(πt/3),

IT (W = 0) = sin2(πt/3).

Adjusting the energy of the primary beam and the

thickness of the analyzer crystal, one may establish the

Optics and Spectroscopy, 2024, Vol. 132, No. 4
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conditions when IR(W = 0) = 1 and IT (W = 0) = 0 (i.e.,
the intensity of the transmitted beam is virtually equal to

zero). This implies that the transmitted beam consists only

of scattered X-rays that have changed their trajectory as a

result of interaction with the sample. At the same time,

since the background is weak (zero), one might expect to

obtain high-contrast dark-field images.

An insect imaged in dark-field (Fig. 6, a) and bright-

field (Fig. 6, b) modes is shown in Fig. 6.

Since the wave field propagating in a crystal fills the

entire Bormann triangle, a dark-field image with symmetric

diffraction undergoes blurring δT : δT = 2t sin θB. The

resolution reduction may be suppressed by shortening the

base of the Bormann triangle (i.e., by thinning the analyzer).
A thinner analyzer should thus produce a sharper image.

Another way to shorten the base of the Bormann triangle

is to reduce angle 2θB at its apex. This requires a

shorter wavelength and/or a reflection with low Miller

indices [23,24].
This method has found applications in medical imaging

of bones [25], articular cartilage [26–28], and the mammary

gland [29].

3. Indirect multimodal dark-field imaging
techniques

However, the X-ray microscopy methods discussed in

the previous section and the Laue analyzer method do

not allow one to separate the effects of refraction and

SAXS. Multimodal X-ray imaging techniques provide an

opportunity to separate X-ray absorption, refraction, and

scattering patterns in a single experiment. SAXS is

manifested in images as local blurring and/or weakening of

image intensity, and experimental data need to be processed

to retrieve this information.

3.1. Propagation method

Propagation-based imaging [9,30,31], which relies on free-

space propagation of spatially coherent X-rays transmitted

x

y

z

Figure 7. Schematic diagram of propagation of a plane wave field

distorted by a sample with an unresolved microstructure [32] (see
text).

1 2 3

G0 G1 G2

Figure 8. Schematic diagram of dark-field imaging in a Talbot–
Lau X-ray interferometer: G0, G1, and G2 — gratings; 1 —
polychromatic X-ray radiation; 2 — interference pattern at the

output of grating G1 resulting from SAXS off finely dispersed

inclusions (kidney stones, which are marked with asterisks); and
3 — pixel detector [48].

through a sample and recorded by a detector, is the simplest

multimodal X-ray imaging technique.

In the wave pattern (Fig. 7), the X-ray wave field

undergoes phase shifts in passing through the sample. The

phase of the outgoing wave field may be separated into

a slowly varying component, which is associated with

the spatially resolved sample structure and gives rise to

a propagation-based phase-contrast signal, and a rapidly

varying component, which is associated with the unresolved

microstructure and produces a dark-field signal.

Dark-field effects have traditionally been ignored or

considered insignificant in X-ray imaging. In this context,

the transport-of-intensity equation (TIE) [33] may be used to

model the formation of X-ray intensity images at a detector

located behind the sample at distance z = 1 along the

optical axis. This free-space propagation yields intensity

bands in the image [30,34] that may be used in phase

reconstruction algorithms to obtain quantitative data on the

sample [35].

However, if the sample contains an unresolved spatially

random microstructure, SAXS will also be present. This

additional effect in modeling of paraxial hard X-ray imaging

of thin objects may be taken into account with the

use of a rigorous theoretical formalism based on wave

optical theory [36] or a more general equation than TIE

(specifically, the Fokker−Planck equation [37]).

The Fokker−Planck equation may also be regarded as

a transport-of-intensity equation with an added diffusion

term [15,38]:

I(x , y, z + 1) ≈
[

1 + 12D(x , y)∇2
⊥

]

I(x , y, z )

− (1/k)∇⊥[I(x , y, z )∇⊥ϕ(x , y, z )]. (7)

Here I is the intensity of the monochromatic scalar wave

field, ϕ is its phase, k is the wavenumber (k = 2π/λ),
∇⊥ = (∂x , ∂y) is the gradient operator in transverse coor-

dinates (x , y), and ∇2
⊥
≡ ∂2/∂x2 + ∂2/∂y2 is the Laplacian

in plane (x , y) perpendicular to optical axis z . The above
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expression includes both coherent and diffuse fluxes of

energy behind the sample.

