06

Механические свойства силицированного графита при высоких скоростях деформации

© А.М. Кузьмин,¹ А.Ю. Константинов,² Г.Г. Савенков³

¹Центральное конструкторское бюро машиностроения,
 190020 Санкт-Петербург, Россия
 ²Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского,
 603600 Нижний Новгород, Россия
 ³Санкт-Петербургский государственный технологический институт (технический университет),
 190013 Санкт-Петербург, Россия
 e-mail: sav-georgij@yandex.ru

Поступило в Редакцию 6 июня 2024 г. В окончательной редакции 31 июля 2024 г. Принято к публикации 16 августа 2024 г.

> Представлены результаты экспериментальных исследований на разрезном стержне Гопкинсона по определению механических свойств силицированного графита марки СГ–П 0,5П, применяющегося в узлах трения, при ударном нагружении. Установлено, что динамические показатели прочности и разрушения более чем в два–четыре раза превосходят аналогичные характеристики, полученные при квазистатическом нагружении.

Ключевые слова: разрезной стержень Гопкинсона, силицированный графит, бразильский тест.

DOI: 10.61011/JTF.2024.10.58862.201-24

Введение

В настоящее время в атомном и судовом машиностроении для некоторых тяжелонагруженных изделий (например, пары трения в осевых радиальных подшипниках и торцовых уплотнениях, насадки на гидроциклоны и ряд других) применяются углерод-карбидокремниевые материалы. Их применение обусловлено особенностью их физико-химико-механических свойств, в том числе высокой окислительной стойкостью, способностью работать в ряде агрессивных сред и высокой прочностью. Характерным представителем таких материалов является силицированный графит (СГ), который представляет собой композиционный материал, состоящий из графита, карбида кремния исключительно высокой твердости и остаточного кремния (Si+SiO₂). Карбид кремния придает силицированному графиту высокую жаропрочность и жаростойкость, а графит — высокую стойкость к многократным теплосменам [1,2]. СГ изготавливается по технологии реактивной пропитки при температуре 1600°С расплавом кремния или его парами специально созданной пористой углеродной основы [3]. Карбид кремния образуется в процессе взаимодействия углерода и кремния при смачивании и растекании жидкого кремния по поверхности углеродной основы, в результате чего от 20 до 70% графита превращается в карбид кремния [4].

Некоторые изделия из СГ могут подвергаться ударным нагрузкам, что требует тщательной расчетноэкспериментальной отработки изделия. В этом случае необходимо знание механических характеристик СГ в диапазоне скоростей деформации, характерных для эксплуатационных ударных нагрузок, однако в современной литературе на данный момент наблюдается полное отсутствие каких-либо сведений по данному вопросу. Настоящая работа является первой попыткой получить экспериментальные результаты по динамической прочности СГ при скоростях деформации $\dot{\varepsilon} < 10^4 \, {\rm s}^{-1}$.

1. Материал и методы исследований

Для испытаний был выбран СГ марки СГ-П 0,5П изготовленный по ТУ100-84-0001 ТУ 27. Состав и физикомеханические характеристики СГ-П 0,5П приведены в табл. 1.

N₂	Наименование показателя	Значение
1	Состав, % mass.	C: 32.6; SiC: (52.2); Si: (15.2)
2	Плотность, g/cm ³	2.6
3	Общая пористость, %	39
4	Предел прочности, МРа при сжатии при растяжении	235–430 39.2
5	Модуль Юнга, GPa	95-160
6	Ударная вязкость, kJ/m ²	2.35-4.4
7	Твердость, HRB	114-125

Таблица 1. Состав и физико-механические характеристики СГ-П 0,5 П

Примечание. Данные в строках 1-3 относятся непосредственно к испытанным образцам, в строках 4-7 — по ТУ100-84-0001 ТУ 27.

Рис. 1. Схема экспериментальной установки для динамических испытаний.

Рис. 2. Схема действующих напряжений при раскалывании образца.

