01

Рекомбинация носителей заряда в пленках CsPbBr₃ с высокой квантовой эффективностью фотолюминесценции

© А.С. Полушкин,¹ С.В. Макаров^{1,2}

¹ Университет ИТМО, 197101 Санкт-Петербург, Россия ² Центр инноваций и развития в Циндао, Харбинский инженерный университет, 266000 Циндао, Шаньдун, Китай e-mail: s.makarov@metalab.ifmo.ru

Поступило в Редакцию 22 мая 2024 г. В окончательной редакции 15 июля 2024 г. Принято к публикации 16 июля 2024 г.

Рассмотрены тонкие пленки перовскита, полученные двумя разными методами: масштабируемым методом горизонтальной щелевой экструзии и классическим методом центрифугирования. Для моделирования рекомбинации носителей заряда в этих пленках использована зарекомендовавшая себя ABC-модель, которая позволяет определить константы рекомбинации на основе затухания фотолюминесценции и квантовый выход фотолюминесценции. Кроме того, данные были проанализированы при разных мощностях накачки, что позволило получить константы рекомбинации с более высокой точностью.

Ключевые слова: галогенидные перовскиты, щелевая экструзия, затухание фотолюминесценции, АВС-модель.

DOI: 10.61011/JTF.2024.10.58854.189-24

Введение

Свинцово-галогенидные перовскиты — это класс полупроводниковых материалов с очень привлекательными свойствами для оптоэлектроники [1,2]. Они вызывают большой интерес ученых, поскольку позволяют исследовать различные явления в структурах на их основе [3-6]. Высокий квантовый выход фотолюминесценции и ее устойчивость к дефектам перовскитов позволяют использовать растворные методы для создания тонкопленочных светоизлучающих устройств на их основе [7-8]. Высокий показатель преломления и выраженный экситонный резонанс при комнатной температуре делают перовскиты перспективным материалом для создания фотонных структур и лазеров [11-14]. Кроме того, перовскиты используются для создания солнечных элементов [15–17], фотодетекторов [18–19], транзисторов [20] и газовых сенсоров [21-23].

Начиная с 2014 года, было продемонстрировано множество различных светоизлучающих устройств на основе перовскитов [24–27]. Кроме того, перовскитные материалы могут использоваться для создания дисплеев не напрямую, а лишь в качестве усилителей яркости цветов и подсветки [28]. Однако большинство полученных перовскитных устройств создаются и работают только в лабораторных условиях, для перехода к коммерческому применению перовскитных светодиодов требуется много дополнительных исследований по оптимизации долгосрочной стабильности и масштабированию [29]. Таким образом, разработка масштабируемых методов нанесения тонких пленок перовскита является неотьемлемым шагом в процессе коммерциализации перовскитных светоизлучающих устройств [30,31].

В недавней работе был успешно представлен метод создания светоизлучающих электрохимических ячеек на основе перовскита с использованием горизонтальной щелевой экструзии и сушки горячим воздухом [32]. В ходе исследования была изучена морфология и оптические свойства композитных пленок, содержащих перовскитные нанокристаллы, полученные различными способами. Были проведены измерения квантового выхода фотолюминесценции и ее затухания у пленок перовскита CsPbBr₃ с полиэтиленоксидом. Несмотря на то, что кинетика фотолюминесценции в перовскитах такого состава недавно была уже исследована [33], детального исследования рекомбинации носителей заряда в пленках с более крупным размером зерен и полученных с использованием масштабируемого метода не проводилось.

В настоящей работе разрабатывается модель, описывающая процесс рекомбинации носителей заряда в пленках CsPbBr₃, полученных методом горизонтальной щелевой экструзии. В первую очередь, поставлена цель определить коэффициенты излучательной и безызлучательной рекомбинации, основываясь на кинетике затухания фотолюминесценции. На основе этих коэффициентов становится возможным проведение расчета квантового выхода фотолюминесценции и сравнение с полученными ранее экспериментальными значениями. Результаты моделирования будут полезны для исследователей, работающих как в области перовскитных светодиодов, так и в смежных областях, где качество перовскита CsPbBr₃ имеет ключевое значение.