Since the measured image blurring L depends on sample–
detector distance 1 (formula (2)), two exposures are

sufficient to determine the dark-field signal when the

Fokker−Planck equation is used. A small propagation

distance 1 satisfying the near-field condition (1 ≤ 2πξd/λ,
where λ is the wavelength,ξ is the transverse coherence

length, and d is the average scattering inhomogeneity

size) is recommended for phase reconstruction in the

first exposure, since the sample features to be resolved

may be blurred by dark-field effects at long propagation

distances. In the second exposure, a longer propagation

distance, where dark-field effects are visually obvious, is

recommended for extraction of the dark-field signal (note
that the near-field condition should still be satisfied). The

use of three different propagation distances would allow one

to determine the phase, absorption, and the dark-field signal

separately [32].
Since the dark field is associated with scattering, it

depends strongly on the X-ray radiation energy. Therefore,

adjustment of the X-ray beam energy is an alternative to

changing the distance. The authors of [39] have proposed

a concept of dark-field imaging based on the propagation

method (with the Fokker−Planck equation) under the

assumption that the sample is made of a single material

and the dark-field signal varies slowly in space.

Multi-energy reconstruction opens up opportunities for

the use of detectors with energy discrimination, making it

possible to collect data in a single exposure in the time-

resolved mode [39].
A more efficient dark-field signal extraction algorithm for

objects mostly consisting of a single material (or several

different materials with close ratios of the real part of the

complex refraction index to the imaginary one) has been

developed recently; this method requires a single image

to extract the dark-field signal in 2D imaging. In the

case of tomographic imaging, the method requires just

one image obtained for each projection angle [9]. The

algorithm was applied in mammography to analyze 3D

images of five fresh mastectomies containing microcalcifi-

cations [40].

3.2. Talbot interferometer

Note that the Talbot interferometer is the instrument

that paved the way for widespread application of dark-field

imaging [10,41–43].
Talbot has discovered in 1836 [44] that when a primary

coherent wave passes through a periodic structure (e.g.,
a diffraction grating), self-reproduction of its image is

observed at distances dT = 2mp2/λ (p is the grating period,

m = 1, 2, 3. . . ) behind the structure. This phenomenon is

called the Talbot effect, and distance dT is referred to as the

Talbot distance.

A Talbot X-ray interferometer consists of two diffraction

gratings G1 and G2. The first grating G1 with period p1

1.000.25 0.50 0.75
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Figure 9. Measured intensity in a detector pixel for the reference

scan (superscript r) and the sample scan (superscript s) within

one cycle of stepwise phase variation [52].

acts as a beam splitter and causes periodic modulation

of the wave front. The period of the Fresnel interference

pattern is on the order of a few micrometers and is typically

much lower than the detector resolution. Therefore, a

second grating G2 with strongly absorbing lines should

be placed in front of the detector. This grating acts as

an analyzer, since it converts the positions of interference

fringes into intensity values. Grating G2 with period

p2 = p1/η (η = 1, 2), which is made of a material that

is highly absorbing in the X-ray range, is located in one

of the planes of maximum contrast of the interference

pattern [45–47].

SR sources and microfocus X-ray tubes satisfy the

coherence condition in most cases, but the same is not true

for conventional X-ray tubes. In the latter case, one needs

to install absorption grating G0 in front of the source to

obtain a phase-contrast image (Fig. 8). This three-grating

design is called the Talbot−Lau interferometer. Grating G0

in it serves to create a series of individual coherent (but
mutually incoherent) subsources.

At present, absorption, phase, and dark-field contrast sig-

nals may be obtained in phase-stepping measurements [49].
The underlying idea of the method is to estimate local

changes in intensity I(m, n, xg) fluctuations caused by the

object and reconstruct images, including a dark-field one,

from these several signals [10,50,51]. With one of the

gratings moving stepwise in direction xg perpendicular to

the grating line, intensity signal I(m, n) in each detector

pixel m, n follows a sinusoidal curve (the so-called phase

step curve) (Fig. 9). Only a finite number of steps Nps are

performed in a single period p2. Recorded intensity Ik(m, n)
may then be written as a Fourier series:

Ik(m, n, xg) =
∑

i

a i(m, n) sin (2πikxg + ϕi (m, n))

≈ a0(m, n) + a1(m, n) sin(2πkxg + ϕ1(m, n)),
(8)

Optics and Spectroscopy, 2024, Vol. 132, No. 4
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1 cm

a b

Figure 10. Whole-body in vivo X-ray image of a healthy mouse:

absorption (a) and dark-field (b) images illustrating that tissues,

such as lungs and fur, generate a SAXS signal [55].

where a i are amplitude coefficients, ϕi are the corre-

sponding phase coefficients, k = 2π/p2, and p2 is grating

period G2. Coefficients a0, a1, and ϕ1 are retrieved from

the obtained phase step curve Ik dataset via fast Fourier

transform [10,47] and are used to calculate absorption,

phase-contrast, and dark-field images. This requires at

least three measurements (Nps ≥ 3) both without a sample

(reference measurement) and with a sample introduced into

the beam; the typical number of measurements falls within

the range of 5−11 [10]. If we define the visibility of the

phase step curve as v(m, n) = a1/a0, dark-field signal V is

given by

V (m, n) = vs(m, n)/vr(m, n)

= a s
1(m, n)a r

0(m, n)/a s
0(m, n)a r

1(m, n),
(9)

where superscripts r and s correspond to measurements

without and with a sample.