Для построения диаграмм нагружения СГ СГ-П использовался косвенный метод (в форме раскалывания) определения показателя сопротивления материала растяжению (так называемый "бразильский тест", когда в центре образца формируются напряжения растяжения), который применяется для испытаний неметаллических хрупких материалов, в частности, для углеродных масс и графитированных изделий [5]. Указанный метод для статических испытаний был предложен в 1947 г. бразильским инженером F. Carneiro (и также был независимо разработан в Японии) [6]. Позднее метод модифицировали для динамического нагружения на разрезном стержне Гопкинсона (РСГ) [7,8]. Эксперименты проводились на установке РСГ-20 (рис. 1) [8] с разрезным стержнем Гопкинсона. Действующие напряжения при раскалывании образца представлены на рис. 2. Образец представлял собой диск диаметром 20 mm и толщиной 10 mm.

Длина нагружающего и опорного стержней, изготовленных из высокопрочной стали с пределом текучести ~ 2000 MPa, одинакова и равна 1.5 m, длина ударника — 300 mm.

Алгоритм, позволяющий определить сжимающие σ_c и растягивающие σ_t напряжения упругих деформаций по прошедшему через образец в опорный стержень импульсу $\varepsilon^T(t)$, следующий. Выражения для сжимающих и растягивающих напряжений, полученные из решения контактной задачи Герца в упругой постановке, имеют вид [6]:

$$\sigma_t = rac{2P}{\pi HD},
onumber \ \sigma_c = rac{2P}{\pi HD} \cdot rac{D^2}{r(D-r)}$$

(

где *H* — толщина диска, *D* — его диаметр, *r* — текущая координата вдоль радиуса образца.

Контактное усилие Р определяется по зависимости

$$P = E_b S_b \varepsilon^T(t),$$

где E_b — модуль Юнга материала стержня, S_b — площадь сечения мерного стержня.

Скорость удара по нагружающему стержню варьировалась от ~ 9.5 до ~ 20 m/s. Испытания проводились при комнатной температуре 20°С.

Процесс разрушения образцов во времени фиксировали видеокамерой со скоростью 140 000 кадров в секунду.

Кроме испытаний по раскалыванию с помощью бразильского теста, были проведены динамические испытания образцов СГ марки СГ П 0,5П на сжатие. Образцы представляли собой диски (таблетки) диаметром 12 mm и высотой 6 mm.

Рис. 3. Диаграммы нагружения образцов.

Таблица 2. Результаты динамических испытаний по раскалыванию

Код испытания	Скорость ударника, m/s	Максимальные растягивающие напряжения (MPH), MPa
r718-01	9.37	71.0
r718-05	9.45	76.0
r718-06	9.57	69.9
Средние значения	9.46 ± 0.1	72.3 ± 3.25
r718-02	15.76	71.4
r718-07	15.98	75.1
r718-08	15.62	78.2
Средние значения	15.79 ± 0.18	74.9 ± 3.56
r718-03	20.69	71.5
r718-09	20.19	74.8
r718-10	20.12	86.3
Средние значения	20.33 ± 0.31	77.5 ± 7.26

Примечание. Представлены средние значения и среднеквадратичные отклонения.

2. Результаты экспериментов и их обсуждение

2.1. Эксперименты по раскалыванию образцов

Примеры временных зависимостей растягивающих напряжений в плоскости нагружения образца представлены на рис. 3. Результаты экспериментов представлены в табл. 2 и на рис. 4. На рис. 5 и 6 показаны (слева направо, сверху вниз) кадры процесса разрушения образца (в связи с большим количеством кадров на рис. 5, 6 приведены выборочные кадры), снятого с помощью скоростной видеокамеры.

Рис. 4. Зависимость МРН от скорости удара.

Сравнение результатов испытаний (табл. 2) с данными, приведенными в табл. 1, показывает, что статический предел прочности на растяжение более чем в три-четыре раза меньше динамического предела прочности (максимального растягивающего напряжения, выдерживаемого образцом при ударном нагружении).

В испытанном диапазоне скоростей удара зависимость максимального растягивающего напряжения от скорости является практически линейной функцией (рис. 4).