Рис. 1. *а* — экспериментальное [32] затухание фотолюминесценции пленок CsPbBr₃, полученные разными методами, при накачке в 0.1 µJ/cm² (зашумленные линии), и затухание фотолюминесценции, полученное в настоящей работе приближением (3) (красные прямые), *b* — зависимость квантового выхода фотолюминесценции пленок CsPbBr₃, полученные разными методами, от мощности накачки [32].

1. Результаты

В предыдущей работе [32] нами были экспериментально исследованы четыре типа пленок из композита перовскита CsPbBr3 с полиэтиленоксидом. Пленки были получены разными методами печати: две из них были созданы методом центрифугирования с одновременной сушкой горячим воздухом и без нее, а затем были подвергнуты отжигу при температуре 200°С. Еще две пленки были получены методом горизонтальной щелевой экструзии с одновременной сушкой воздухом или без нее, а затем также были отожжены. Мы изучили морфологию пленок и их оптические свойства. Для всех пленок была получена зависимость затухания фотолюминесценции от времени и зависимость квантового выхода фотолюминесценции от мощности накачки (рис. 1). Однако рекомбинация носителей заряда в данных пленках не была подробно рассмотрена. Теоретическая модель, которая описала бы кинетику носителей заряда в перовскитной пленке на основе времяразрешенной спектроскопии фотолюминесценции, могла бы быть использована для оценки квантового выхода фотолюминесценции [34].

Для описания рекомбинации носителей заряда можно использовать упрощенную модель ABC [35]. Хотя эта модель не всегда подходит для любых галогенидных перовскитов, она все же достаточно адекватна при низких концентрациях носителей заряда [36]. Рассмотрим тонкую пленку из перовскита на стеклянной подложке, которая подвергается воздействию ультракороткого лазерного импульса. Под действием фотонов образуются электронно-дырочные пары, при этом концентрация дырок равна концентрации электронов, а диффузия носителей заряда в подложку отсутствует. В таком случае концентрацию электронов n можно рассчитать по следующей формуле:

$$-\frac{dn}{dt} = An + Bn^2 + Cn^3.$$
(1)

Здесь первое слагаемое отвечает за безызлучательную рекомбинацию на дефектах (Шокли-Рида-Холла), второе слагаемое отвечает за излучательную рекомбинацию. При малых концентрациях носителей, т.е. меньше 10^{18} сm⁻³, оже-рекомбинацией в перовскитах можно пренебречь [37], третье слагаемое очень мало по сравнению с первыми двумя, таким образом, именно такие малые концентрации (т.е. малые мощности накачки) и будут рассматриваться. Более того, модель можно упростить еще больше, если мощность накачки настолько мала, что первое слагаемое в уравнении (1) значительно превосходит второе, тогда можно также пренебречь коэффициентом *B*, и уравнение (1) превращается в простое дифференциальное уравнение

$$\frac{dn}{dt} = -An. \tag{2}$$

Решая это уравнение, получаем

$$n(t) = n_0 \exp\left(-At\right) = n_0 \exp\left(-\frac{t}{\tau}\right),\tag{3}$$

где n_0 — концентрация электронов при t = 0, $\tau = 1/A$ — время жизни носителей заряда при малой концентрации или время Шокли-Рида-Холла. На рис. 1, *а* представлены кривые затухания фотолюминесценции четырех перовскитных пленок. Образец 1 — пленка, полученная центрифугированием без сушки горячим воздухом. Образец 2 — получен центрифугированием с сушкой. Образцы 3 и 4 получены горизонтальной щелевой экструзией без сушки и с сушкой

1635

Образец	au , ns
1	180
2	101
3	113
4	35

Таблица 1. Время жизни Шокли–Рида–Холла для пленок CsPbBr₃

соответственно. Итак, из этих кривых по форуме (3) можно оценить τ для всех образцов. Красными линиями показана аппроксимация затухания фотолюминесценции по формуле (3). В табл. 1 представлены времена жизни электронов, полученные таким образом.