Experiments in mice [53,54] have revealed that healthy

lung tissue exhibits a very strong dark-field signal generated

by SAXS at numerous air–tissue interfaces typical of the

microarchitecture of normal lung parenchyma. Lungs

do indeed stand out as the organ that generates the

strongest dark-field signal in whole-body X-ray images

of mice (Fig. 10) [55]. Owing to a close relationship

between the alveolar structure and lung function, dark-

field lung imaging is of great importance in respiratory

medicine and may help diagnose and treat lung dis-

eases [56–58].
At present, lung imaging is probably the most promising

clinical application of dark-field X-ray imaging [59].
Other potential clinical applications of Talbot interfer-

ometers for dark-field X-ray imaging include detection of

foreign bodies in food [60,61], differentiation of kidney

stones [48], examination of bone structures [62,63], and

mammography. In the context of diagnosis of multifocal

tumor growth, dark-field mammography is superior to stan-

dard breast imaging methods, providing better resolution

of small calcified tumor nodules and demarcation of tumor

boundaries [64–66].

Dark-field imaging has several industrial applications,

such as the detection of voids, cracks, or delamina-

tions [66,67].

A Talbot interferometer may also be used for dark-field

computed tomography [68–70].

If a sample scatters X-rays purely isotropically, its dark-

field signal is independent of orientation. However, if

scattering is partially anisotropic, the signal formation is

orientation-dependent, and the signal is thus much harder to

reconstruct. One-dimensional (1D) grating interferometry

is the method that is used most often for retrieving a

directional dark-field signal, since diffuse scattering is most

pronounced in the direction orthogonal to grating lines.

Two-dimensional orientation of the microstructure in a

sample may be calculated using several dark-field images

obtained in phase-stepping measurements at different angu-

lar positions of the sample that is rotated about the beam

propagation direction [68,69]. The method of anisotropic

dark-field X-ray tomography [71–74], which is based on

the works of Malecki et al. [75] and Vogel et al. [76], was
proposed for tomographic reconstruction of an anisotropic

SAXS signal.

The dark-field signal formation is governed by three

parameters: the X-ray radiation direction, the dark-field

sensitivity direction, and the anisotropic microstructure

orientation. The authors of [77] have proposed a very

general model in which all three quantities are regarded

as arbitrary three-dimensional vectors. It provides an

opportunity to model not only a system with a parallel beam

and a perpendicular sensitivity direction, but also arbitrary

data collection geometry. In contrast to the existing 2D

projection models with a predetermined image trajectory,

this model allows for arbitrary 3D scanning trajectories (e.g.,
a helical one).

To obtain signals in multiple orientations, one needs to

rotate samples or one-dimensional gratings about the beam

propagation direction, which is time-consuming if multiple

directions are to be scanned in the study of an unidentified

sample. A two-dimensional (2D) interferometer with two-

dimensional gratings may cover up to four dark-field signal

directions without sample rotation [78], but raster scanning
in each direction is still required.

Fiber-reinforced polymers are now used widely in the

automotive industry and many other industrial sectors. The

orientation of fibers is crucial to enhancing the mechanical

strength of parts. Owing to scattering anisotropy, dark-

field contrast allows one to detect local fiber orientations

in polymers [60,70–82]. The determination of orientation of

fibers in cardboard was reported in [83], and directional

28 Optics and Spectroscopy, 2024, Vol. 132, No. 4
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Figure 11. Schematic diagram of the edge illumination method:

1 — primary X-ray beam, 2 — sample mask, 3 — detector mask,

4 — sample, and 5 — detector pixel [90].

dark-field X-ray imaging was used in [84] to analyze

archaeological finds.

Diagnosis and monitoring of treatment of osteoporosis is

a major public health issue, since osteoporosis is associated

with fragility fractures. It is characterized not only by

a loss of bone mineral density, but also by a reduction

in bone quality, which includes deterioration of the tra-

becular microstructure. The correlation between X-ray

directional radiography and the trabecular microstructure

was investigated in [85–87]. Thus, changes in the trabecular

bone structure due to osteoporosis or osteoporosis-related

therapy may be detected much earlier and with a sensitivity

higher than the one offered by conventional X-ray meth-

ods.

3.3. Edge illumination method

Both multimodal methods discussed above are interfer-

ometric in nature; i.e., they require the use of coherent

radiation, which is often associated with scattering intensity

losses.

The edge illumination method is a non-interferometric

technique that has been demonstrated for the first time at

synchrotron sources in the late 1990s [88]. It has later been
adapted to commercially available X-ray sources, which

have large focal spot sizes, without collimation. A typical

experimental setup consists of two periodic absorbing

structures that are often called masks and are placed in

front of the sample and the detector, respectively (Fig. 11).
Sample mask 2 splits incoming X-ray beam 1 into a series

of individual beams separated by mask period p1, while

the absorbing edges of detector mask 3 are positioned so

that each individual beam may hit the boundary between

two pixels. The masks are designed so that their periods

I
x

I
x

N
M

(
),

(
)

x

D Dx xM N–

~2.35sM

~2.35sN

t IM 0I0

Figure 12. Example light curves measured with (squares) and

without (diamonds) a sample. The introduction of a sample into

the beam leads to a reduction in intensity, lateral shifts, and

broadening of the curve, which allow one to extract absorption,

refraction, and SAXS signals, respectively [91] (see text).