На представленных кадрах видно, что при скорости удара 9.37 m/s в образце появляется одиночная центральная трещина, на одном из концов которой практически сразу же начинается процесс ветвления трещины (рис. 5). Как известно, однозначности в объяснении

Рис. 5. Процесс разрушения образца при скорости удара 9.37 m/s (стрелками показаны зоны интенсивных деформаций (темные участки)).

процесса ветвления трещины нет, но большинство исследователей склоняется к тому, что ветвление трещины начинается в случае, когда ее скорость достигает некоторого, достаточно большого, критического значения [9–11]. Например, в [12] авторы получили экспериментальные результаты, показывающие, что переход от прямолинейного распространения трещины происходит при скорости трещины $V_c \approx 0.4c_R$ (c_R — скорость волны Рэлея). Поэтому ниже будет приведена оценка скорости трещины для нашего случая.

Такая же одиночная трещина появляется и при скорости удара ~ 16 m/s (поэтому видеоряд для этой скорости не приведен). При скорости же удара 20.69 m/s в образце возникает система из двух крупных трещин и, кроме того, зона интенсивных деформаций (темные участки, показаны стрелками) у поверхности соударения при этой скорости заметно больше, чем при скорости удара 9.37 m/s.

Фиксация процесса разрушения образцов с помощью видеосъемки позволяет оценить скорость трещины СГ в условиях динамического нагружения. На рис. 5, b зафиксирована трещина по диаметру образца, т.е. ее длина

приблизительно равна 20 mm (вероятно, это незначительно заниженное значение). Поскольку время между двумя кадрами составляет $\sim 7 \,\mu$ s, ее скорость, исходя из полудлины трещины, составляет $\sim 1500 \,\text{m/s}$.

Таким образом, скорость трещины в СГ при ударных нагрузках находится в диапазоне $(0.2-0.25)c_l$ $(c_l$ — скорость звука в стержне, в нашем случае $c_l = 6045-7845$ m/s), т.е. приблизительно составляет половину предельной (по мнению некоторых авторов) скорости трещины $(0.38c_l \ [13])$. Если для СГ-П 0,5П принять значение коэффициента Пуассона v = 0.25, то получим значение для поперечной скорости звука $c_t = 3825-4960$ m/s, а значение скорости волны Рэлея $c_R = 0.919c_t = 3515-4560$ m/s. В результате получим, что определенная в рамках настоящей работы скорость трещины находится в диапазоне $0.33-0.43c_R$. Таким образом, полученное значение трещины) находится в хорошем согласии с результатами работы [12].

Полученные результаты позволяют так же очень грубо оценить трещиностойкость (критический коэффициент интенсивности напряжений (ККИН)) КІС СГ

Рис. 6. Процесс разрушения образца при скорости удара 20.69 m/s (стрелками показаны зоны интенсивных деформаций (темные участки); точки указывают на наличие кадров до и после данного кадра).

марки СГ-П 0,5П при ударном нагружении. Расчетные оценки по соотношению $K_{IC} = \sigma_{\infty} \sqrt{\pi l} (\sigma_{\infty} - \text{макси$ мальное значение раскалывающего напряжения, *l* полудлина трещины) [14] дают следующие значения: $K_{IC} \approx 17 - 18 \, {
m MPa} \cdot {
m m}^{1/2}$ при скорости удара 9.5 m/s и $\approx 18{-}20\,MPa{\cdot}m^{1/2}$ при скорости удара $\sim 15.5\,m/s.$ Заметим, что более точные формулы для определения К_{IC} при действии ударной нагрузки приведены в [15]. Они отличаются от вышеприведенной формулы тем, что в них присутствует сомножитель $F_1(c_1t/l)$ — нормированный коэффициент интенсивности напряжений, зависящий от геометрии образца и представленный в виде графиков. К сожалению, подобрать соответствующую формулу для нашего образца не удалось, но можно отметить, что отличия в значениях К_{IC}, рассчитанные по более точной формуле, вряд ли будут превышать 20-30%.

