⁰³ Шестиугольник Сатурна как форма внутренних волн Стокса

© Э.Л. Амромин

Federal Way WA 98003, USA e-mail: amromin@aol.com

Поступило в Редакцию 8 мая 2024 г. В окончательной редакции 6 июля 2024 г. Принято к публикации 7 июля 2024 г.

> Рассмотрена упрощенная двумерная задача о внутренних волнах Стокса внутри круга с двумя несжимаемыми жидкостями различной плотности и вихрем вокруг центра этого круга; стационарные течения существуют внутри и снаружи волновой поверхности, разделяющей две жидкости. Форма поверхности определена путем решения нелинейных задач теории потенциала. Численные решения для различных соотношений плотности жидкости и радиуса окружности к размеру стороны шестиугольника сравнены с наблюдаемым шестиугольником — образованием на поверхности Сатурна.

> Ключевые слова: потенциал скорости, внутренние волны Стокса, скачок плотности в несжимаемой жидкости, итерационный численный метод.

DOI: 10.61011/JTF.2024.10.58856.163-24

Введение

На различных фотографиях поверхности Сатурна виден правильный шестиугольник с четко выраженными углами в 120°. Упрощенная схема такого изображения показана на рис. 1. Соответствующий атмосферный поток был объектом разнообразных численных исследований и гипотез. Между тем многоугольные фигуры появляются в различных потоках. Они могут существовать между вращающимися дисками [1,2] и вокруг вращающихся многолопастных устройств [3]. Эти фигуры не вызваны турбулентностью, хотя такая причина и

Рис. 1. Эскиз шестиугольника внутри круга. Стороны шестиугольника слегка криволинейны, но углы составляют 120°.

предполагалась в некоторых публикациях. Также было отмечено [4], что "устойчивая гексагональная структура может возникнуть..., когда динамические неустойчивости в зональной струе нелинейно уравновешиваются".

С другой стороны, углы в 120° свойственны различным стационарным волнам Стокса. Вызванные гравитацией волны Стокса изучалась в двумерных течениях, начиная с [5]. Почти полный обзор по этой теме можно найти в [6]. Также волны Стокса могут вызываться центробежными силами в осесимметричных потоках [7]. Кроме того, согласно [8], возможны внутренние волны Стокса, вызванные скачком плотности внутри потоков. Ниже будет рассмотрен именно последний вид волн.

1. Внутренние волны Стокса внутри круга

Рассмотрим упрощенную ситуацию с двумя жидкостями разной плотности внутри круга радиуса R_+ . Согласно [9], внутри шестиугольника Сатурна имеются два вихря, но только один из них дает существенный вклад в скорости вдоль контура шестиугольника. Предположим, что внутренняя жидкость плотности ρ_- занимает ядро вихря максимального радиуса R_- , равного длине стороны шестиугольника, и введем полярные координаты с радиусом r, нормированным на R_- ; тогда $R_- = 1.0$. Ввиду рассматриваемого масштаба планетарного течения оно должно быть турбулентным. Тогда, как показано в [10], с использованием асимптотического решения уравнений Рейнольдса [11] окружную скорость внутри ядра вихря можно аппроксимировать формулой

$$U_{\theta-} = r[1 - \ln(r)].$$
(1)

Здесь $U_{\theta-}$ нормировано на ωR_{-} , где ω — частота вращения. Эта формула получена в предположении о

Рис. 2. Сравнение формулы (1) с распределениями нормированной измеренной азимутальной скорости по радиусу вихря.

незначительной зависимости турбулентных напряжений от координат. На рис. 2 можно видеть, что формула (1) хорошо согласуется с экспериментальными данными работ [12,13].