1

3

2

4

Figure 13. Diagram of the experimental setup: 1 — monochro-

mator, 2 — analyzer crystal, 3 — sample, and 4 — detector.

match the detector pixel size. Therefore, a detector pixel is

sensitive to the beam displacement caused by X-ray beam

refraction [89].
As the sample mask moves along the x axis and the

fraction of a beam reaching the detector changes, the

illumination of each pixel is modulated by the so-called

illumination curve.

At least three intensity projections are needed to separate

absorption, phase, and SAXS signals in a system with edge

illumination. Each of these projections is obtained with

different shifts of the sample mask relative to the detector

mask, which correspond to exposures at different points on

the illumination curve (Fig. 12).
The first stage of dark-field signal extraction is the

measurement of the illumination curve without a sample.

The illumination curve is then measured with the sample

introduced into the beam. The obtained two curves are

fitted with Gaussians, and the curve with the sample (IM(x))
is then compared with the corresponding curve (IN(x))
obtained without the sample [91]:

IN(x) = tN
(

2πσ 2
N

)−1/2
exp

[

−(x − 1xN)2/2σ 2
N

]

+ I0,
(10)
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IM(x)=tM

{

tN
(

2πσ 2
M

)−1/2
exp

[

−(x−1xM)2/2σ 2
M

]

+I0
}

.

(11)
Absorption of X-rays leads to a reduction in the area of

the Gaussian, refraction induces a change in the position of

its center, and SAXS alters the width of the Gaussian [92].
A comparison between IM(x) and IN(x) allows one to

extract absorption tM , refraction 1xM − 1xN , and SAXS

σ 2
M−σ 2

N signals separately by measuring the illumination

curve [92,93].

3.4. Bragg analyzer method

The Bragg analyzer method [12,94–98] gained

widespread use in biomedicine [99,100] and materials

science [101].
Just as in the Laue analyzer method, the studied sample

is positioned between the crystals of a double-crystal

diffractometer [100,102] (Fig. 13). Its first (monochromator)
crystal 1 limits the angular and spectral divergence of the

primary X-ray beam. The second (analyzer) crystal 2, which

is located between sample 3 and detector 4, act as an

angular filter.

When the operating point is positioned on the slope of

the rocking curve, the maximum image contrast dynamics

is achievable: the narrower the rocking curve is, the higher

is the sensitivity of the method to phase changes.

Several algorithms for efficient separation of absorption,

refraction, and SAXS signals and their accurate quantitative

assessment have been proposed [99,103].
A three-image algorithm providing a simple way to

represent three effects in three different parametric images

was detailed in [104,105].
Let θ j{ j ∈ [1, 3]} be three different positions of the

operating point on the rocking curve, which yield three

different images I j = I(θ j) of one and the same object. A

system may be formed from three equations written for each

image I j :

I j = (IR/2)
[

2R j + 2R′

j1θR + R′′

j (1θR)2 + R′′

j σ
2
]

,

j ∈ [1, 3], (12)

where R j , R′

j , and R′′

j correspond to the values of the

rocking curve and its first and second derivatives calculated

at angular position θ j . The solution of system (12) yields

three parametric images: absorption image IR , refraction

image 1θR , and dark-field image σ 2 (Fig. 14).
If two images are obtained from each slope of the rocking

curve (Fig. 5, b), where R′′

1 = R′′

2 = 0 and I1 = I2 (Fig. 5, b),
then the solution of system (12) yields the SAXS signal

equation:

σ 2 = [I2/IR − R2 − R′

2(1θR)]/R′′

2 − (1θR)2. (13)

In fact, if I3 corresponds to the position of the operating

point at the peak of the rocking curve (R′

3 = 0), Eq. (13) is

simplified even further:

σ 2 = 2(I2/IR − R2)/R′′

2 − 1θ2R . (14)

It should be noted that the method provides quantitative

information in the angular range of validity of the Taylor

expansion (i.e., at angles of refraction and scattering on

the order of several µrad, which are significantly smaller

than the width of the rocking curve). If the scattering

angle exceeds this limit, the algorithms tend to fail, and

saturation is observed [105]. A novel analytical algorithm

called Gaussian Generalized Diffraction Enhanced Imaging

(G2DEI) [106], which is based on three images, was

proposed as a means to overcome these constraints. This

algorithm has the capacity to operate in a wider range of

refraction and scattering angles (exceeding ten µrad) that is

needed, e.g., in studies of biological objects.