Поскольку затухание фотолюминесценции на рис. 1, a приведено в логарифмическом масштабе, экспоненциальное убывание по формуле (3) должно выглядеть как прямая. Для образца 4 затухание действительно выглядит как прямая, однако для образца 1 видно расхождение аппроксимации с экспериментом возле начального момента времени. Это связано с бимолекулярной излучательной рекомбинацией электронов и дырок, а значит, пренебрегать коэффициентом B для этого образца нельзя даже на столь малой мощности. Тем более при увеличении мощности накачки пренебрегать вторым слагаемым в уравнении (1) будет нельзя и для остальных образцов. Тогда нужно решать дифференциальное уравнение

$$-\frac{dn}{dt} = An + Bn^2.$$
(4)

Его решение можно записать в следующем виде:

$$n(t) = \frac{An_0 \exp\left(-At\right)}{A + Bn_0 \left(1 - \exp\left(-At\right)\right)}.$$
(5)

Здесь $n_0 = n(0)$ — концентрация электронов в начальный момент времени. Зная толщину пленок и поглощение перовскита, можно оценить n_0 следующим образом:

$$n_0 = \frac{4\alpha P}{hv f \pi d^2 w},\tag{6}$$

где α — поглощение пленки, P — мощность лазера накачки, hv — энергия фотона лазера накачки, f — частота повторения импульсов, $\pi d^2/4$ — площадь лазерного пятна, где d — диаметр пятна и w — толщина пленки.

Таким образом, из уравнения (5) можно численно найти коэффициенты A и B, используя результаты времяразрешенной спектроскопии. На рис. 2 представлены кривые затухания фотолюминесценции при разных плотностях энергии накачки для всех четырех образцов. Аппроксимируя затухание по формуле (5), численно находим A и n_0B на разных мощностях накачки. Коэффициент A зависит от концентрации дефектов в образце, при

Образец	$F, \mu J/cm^2$	$n_0, {\rm cm}^{-3}$	A, s^{-1}
1	0.1 0.2 0.4 1 2	$\begin{array}{c} 9.37\cdot 10^{15}\\ 1.87\cdot 10^{16}\\ 3.75\cdot 10^{16}\\ 9.37\cdot 10^{16}\\ 1.87\cdot 10^{17}\\ \end{array}$	$\begin{array}{c} 3.76 \cdot 10^6 \\ 3.73 \cdot 10^6 \\ 3.27 \cdot 10^6 \\ 3.27 \cdot 10^6 \\ 3.18 \cdot 10^6 \end{array}$
2	0.1 0.2 0.4 1 2	$\begin{array}{c} 9.86 \cdot 10^{15} \\ 1.97 \cdot 10^{16} \\ 3.94 \cdot 10^{16} \\ 9.86 \cdot 10^{16} \\ 1.97 \cdot 10^{17} \end{array}$	$\begin{array}{c} 8.63 \cdot 10^6 \\ 8.63 \cdot 10^6 \\ 8.30 \cdot 10^6 \\ 6.78 \cdot 10^6 \\ 6.59 \cdot 10^6 \end{array}$
3	0.1 0.2 0.4 1 2	$\begin{array}{c} 1.51 \cdot 10^{16} \\ 3.03 \cdot 10^{16} \\ 6.05 \cdot 10^{16} \\ 1.51 \cdot 10^{17} \\ 3.03 \cdot 10^{17} \end{array}$	$5.38 \cdot 10^{6} \\ 5.38 \cdot 10^{6} \\ 4.89 \cdot 10^{6} \\ 4.55 \cdot 10^{6} \\ 3.54 \cdot 10^{6}$
4	0.1 0.2 0.4 1 2	$\begin{array}{c} 8.01\cdot 10^{15}\\ 1.60\cdot 10^{16}\\ 3.20\cdot 10^{16}\\ 8.01\cdot 10^{16}\\ 1.60\cdot 10^{17}\end{array}$	$\begin{array}{c} 3.12 \cdot 10^{7} \\ 3.01 \cdot 10^{7} \\ 2.88 \cdot 10^{7} \\ 2.88 \cdot 10^{7} \\ 2.83 \cdot 10^{7} \end{array}$