Внешняя жидкость имеет плотность $\rho_+ = \epsilon \rho_-$ и тоже вращается. Граница *S* между двумя жидкостями разной плотности непроницаема, а давление по обе стороны от *S* должно быть одинаковым. Следовательно, *S* будет свободной поверхностью. Весь поток не является безвихревым, но возмущения потока, вызванные зависимостью *S* от азимута θ , можно определять с помощью потенциалов скорости. Один из потенциалов определен внутри шестиугольника. Он удовлетворяет уравнению Лапласа и граничному условию

$$\frac{\partial \Phi_{-}}{\partial N} + r[1 - \ln(r)]N_r = 0.$$
⁽²⁾

Здесь N_r — радиальная компонента нормали к S. Надо ввести еще один потенциал скорости вне S. Этот потенциал должен удовлетворять условию

$$\frac{\partial \Phi_+}{\partial N} + r[1 - \ln(r)]N_r = 0 \tag{3}$$

на S и при $r = R_+$. Однако, как указано в [8], рассматривая внутренние волны Стокса с углами на гребнях 120°, необходимо ввести некоторую изначально неизвестную циркуляцию (или некоторые вихри) во внешнем потоке вблизи углов 240°. Поэтому в Φ_+ , кроме потенциала монополей интенсивности Q_+ , входит потенциал вихрей изначально неизвестной интенсивности γ , и ее можно определить с помощью асимптотики

$$\lim_{s \to 0} U_+ = \sqrt{s},\tag{4}$$

выведенной в [8] с использованием конформных отображений. Здесь абсцисса *s* отсчитывается от гребня (кстати, согласно [9], зоны высокой завихренности должны располагаться вблизи каждого угла шестиугольника). Решение уравнений (2) и (3) упрощается совпадением распределений скорости по всем частям шестиугольника. Для определения *S* необходимо использовать условие непрерывности давления при переходе через *S*. Его можно записать как

$$U_{-}^{2} = \varepsilon U_{+}^{2} \tag{5}$$

вдоль всей *S*. Необходимость выполнения уравнения (5) приводит к отклонению сторон шестиугольника от отрезков между вершинами. Процедура определения этих отклонений h(s) аналогична процедурам, описанным в [8] для других задач теории потенциала со свободной границей. Такие задачи нелинейны, и для их решения необходимы итерации. В ходе каждой итерации квазилинеаризация уравнений (2) и (3) с использованием возмущений обоих потенциалов с малыми интенсивностями q_- и q_+ приводит к уравнениям

$$q_{+} = 2d(hU_{+})/ds, \quad q_{-} = -2\frac{d(hU_{-})}{ds}.$$
 (6)

Кроме того, условие

$$U_{-} \int_{0}^{s} q_{+} ds + U_{+} \int_{0}^{s} q_{-} ds = 0$$
 (7)

выполняется вдоль S.

Поскольку основная часть возмущений скорости представляет собой интеграл Коши интенсивности q_{-} или q_{+} , квазилинеаризация уравнения (5) приводит к уравнению

$$\frac{1}{\pi} \int_{0}^{1} \frac{\mu q_{+} - q_{-}}{s - \tau} d\tau + 2h[(\mu - 1)(1 - \ln|r|)] 2U_{+} d\mu$$
$$= 2(U_{-} - \mu U_{+})$$
(8)

вдоль верхней горизонтальной стороны шестиугольника. Здесь $\mu = \sqrt{\varepsilon}$. Дальнейшее упрощение уравнения (8) возможно обращением интегралов Коши, и

$$\mu q_{+} - q_{-} + \frac{F\{s\}}{\pi} \int_{0}^{1} \left[\frac{(\mu - 1)(1 - \ln|r|)}{U_{-}} \left(\int_{0}^{\tau} q_{-} d\xi \right) - 2U_{+} d\mu \right] \frac{d\tau}{(s - \tau)F\{\tau\}} = 2 \frac{F\{s\}}{\pi} \int_{0}^{1} \frac{(U_{-} - \mu U_{+})}{(s - \tau)F\{\tau\}} d\tau$$

Здесь $F\{s\} = \sqrt{s(1-s)}$. Однако, как указано в [14], такое обращение возможно только при выполнении дополнительного условия

$$\int_{0}^{1} \left[\frac{(1 - \ln |r|)}{U_{-}} (1 - \mu) \left(\int_{0}^{\tau} q_{-} d\xi \right) + 2(U_{+} d\mu) \right]$$
$$\times \frac{d\tau}{F\{\tau\}} + 2 \int_{0}^{1} \frac{(U_{-} - \mu U_{+})}{F\{\tau\}} d\tau = 0,$$
(10)

Рис. 3. Пример распределения U_+ вдоль *S*.