In 2003, Pagot et al. [107], Oltulu et al. [108], and

Wernick et al. [109] have independently developed sta-

tistical methods that allow one to perform pixel-by-pixel

reconstruction of the analyzer rocking curve by combining

conveniently multiple images corresponding to different

segments of the rocking curve. The authors of [109] called

this method
”
multiple-image radiography“ (̃MIR). It consists

in obtaining two series of N (N ≥ 3) images in different

positions of the analyzer crystal with and without a sample,

respectively. The
”
reference“ (obtained without the sample)

and
”
object“ (obtained with the sample) rocking curves are

then compared.

The procedure of MIR reconstruction in application to

the Laue analyzer has been proposed and demonstrated

in [110]. Simultaneous recording of transmitted and

diffracted images of a sample with a large field of view

allows for significant simplification and acceleration of data

acquisition and makes it possible to reduce the radiation

dose, which is important for biological research [110–112].

However, the use of statistical methods extends the

imaging time and raises the X-ray dose absorbed by

a sample, since one needs to obtain more images.

Another approach to extraction of relevant parameters

consists in fitting a functional form to the measured

rocking curves at a limited number of operating point

positions. This may require significant computational

resources, but allows for flexible post-processing of the

data. At first glance, a Gaussian is an obvious choice

of a fitting function [113]. However, it turned out

that the Gaussian approximation cannot reproduce cor-

rectly both the maximum of the rocking curve and its

tails [101,114].

Among various tested rocking curve fitting functions

(such as Pearson VII [115]), the pseudo-Voigt (PsdV)
function was found to be the best fit to experimental

data. The Voigt function is a convolution of Gaussian and

Lorentzian functions, while the PsdV function is a close

approximation of it provided by a simpler weighted sum

of these two functions. It was demonstrated [114] that a

minimum of five operating points are needed for a good

fit and that the diffuse part (SAXS) is characterized by

Lorentzian tails (i.e., it can extend to angles exceeding
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a b c

Figure 14. Parametric images of a leaf: (a) IR (absorption), (b) 1θR (refraction), and (c) σ 2 (SAXS) [104].
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Figure 15. (a) Schematic diagram of an X-ray speckle imaging experiment: 1 — diffuser, 2 — sample, and 3 — pixel detector.

(b) Linear plot of the reference (curve 1) intensity and the intensity with a sample introduced into the X-ray beam (curve 2). The plot

reveals an intensity drop (dashed horizontal lines) due to absorption A = (1− T ), shift u due to X-ray refraction by angle α, and amplitude

reduction D (after correction for X-ray absorption) due to SAXS [13].

the width of the rocking curve by a factor of more than

10).

3.5. Speckle-based method

When an object consisting of elements with a high

spatial frequency is introduced into a coherent or partially

coherent photon beam, a speckle pattern is generated by

a combination of multiple waves of the same frequency

with different phases and amplitudes. In the near field, the

speckle size does not depend on the distance to the phase

membrane or the X-ray radiation energy [116,117]. This

unique property enables the use of near-field speckles for

the examination of inhomogeneous systems [118].

The visibility of speckle grains in images and their size

are the criteria for identifying a fine speckle generator.

In practice, the grain size should be chosen so that

it covers several image pixels (< 10 pixels) and has a

minimum contrast of 0.1 (contrast is defined here as the

standard deviation from the mean intensity). Depending

on the photon energy and the detector type used, various

options such as granular materials, sandpaper, or filters (e.g.,

cellulose with micrometer pore sizes) may turn out to be

suitable [119].

As for the X-ray radiation source, the demands of the

speckle-based method are moderate. X-ray speckle imaging

may be performed with the use of polychromatic laboratory

sources [120], and the requirements as to temporal coher-

ence are low [121].

A basic setup for speckle imaging is shown in

Fig. 15, a [13]. An X-ray beam incident on diffuser 1 (e.g.,

a piece of sandpaper) produces a random reference speckle

pattern in the detector plane. When sample 2 is introduced

into the beam, the speckle pattern is modulated by its

presence, and the resulting interference pattern is recorded

by a detector. Modulation manifests itself in three ways (see

Fig. 15, b): speckles are shifted in horizontal direction x
and in vertical direction y by vector u = (ux , uy ) due to

refraction in the sample; the mean intensity changes due to

absorption; and the pattern visibility (i.e., the amplitude with

absorption taken into account) is reduced due to SAXS.
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a b

c d

1mm

Figure 16. (a) Phase-contrast and (b) dark-field images of

the eyeball of a fish (sprat) obtained by speckle tracking; (c)
and (d) similar images obtained by speckle scanning in one

direction [127] (see text).

Refraction angle α = (αx , αy ), which is related to the

differential phase shift, transmission T (or absorption

A = 1− T ), and dark-field signal D may be reconstructed

quantitatively from these effects. Reconstruction is per-

formed pixel by pixel in real space with the use of various

analysis methods.

X-ray speckle imaging was first implemented in the

single-shot mode in the form of X-ray speckle-tracking

(XST), which requires only one reference image with a

diffuser and one image with a diffuser and a sample in

the beam [122,123].