Таблица 2. Коэффициенты А, полученные из формулы (5) для

всех пленок CsPbBr3 при разных уровнях накачки

увеличении накачки все больше дефектов заполняются электронами и не участвуют в рекомбинации, поэтому коэффициент А уменьшается с увеличением мощности накачки. В табл. 2 представлены результаты численного расчета коэффициентов А. Толщина полученных образцов различна, поэтому концентрация носителей заряда отличается в разных пленках на одном уровне энергии накачки. Коэффициент В связан с вероятностью межзонного перехода, которая определяется материалом и поэтому не зависит ни от образца, ни от мощности накачки. Значение параметра В в данном приближении составило $9.82 \cdot 10^{-10} \text{ cm}^3$ /s и согласуется с приведенным в литературе [38]. Значение коэффициента излучательной рекомбинации для монокристаллов CsPbBr₃, представленное в [39], выше на два порядка, однако получено при криогенных температурах (15 К).

Коэффициент A отвечает за рекомбинацию на дефектах. По его значению можно качественно оценить концентрацию дефектов в образце: чем больше коэффициент A, тем выше концентрация дефектов в пленке. Самые низкие значения коэффициента A были получены для образцов 1 и 3. Это согласуется с результатами экспериментального измерения квантового выхода фотолюминесценции: он был наибольшим для этих образцов (рис. 1, b). Образец 4, напротив, имеет наибольший коэффициент A и, следовательно, более высокую концентрацию дефектов. Поэтому его квантовый выход оказался наименьшим. Можно количественно оценить концентрацию дефектов лучших образцов (1 и 3) аналогично

Рис. 2. Экспериментальное [32] затухание фотолюминесценции и ее приближение по формуле (5) для пленок CsPbBr₃ при разных плотностях энергии накачки для пленок, полученных: *a* — центрифугированием без сушки, *b* — центрифугированием с сушкой, *c* — экструзией без сушки и *d* — экструзией с сушкой.

тому, как это делается в CH₃NH₃PbI₃ перовскитных пленках [40]. Тогда концентрация дефектов получается $3.05 \cdot 10^{15}$ и $3.40 \cdot 10^{15}$ сm⁻³ (при накачке $2\,\mu$ J/cm²) соответственно, что совпадает с полученными ранее концентрациями дефектов в пленках CsPbBr₃ и на порядок уступает полученным в нанокристаллах [39,41,42].

Далее, получив коэффициенты A и B из затухания фотолюминесценции, можно численно оценить значение квантового выхода фотолюминесценции (PLQY). Поскольку PLQY по определению — это число излученных фотонов к общему числу поглощенных фотонов, а число фотонов соотносится с количеством электронов в начальный момент времени и оже-рекомбинацией отсутствует, можно написать:

$$PLQY = \frac{Bn^2}{An + Bn^2} = \frac{Bn_0}{A + Bn_0}.$$
 (7)

Тогда, используя уравнение (7), можно посчитать значение квантового выхода фотолюминесценции и сравнить его с измеренным экспериментально. На рис. 3 представлены результаты измерения PLQY. Полые точки соответствуют результатам экспериментального измерения PLQY в интегрирующей сфере под воздействием непрерывного лазерного диода с длиной волны 405 nm. Сплошные звездочки соответствуют теоретически рассчитанному значению квантового выхода по формуле (7). Как можно заметить, значения квантового выхода, рассчитанные экспериментально и теоретически, существенно различаются. Расхождение этих значений можно объяснить тем, что теоретические точки рассчитаны из результатов времяразрешенной спектроскопии, которая измерялась под воздействием фемтосекундного лазера и частотой повторения 100 kHz, в то время как экспериментальное измерение PLQY проходило под воздействием непрерывного лазера. Под воздействием непрерывного лазера дефекты в материале заполняются электронами и перестают участвовать в рекомбинации, что существенно влияет на квантовый выход. При этом при импульсной засветке образца электроны успевают релаксировать, и большинство дефектов оказывается

Рис. 3. Зависимости квантового выхода фотолюминесценции для всех четырех пленок CsPbBr₃ от плотности мощности накачки измеренная экспериментально (соединенные линиями точки [32]) и рассчитанная теоретически (звездочки).

незаполненными и участвует в рекомбинации. Например, для образца, полученного методом центрифугирования без сушки, количество дефектов минимально. Поэтому для него эффект заполнения дефектов не имеет большого значения, и расчет PLQY хорошо согласуется с экспериментально измеренными значениями.