Рис. 4. Иллюстрация сходимости алгоритма. Сплошная линия, отмеченная как "error", соответствует модулю разности $U_{-} - \mu U_{+}$ после 7 итераций.

а необходимость выполнения уравнения (10) связана с определением изменения $d\mu$ параметра μ во всей задаче. После решения уравнений (7)–(10) можно найти функцию h(s) интегрированием одного из уравнений (6) и откорректировать S. Такую коррекцию S можно интерпретировать как движение против градиента во вспомогательном пространстве переменных, определяющих поверхность S. Хотя аналитическое описание этой поверхности может существовать, общий подход заключается в ее пошаговой коррекции с использованием M точек, распределенных по рассматриваемой части S. Обозначим координаты этих точек как

$$x_m^{k+1} = x_m^k + \alpha h_m^k N_{xm}^k, \quad y_m^{k+1} = y_m^k + \alpha h_m^k N_{ym}^k, \quad (11)$$

где верхние индексы указывают номер итерации, а нижние — номер точки. Определение h(s) позволяет вычислить компоненты антиградиента h_m^k на S, но из-за сильной нелинейности задачи движение по этому антиградиенту приходится осуществлять малыми шагами. Поэтому в уравнение (11) вводится положительный множитель $\alpha \ll 1$. Пример рассчитанного распределения скорости показан на рис. 3. Координата X отсчитывается

от центра шестиугольника, а ось x перпендикулярна оси y, показанной на рис. 1.

Иллюстрация сходимости итерации приведена на рис. 4 для $R_+ = 5$ и $\varepsilon = 0.99$. В качестве начального приближения к неизвестной поверхности *S* был выбран правильный шестиугольник. Распределения U_{+rigid} и U_{-rigid} вдоль него были подставлены в уравнение (5), и соответствующая разность $U_- - \mu U_+$ сопоставлена на рис. 4 с аналогичной разницей вдоль *S*, полученной после семи итераций.

2. Качественное сравнение с наблюдениями

Сравнение наблюдаемой [15] и расчетной формы шестиугольника показано на рис. 5. Их стороны очень похожи.

Максимальное отклонение стороны шестиугольника от отрезка между двумя его вершинами A аналогично высоте классической волны Стокса, тогда как длина отрезка аналогична длине волны λ . Эти аналогии позволяют провести некоторые сравнения. Отношение A/λ для двумерных гравитационных волн Стокса уменьшается от 0.142 для течения бесконечной глубины до 0.098 для течения минимальной глубины (согласно [16] — глубины, минимальной для существования этих стационарных волн). Помня об аналогии между упомянутой выше глубиной и расстоянием между шестиугольником и окружающим кругом, можно обнаружить ту же тенденцию на рис. 6.

Более подробные изображения поверхности *S* (поверхности этих внутренних волн) представлены на рис. 7. При $x = \lambda/2 \ dy/dx$ претерпевает скачок от 0 до $-\tan(\pi/6)$. Формы *S*, показанные на рис. 1 и 5, соответствуют { $R_+ = 4$, $\varepsilon = 0.99$ }. Между тем $R_+ = 4$ близко к отношению диаметра Сатурна к наблюдаемому [17] размеру его шестиугольника.

Представленное на рис. 5 сравнение является качественным. Тем не менее оно позволяет выдвинуть гипотезу о том, что шестиугольник представляет собой разновидность внутренних волн Стокса. Лабораторные эксперименты с некоторыми полигональными структурами в жидкостях (например, [3,18,19]) дают более сомнительные результаты. Анализ несимметричных потенциальных возмущений одной жидкости (аналогичных рассмотренным в [2], но вызванных спутником) не привел автора к получению какой-либо многоугольной фигуры.

Для количественного анализа рассматриваемое течение должно быть трехмерным, а также там надо будет учитывать силу тяжести. Возможно, это осуществимо в осесимметричном подходе, описанном в [20], но при этом необходимо будет использовать некоторую информацию о дне потока и вместо внешнего жесткого круга рассматривать жесткую внутреннюю сферу. Однако метод решения задачи свободной поверхности будет

Рис. 5. Сравнение расчетной форма шестиугольника (пунктирная кривая в нижней части левого рисунка) и фотографии шестиугольника Сатурна

Рис. 6. Влияние радиуса окружности на крутизну волны. Цифры у кривых показывают соответствующие соотношения плотности.