The measurement concept relies on a physical model of

speckle interference in the detector plane that takes into

account the pattern modulation by a sample. For a given

pixel (x , y), interference pattern I may be characterized

in terms of reference interference pattern I0 modulated in

intensity, amplitude, and position by the properties of the

sample [13]:

I(x , y) = T (x , y)[Î0 + D(x , y)(I0(x + ux , y + uy ) − Î0)].
(15)

Here, Î0 is the mean intensity of the reference pattern and

T (x , y) is the local transmission through the sample that

reduces the intensity of the speckle pattern. Amplitude

(I0(x + ux , y + uy) − Î0) of the reference pattern is reduced

by factor D(x , y) corresponding to the local dark-field

signal.

Refraction in the sample is characterized by quantities ux

and uy corresponding to the displacement of the interference

pattern in horizontal and vertical directions, respectively.

To reconstruct the image, least-squares minimization of

Eq. (15) is performed pixel by pixel using the sum

over pixels in analysis window w around the (x0, y0)
pixel [13,120]:

L =

M
∑

i=−M

M
∑

j=−M

w(x i , y j) {I(x i , y j)

−T (x i , y j)[Î0 + D(x i , y j)(I0(x i + ux , y j + uy) − Î0]
}2

.

(16)
Minimization of function L yields multimodal image

signals ux , uy , T , and D [120]. A fine reconstruction may

be obtained if window size w exceeds the average speckle

size.

The main advantage of the XST implementation is fast

image acquisition, which makes it suitable for dynamic

imaging and in vivo studies. It has been demonstrated that

a single image with an exposure of less than a second at

a synchrotron source is sufficient for reconstruction [124].
In addition, XST, unlike speckle scanning, does not require

any special equipment.

The main disadvantage of XST is its limited spatial

resolution specified by the analysis window size, which must

exceed the speckle size. The ultimate limit of resolution of

this operating mode is the speckle size.

The X-ray speckle scanning (XSS) mode is better suited

for applications where high resolution is more important

than fast image acquisition. It may be regarded as a

generalization of X-ray grating interferometry in the phase-

stepping mode [125]. However, unlike Fourier analysis

performed in X-ray grating interferometry, speckle scanning

data are analyzed in real space.

The speckle scanning mode was implemented in exper-

iments [126] in two different ways (with two-dimensional

and one-dimensional scanning). This method requires that

the speckle pattern be shifted by a known constant step.

However, unlike the XST approach where several pixels

in the analysis window contribute to reconstruction of the

signal of a single pixel, the step mode allows for pixel-by-

pixel analysis. This provides a much higher resolution (down

to the pixel size), which is the main advantage of XSS.

Figure 16 presents phase-contrast and dark-field images

of the eyeball of a fish (sprat). The quality of phase-contrast

images obtained by speckle tracking (Fig. 16, a) is low due

to poor spatial resolution. In contrast, the speckle scanning

method provides high-quality images with a significantly

improved spatial resolution that reveal all the fine details

of the eyeball (Fig. 16, b). Fine details are also seen clearly

in the dark-field image in Fig. 16, c (cf. Fig. 16, b [127]).
The use of two orthogonal 1D scans instead of a full

2D scan of the diffuser was proposed as a way to reduce

the number of acquired images in the case of small

speckle shifts. In this mode, which is called 1D XSS,
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the diffuser moves in one direction only (horizontally or

vertically) in equally spaced steps that are much smaller

than the average speckle size and on the order of the

pixel size. This is done without a sample and with a

sample in the beam. The transmission and dark-field

signals are reconstructed in the same way as in 2D XSS

and XST (i.e., by monitoring local changes in the mean

intensity and visibility for each pixel). The image acquisition

time in 1D XSS is much shorter than in the 2D XSS

approach. However, several tens of frames are needed

for successful image reconstruction. Most experimental

1D XSS implementations discussed in literature [13] utilized
a set of 60 diffuser steps; a minimum of 40 steps was

reported. The sensitivity of reconstructed images in two

orthogonal directions is nonuniform [13]. It normally

decreases in the scanning direction due to the dependence

on the effective pixel size and on the step size for the

scanning direction. One-dimensional XSS may be used

efficiently when a preferred direction of interest is known

and signals of the sample in the other direction are less

important [13].

The 1D XSS approach requires a significantly smaller

number of diffuser steps than 2D XSS, but this comes at

the cost of reduced sensitivity in the direction orthogonal

to the scan axis. In addition, for the reconstruction to

be successful, it is advisable to use a few more diffuser

positions.

There are several important limitations to the implementa-

tion of speckle-based imaging in the XST and XSS modes.

While the spatial resolution of XST is fairly limited, XSS

modes require a large number of frames. One-dimensional

XSS is characterized by a difference in sensitivity in

horizontal and vertical directions and reduced resolution.