Заключение

На основе проанализированных экспериментальных данных времяразрешенной спектроскопии фотолюминесценции из пленок CsPbBr₃ нами развита модель, которая позволяет рассчитать коэффициенты излучательной (В) и безызлучательной (А) рекомбинации. Впервые были рассчитаны значения этих коэффициентов для перовскитных пленок, созданных методом горизонтальной щелевой экструзии. Коэффициент В получился равным $9.82\cdot 10^{-10}\,\text{cm}^3\text{/s.}$ Наименьший коэффициент для рекомбинации на дефектах $A = 3.18 \cdot 10^6$ и $3.54 \cdot 10^6$ s⁻¹ (при накачке $2\mu J/cm^2$) был получен для пленок, полученных без сушки горячим воздухом центрифугированием и горизонтальной щелевой экструзией, что советует концентрации дефектов $3.05 \cdot 10^{15}$ и $3.40 \cdot 10^{15}$ сm⁻³. Такой низкий уровень концентрации дефектов соответствует высокому качеству перовскитов данного типа, которые могут успешно применяться в различных оптоэлектронных устройствах перовскитых пленок [40,41].

Полученная модель эффективно оценивает концентрацию дефектов в образце и позволяет точно предсказывать, какой образец будет обладать наибольшим квантовым выходом фотолюминесценции. Однако при расчете квантового выхода фотолюминесценции на основе полученных коэффициентов рекомбинации, результаты не всегда совпадают с экспериментальными данными для случаев высокой концентрации дефектов. Тем не менее разработанная модель может быть использована для быстрой диагностики люминесцентных свойств качественных перовскитных пленок на основе измерения затухания фотолюминесценции.

Финансирование работы

Анализ времяразрешенной фотолюминесценции был выполнен при поддержке гранта Российского Научного Фонда (проект 21-73-20189). Анализ мощностных зависимостей квантового выхода фотолюминесценции был выполнен при поддержке гранта Российского Научного Фонда (проект 24-79-10131).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- P. Docampo, T. Bein. Accounts Chem. Research, 49, 339 (2016).
- [2] J. Liang, J. Liu, Z. Jin. Solar Rrl, 1, 1700086 (2017).
- [3] D.S. Gets, E.Y. Tiguntseva, A.S. Berestennikov, T.G. Lyashenko, A.P. Pushkarev, S.V. Makarov, A.A. Zakhidov. JETP Lett., **107**, 742 (2018).
- [4] A.V. Andrianov, A.N. Aleshin, L. Matyushkin. JETP Lett., 109, 28 (2019).
- [5] K. Sekerbayev, Y.T. Taurbayev, I.N. Saraeva, S.I. Kudryashov, A.A. Ionin, V.Y. Timoshenko. JETP Lett., 110, 592 (2019).
- [6] K. Sekerbayev, G. Mussabek, N.S. Pokryshkin, V.G. Yakunin, Y.T. Taurbayev, Y. Shabdan, Z.N. Utegulov, V. Chirvony, V.Y. Timoshenko. JETP Lett., 114, 447 (2021).
- [7] Y. Wang, C. Duan, P. Lv, Z. Ku, J. Lu, F. Huang, Y.-B. Cheng. National Science Review, 8, b075 (2021).
- [8] J. Kang, L.-W. Wang. J. Phys. Chem. Lett., 8, 489 (2017).
- [9] X.-K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang, R.H. Friend, F. Gao. Nature Mater., 20, 10 (2021).
- [10] D. Gets, D. Saranin, A. Ishteev, R. Haroldson, E. Danilovskiy, S. Makarov, A. Zakhidov. Appl. Surf. Sci., 476, 486 (2019).
- [11] S. Makarov, A. Furasova, E. Tiguntseva, A. Hemmetter, A. Berestennikov, A. Pushkarev, A. Zakhidov, Y. Kivshar. Adv. Opt. Mater., 7, 1800784 (2019).
- [12] Q. Zhang, Q. Shang, R. Su, T.T.H. Do, Q. Xiong. Nano Lett., 21, 1903 (2021).
- [13] I. Shishkin, A. Polushkin, E. Tiguntseva, A. Murzin, B. Stroganov, Y. Kapitonov, S.A. Kulinich, A. Kuchmizhak, S. Makarov. Appl. Phys. Express, **12**, 122001 (2019).
- [14] A.O. Murzin, B.V. Stroganov, C. Gunnemann, S.B. Hammouda, A.V. Shurukhina, M.S. Lozhkin, A.V. Emeline, Y.V. Kapitonov. Adv. Opt. Mater., 8, 2000690 (2020).
- [15] J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park. Chem. Rev., 120, 7867 (2020).
- [16] D. Saranin, P. Gostischev, D. Tatarinov, I. Ermanova, V. Mazov, D. Muratov, A. Tameev, D. Kuznetsov, S. Didenko, A. Di Carlo. Materials, **12**, 1406 (2019).