Можно отметить, что полученные при ударном нагружении СГ-П 0,5П значения K_{IC} (хотя и достаточно приближенные), более чем в 3.5 раза превышают статические значения K_{IC} для СГ терморасширенного графита [16] и в 3 раза больше, чем K_{IC} для такой керамики как оксид алюминия [17].

Таблица 3. Результаты динамических испытаний на сжатие

Код испытания	Скорость деформации, s ⁻¹	Предел прочности, МРа
c718-01	841	333
c718-02	677	350
c718-03	667	348
Средние значения	728 ± 98	344 ± 9
c718-04	1816	366
c718-05	1776	395
c718-06	1776	416
Средние значения	1789 ± 19	392 ± 25
c718-08	2654	447
c718-09	2722	458
c718-10	2552	444
Средние значения	2643 ± 85	450 ± 7

2.2. Результаты экспериментов по сжатию образцов

Результаты экспериментов представлены в табл. 3 и на рис. 7. Диаграммы нагружения — на рис. 8.

Рис. 7. Зависимость динамического предела прочности при сжатии от скорости деформации.

Из полученных результатов следует, что динамический предел прочности на сжатие в 2–4 раза выше, чем аналогичный статический предел прочности. Как и при раскалывании в испытанном диапазоне скоростей деформации, зависимость динамического предела прочности на сжатие от указанной скорости является, практически, линейной функцией (рис. 7).

2.3. Анализ диаграмм нагружения при растяжении и сжатии

При рассмотрении диаграмм нагружения при раскалывании (растяжении) обращает на себя внимание следующий результат. Углы наклона кривой нагружения на упругом участке для всех скоростей удара равны между собой (α_0), следовательно, равны между собой и модули упругости первого рода (модули Юнга) *E*, поскольку *E* есть линейная функция tg α_0 [18].

На диаграммах сжатия ситуация следующая. При скорости деформации $\dot{\epsilon} \approx 700 \, {\rm s}^{-1} \, {\rm tg} \, \alpha_0$ совпадает с аналогичными тангенсами при растяжении, но при скоростях деформации 1800 и 2600 ${\rm s}^{-1}$ тангенсы равны между собой и отличаются от тангенса при скорости деформации 700 ${\rm s}^{-1}$.

Сравнение рис. 5, а также рис. 6 между собой с учетом времени между кадрами показывает, что скорость деформации в этом случае находится в диапазоне $\sim 400-600 \, {\rm s}^{-1}$, т.е. близка (практически совпадает) к скорости $\dot{\epsilon} \approx 700 \, {\rm s}^{-1}$. Таким образом, можно предполагать, что модули Юнга при растяжении/сжатии в условиях повышенных скоростей нагружения совпадают между собой при одинаковых скоростях деформации, не превышающих $10^3 \, {\rm s}^{-1}$. При скорости деформации $\dot{\epsilon} > 10^3 \, {\rm s}^{-1}$ модуль Юнга при сжатии увеличивается, но для утверждения, что он будет равняться модулю Юнга при растяжении, требуются дополнительные экспериментальные исследования.

Вызывает удивление факт изменения (увеличения) модуля Юнга с увеличением скорости деформации. Известно, что модуль Юнга, который является физической константой материала, может изменяться в условиях сверхбыстрого нагружения (очень короткими лазерными или электронными импульсами наносекундной длительности), когда происходящие процессы становятся существенно неравновесными, нестационарными и нелокальными ([19] и приведенная там библиография; все результаты относятся к алюминию). Однако для нашего

Рис. 8. Диаграммы нагружения образцов при сжатии.

случая такие условия отсутствуют. Но, возможно, этот результат связан с пористостью и неоднородностью СГ-П 0,5П по составу (табл. 1). Если бы материал был однороден, то зависимость модуля Юнга E от пористости ν имела бы вид [20]:

$$E = E_1 (1 - \eta)^m, \tag{5}$$

где E_1 — модуль Юнга каркаса пористого тела; m = 2-4 — показатель, значение которого зависит от структуры пористости, т.е. в этом случае ничто не показывает на зависимость E от скорости деформации. В любом случае полученный результат (изменение модуля Юнга) для своего объяснения требует дополнительных исследований.