Several efforts were mounted to develop experimental

implementations that provide a compromise between the

advantages and disadvantages of classic XST and XSS

modes. Two approaches have been proposed towards that

end: X-ray speckle vector tracking (XSVT) [128] and unified

modulated pattern analysis (UMPA) [120]. In contrast to

XSS, these advanced methods allow one to choose a random

diffuser position, and the step size must be significantly

larger than the speckle size. Thus, step movement of the

diffuser may be less precise, which also makes the setup

less expensive. However, these movements still need to

be accurate and reproducible to ensure that sample and

reference images are acquired at the same diffuser positions.

The required number of steps is much smaller than the

one in XSS experiments; therefore, the scanning time is

reduced.

In the XSVT method, the signal at each pixel is regarded

as a vector composed of intensities measured in all diffuser

positions [128]. The dark-field signal is extracted from the

ratio of standard deviations of speckle vectors with and

without a sample in the beam. Images are reconstructed

based on the correlation of speckle vectors [129]. The XSVT
method allows one to reduce significantly the total number

1 2 3 4

Figure 17. Single-grid imaging device. It features X-ray tube 1,

sample 2, absorption grid 3, and X-ray camera 4 [14].

of sample exposures while maintaining the accuracy of the

dark-field signal.

In UMPA, images are recorded with several (n) random

positions of the diffuser. This model was first proposed for

the XST mode [120]. Equation (15) is valid in UMPA

for each interference pattern in diffuser position n. In

the process of minimization of function L (Eq. (16)),
summation is now performed not only over all pixels in

window w, but also over all n diffuser positions [13].
The authors of [130] have demonstrated the feasibility of

application of UMPA for extraction of the directional SAXS

signal.

In both XSVT and UMPA, the use of an analysis

window around the reconstructed pixel allows one to

reduce significantly the number of obtained frames by

adding information from surrounding pixels. The typical

analysis window is just a few pixels in size, inducing a

moderate reduction in spatial resolution. However, the

choices of the number of steps and the window size are

always interrelated. Larger windows normally allow one

to use fewer diffuser steps, but reduce spatial resolution;

in turn, the use of more diffuser positions allows for

high-resolution imaging with a small analysis window at

the expense of long acquisition times and high irradiation

doses.

Quantitative dark-field tomography has been implemented

successfully with XST [120] and 1D XSS [127]. However,

in view of the authors of [129], the XSVT method is

particularly well-suited for multimodal tomography. Without

any a priori assumptions about the sample, it does indeed

ensure three-dimensional visualization of the dark-field

signal, and the spatial resolution of images is limited only

by the properties of the detector used.

Pavlov et al. [131,132] have developed the multimodal

intrinsic speckle tracking (MIST) method for imaging

of transparent objects that combines a Fokker−Planck

description of paraxial X-ray optics [38] with the geometric

flow formalism for X-ray speckle tracking [133]. The

method was extended to an absorbing object in [134].
The MIST formalism requires only two sets of pro-

jection data for two different transverse mask positions

(on the assumption that this method may be suited to
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clinical applications where radiation dose needs to be

minimized).
The authors of [135] used six transverse mask positions

to optimize the signal-to-noise ratio. However, when the

same approach was implemented with a smaller number of

mask positions, the results agreed well with those reported

by Pavlov et al. [131,132], demonstrating that two mask

positions are sufficient to reconstruct the SAXS signal. The

case of rapid variations of the diffuse field in the object was

considered in [136]. This improves the quality of solution of

the inverse problem.

The MIST method has an advantage in requiring fewer

images (and, consequently, less computation time) at the

expense of reduced generality. This distinguishes it from,

e.g., the UMPA method [137].
It is trivial to extend the MIST method to the more

general case of a
”
directional dark field.“ For this purpose,

one may substitute scalar dimensionless diffusion coeffi-

cient D(x , y) with a second-rank diffusion tensor. Equa-

tion (15) is then generalized by the following anisotropic

Fokker−Planck equation for paraxial X-ray imaging in

the presence of both coherent and diffusive energy flow

channels [15,132,137]:

I(x , y, z + 1) ≈ I(x , y, z ) − (1/k)∇⊥

× [I(x , y, z )∇⊥ϕ(x , y, z )]

+ 12[Dxx(x , y)∂2/∂x2I(x , y, z )

+ Dyy (x , y)∂2/∂y2I(x , y, z )

+ 2Dxy (x , y)∂2/∂xyI(x , y, z )]. (17)

3.6. Single-grid imaging method

Single-grid imaging [14,138] is a technique of X-ray

imaging with an absorption grid (Fig. 17) that is introduced

into the illuminating beam at a certain distance from

a detector and forms a reference image. A sample is

then introduced into the beam near the grid. Under X-

ray illumination, it distorts and blurs the grid pattern in

accordance with the phase and SAXS properties of the

sample, respectively [14,138,139].
As the name suggests, single-grid imaging requires only

one optical element (grid) and does not require calibration

or alignment in preparation for data acquisition. The

detector pixel must be smaller than the grid period to

resolve fully the intensity pattern formed by the grid. The

grid may be replaced by any object producing a high-

visibility intensity pattern (e.g., a piece of sandpaper),
in which case the method is known as speckle-based

imaging.