Рис. 7. Формы сторон шестиугольника для $\{R_+ = 4, \varepsilon = 0.99\}$ и $\{R_+ = 9, \varepsilon = 0.985\}$.

совершенно аналогичным, это будет просто еще одна модификация метода Иванова.

Заключение

Шестиугольник, наблюдаемый над Сатурном, изучался многими учеными, однако использованные ими концепции не были подкреплены достаточными доказательствами, поэтому альтернативное исследование уместно, и здесь этот шестиугольник рассматривается как поверхность внутренней волны Стокса, возникающей между двумя жидкостями различной плотности. Течение моделируется как индуцированное осесимметричным вихрем, а деформации поверхности шестиугольника описываются потенциалами безвихревых течений. Описанная итерационная процедура решения соответствующей нелинейной задачи проверена сравнением с решениями других задач о волнах Стокса с углами в 120° на гребнях.

Можно считать, что сравнение форм рассчитанных и наблюдаемых шестиугольников показывает хорошее их соответствие, поскольку рассмотренная модельная задача о внутренних волнах позволила воспроизвести шестиугольную структуру, между тем как степень отклонения сторон шестиугольника от отрезков на фотографиях даже трудно оценить.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- S.D. Abrahamson, J.K. Eaton, D.J. Koga. Phys. Fluids, 1, 241 (1989).
- [2] E.L. Amromin, S.I. Kovinskaya. J. Fluids and Structures, 34, 84 (2012).
- [3] T.R.N. Jansson, M.P. Haspang, K.H. Jensen, P. Hersen, T. Bohr. Phys. Rev. Lett., 96, 174502 (2006).
- [4] R. Morales-Juberias, K.M. Sayanagi, T.E. Dowling, A.P. Ingersoll. Icarus, 211, 1284 (2011).
- [5] J.H. Michel. Phil. Magazine, **36** (5), 430 (1893).
- [6] X. Zhong, S.J. Liao. Fluid Mechanics, 843, 653 (2018).
- [7] Э.Л. Амромин. Известия РАН, **31** (6), 105 (1996).

- [8] Э.Л. Амромин. ЖТФ, 93 (1), 53 (2023).
 DOI: 10.21883/JTF.2023.01.54063.212-22 [E.L. Amromin. Tech. Phys., 93 (1), 48 (2023).
 DOI: 10.21883/TP.2023.01.55439.212-22]
- [9] M. Rostami, V. Zeitlin, A. Spiga. Icarus, 297, 59 (2017).
- [10] E.L. Amromin. Phys. Fluids, **19**, 118108 (2007).
- [11] Л.И. Седов. *Механика сплошной среды* (Наука, М., 1976), т. II.
- [12] R.E.A. Arndt, V.H. Arakeri, H. Higuchi. J. Fluid Mech., 229, 269 (1991).
- [13] E. Castro, A. Crespo, F. Manuel, D.H.J. Fruman. ASME J. Fluids Eng., 119, 759 (1997).
- [14] П.П. Забрейко, А.И. Кошелев, М.А. Красносельский, С.Г. Михлин, Л.С. Раковщик, В.Я. Стеценко. Интегральные уравнения (Наука, М., 1968)
- [15] K. Baines, M. Flasar, N. Krupp, T. Stallard. Saturn in the 21st Century (Cambridge University Press, 2019)
- [16] Э.Л. Амромин, А.Н. Иванов, Д.Ю. Садовников. МЖГ, Известия РАН, **29**, 125 (1994).
- [17] S.K. Atreya, T.C. Owen, S.J. Bolton, T. Guillot. Int. Planetary Probe Workshop, IPPW-3, ESA SP-WPP263 (2006).
- [18] R. Bergmann, L. Tophoj, T.A.M. Homan, P. Hersen, A. Andersen, T. Bohr. J. Fluid Mech., 679, 415 (2011).
- [19] A.C.B. Aguiar, P.L. Read, R.D. Wordsworth, T. Salter, Y.H. Yamazaki. Icarus, 206, 755 (2010).
- [20] R. Plougonven, V. Zeitlin. Phys. Fluids, 14, 1259 (2002).