Заключение

Проведенные экспериментальные исследования механических свойств СГ в диапазоне скоростей деформации $(k \cdot 10^2 - n \cdot 10^3) \text{ s}^{-1}$ как при растяжении, так и при сжатии показали:

1) динамический предел прочности в 2-4 раза больше статического предела прочности;

 критический коэффициент интенсивности напряжений при динамическом нагружении в 3 раза превосходит ККИН для оксид-алюминиевой керамики при статическом нагружении;

 значение скорости движения трещины при ударном нагружении СГ близко к предельному значению, при котором происходит переход от прямолинейного распространения трещины к ее ветвлению.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- О.Ю. Сорокин, И.А. Бубненков, Ю.И. Кошелев, Т.В. Орехов. Известия вуз. Химия и химическая технология, 55 (6), 12 (2012).
- В.Н. Курлов, С.Л. Шикунов. ЖТФ, 87 (12), 1871 (2017).
 DOI: 10.21883/JTF.2017.12.45212.2291
- [3] Б.А. Калин, П.А. Платнов, Ю.В. Тузов, И.И. Чернов, Я.И. Штромбах. Конструкционные материалы ядерной техники (НИЯУ МИФИ, М., 2012)
- [4] O. Dezellus, S. Jacques, F. Hodaj, N. Eustathopoulos. J. Mater. Sci., 40 (9–10), 2307 (2005).
 DOI: 10.1007/S10853-005-1950
- [5] Изделия углеродные. Методы определения предела прочности на сжатие, изгиб, разрыв (диаметральное сжатие): ГОСТ 23775-79 (ИПК Изд-во стандартов, М., 2001)
- [6] A.M. Neville. *Properties of Concrete* (Pitman Publishing, London, 1973)
- [7] T. Rodriguez, C. Navarro, V. Sanchez-Galvez. J. Physique, IV, 101 (1994). DOI: 10.1051/jp4:1994815

- [8] А.М. Брагов, А.К. Ломунов. Использование метода Кольского для исследования процессов высокоскоростного деформирования материалов различной физической природы (Изд-во Нижегородского гос. ун-та, Нижний Новгород, 2017)
- [9] K. Ravi-Chandar. Inter. J. Fracture, 90, 83 (1998).
- [10] J.-B. Leblond, J. Frelat. Intern. J. Solids Structure, 37, 1595 (2000).
- [11] В.М. Корнев. Физическая мезомеханика, 6 (5), 37 (2003).
- [12] K. Ravi-Chandar, W.G. Knauss. Intern. J. Fracture, 26, 65 (1982).
- [13] D. Broek. *Elementary Engineering Fracture Mechanics* (Noordhoff International Publishing, Leyden, 1974)
- [14] В.И. Владимиров. Физическая природа разрушения материалов (Металлургия, М., 1984)
- [15] Справочник по коэффициентам интенсивности напряжений, под ред. Ю. Мураками (Мир, М., 1990), т. 2.
- [16] Л.Р. Вишняков, Б.Н. Синайский, Э.П. Косыгин, Е.Ю. Чижаньков, В.Т. Варченко. Новые материалы и технологии в металлургии и машиностроении, **2**, 41 (2006).
- [17] Г.А. Гогоци. Проблемы прочности, 3, 60 (2006).
- [18] Н.А. Шапошников. Механические испытания металлов (Машгиз, М.-Л., 1951)
- [19] Г.Г. Савенков, В.А. Морозов, А.В. Кузнецов, Б.К. Барахтин, А.А. Лукин. Деформация и разрушение материалов, 4, 31 (2016).
- [20] В.С. Зарубин, И.Ю. Савельева, Е.С. Сергеева. Инженерный журнал: наука и инновации, 12, 1 (2017). DOI: 10.18698/2308-6033-2017-12-1709