The projection image of the object is modulated by the

periodic grid, and the Fourier spectrum of the projection

image becomes a convolution of the grid spectrum and

the object spectrum. As a result, it contains a strong

primary peak near zero spatial frequency and at least

two strong harmonic peaks corresponding to the grid

period. The inverse Fourier transform of regions around

these peaks yields the primary image and two complex

conjugate harmonic images. Since the components with

a high spatial frequency are attenuated more profoundly by

scattering than those with a low spatial frequency, the ratio

between harmonic and primary images yields the SAXS

image [140].
This method assumes that the grid image is uniform

in period throughout the image (especially for quantitative

searching).
As an alternative, the grid image distorted by the

sample may be compared with the reference image us-

ing the method of local cross-correlation around each

pixel [138,139], since Fourier analysis may yield erroneous

results when the grid frequency overlaps with the sample

microstructure frequency [138]. The spatial mapping

method may also provide finer spatial resolution than

Fourier analysis [139], since windows are compared in

it on a pixel-by-pixel basis without focusing on just a

small Fourier space region. The dark-field signal is given

by [141,142]

D = exp
(

−π212θ2/2p2
)

, (18)

where 1 is the sample–detector distance, θ is the
”
SAXS

fan“ expansion angle (Fig. 1), and p is the grid period.

Equation (18) characterizes the SAXS signal variation with

propagation distance, which may be
”
fitted“ to SAXS signals

measured at several different distances 1 to determine

accurately the effective scattering angle and the modeled

sample microstructure [141].

4. Conclusion

X-ray dark-field imaging is a promising method for

examination of a wide class of objects. Particular hope

is invested in its medical applications and, in particular, its

introduction into clinical practice.

It follows from the above that direct suppression of

the dynamic background in dark-field imaging may be

performed in several ways:

(1) by direct blocking of X-rays unscattered by a sample

(X-ray microscopy method);
(2) by orienting the direct beam of X-ray radiation away

from a detector (X-ray microscopy method);
(3) by minimizing the dynamic background intensity

through interference of X-rays in the crystal (Laue analyzer

method). This requires selecting the optimum thickness of

the analyzer crystal.

X-rays propagating in a non-crystalline object undergo

absorption, refraction, and small-angle scattering. Unfortu-

nately, the Laue analyzer and X-ray microscopy methods do

not allow one to separate phase contrast from the contrast

produced by SAXS. At the same time, multimodal indirect

X-ray methods (Talbot interferometer and propagation-

based, edge illumination, Laue analyzer, speckle-based,
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and single-grid methods) allow for the separation of all

three contrasts and, consequently, are suitable for dark-field

imaging.

These methods differ in optical circuit diagrams, data

collection and processing techniques, and experimental

limitations.

The positive and negative qualities of multimodal meth-

ods have been discussed extensively in literature (see,
e.g., [143–146]).
Propagation- and analyzer-based imaging techniques re-

quire highly coherent sources (primarily transverse co-

herence for propagation-based imaging and longitudinal

coherence for imaging with a Bragg analyzer). In

addition, imaging with a Bragg analyzer requires pre-

cise alignment and is time-consuming when laboratory

sources are used. Propagation-based imaging is charac-

terized by a very simple optical design, but the required

source coherence makes it difficult to use in clinical

settings.

Grating interferometry, edge illumination, and speckle-

and grid-based imaging were proven to be feasible with

laboratory sources; however, the Talbot interferometer

and edge illumination methods require meticulous align-

ment and are sensitive to only one scattering direction,

which results in poor performance in terms of noise

power in tomographic reconstruction. In addition, the

presence of numerous optical elements in Talbot inter-

ferometer and edge illumination setups often translates

into long data acquisition times. In contrast, speckle-

and grid-based imaging experiments are easy to set up

with account for scattering in two directions. Despite

their limited sensitivity, speckle- and grid-based imaging

methods have the advantage of simplicity of implemen-

tation, which may facilitate dark-field imaging in clinical

settings with a gantry rotating around a sample or a

patient [146]. At the same time, despite the complexity

of adjustment, time costs, and the need for suppression

of artifacts [147–149], it is the Talbot interferometer that

is already being used successfully in clinical diagnostic

setups [150–152].
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[79] C. Hannesschlägera, V. Revol, B. Plank, D. Salaberger,

J. Kastnera. Case Stud. Nondestruct. Test Eval., 3, 34 (2015).
DOI: 10.1016/j.csndt.2015.04.001

[80] F. Prade, F. Schaff, S. Senck, P. Meyer, J. Mohr, J. Kastner,

F. Pfeiffer. NDT E Int., 86 (7), 65 (2017).
DOI: 10.1016/j.ndteint.2016.11.013
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