- [17] I. Turkevych, S. Kazaoui, N.A. Belich, A.Y. Grishko, S.A. Fateev, A.A. Petrov, T. Urano, S. Aramaki, S. Kosar, M. Kondo, E.A. Goodilin, M. Graetzel, A.B. Tarasov. Nature Nanotechnol., 14, 57 (2019).
- [18] W. Tian, H. Zhou, L. Li. Small, 13, 1702107 (2017).
- [19] F. Wang, X. Zou, M. Xu, H. Wang, H. Wang, H. Guo, J. Guo, P. Wang, M. Peng, Z. Wang, Y. Wang, J. Miao, F. Chen, J. Wang, X. Chen, A. Pan, Ch. Shan, L. Liao, W. Hu. Adv. Sci., 8, 2100569 (2021).
- [20] A.N. Aleshin, I.P. Shcherbakov, O.P. Chikalova-Luzina, L.B. Matyushkin, M.K. Ovezov, A.M. Ershova, I.N. Trapeznikova, V.N. Petrov. Synthetic Metals, 260, 116291 (2020).
- [21] A.A. Parfenov, O.R. Yamilova, L.G. Gutsev, D.K. Sagdullina, A.V. Novikov, B.R. Ramachandran, K.J. Stevenson, S.M. Aldoshin, P.A. Troshin. J. Mater. Chem. C, 9, 2561 (2021).
- [22] P.V. Shinde, A. Patra, C.S. Rout. J. Mater. Chem. C, 10, 10196 (2022).
- [23] D.I. Markina, S.S. Anoshkin, M.A. Masharin, S.A. Khubezhov, I. Tzibizov, D. Dolgintsev, I.N. Terterov, S.V. Makarov, A.P. Pushkarev. ACS Nano, 17, 1570 (2023).
- [24] Z.-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L.M. Pazos, D. Credgington, M. Kondo, F. Hanusch, Th. Bein, H.J. Snaith, R.H. Friend. Nature Nanotechnol., 9, 687 (2014).
- [25] A. Fakharuddin, M.K. Gangishetty, M. Abdi-Jalebi, S.-H. Chin, A.R. bin Mohd Yuso D.N. Congreve, W. Tress, F. Deschler, M. Vasilopoulou, H.J. Bolin. Nature Electron., 5, 203 (2022).
- [26] M. Alahbakhshi, A. Mishra, R. Haroldson, A. Ishteev, J. Moon, Q. Gu, J.D. Slinker, A.A. Zakhidov. ACS Energy Lett., 4, 2922 (2019).
- [27] D. Gets, M. Alahbakhshi, A. Mishra, R. Haroldson, A. Papadimitratos, A. Ishteev, D. Saranin, S. Anoshkin, A. Pushkarev, E. Danilovskiy, S. Makarov, J.D. Slinker, A.A. Zakhidov. Adv. Opt. Mater., 9, 2001715 (2021).
- [28] X.-G. Wu, H. Ji, X. Yan, H. Zhong. Nature Nanotechnol., 17, 813 (2022).
- [29] T.-H. Han, K.Y. Jang, Y. Dong, R.H. Friend, E.H. Sargent, T.-W. Lee. Nature Rev. Mater., 7, 757 (2022).
- [30] F.C. Krebs. Solar Energy Mater. Solar Cells, 93, 394 (2009).
- [31] T. Zhang, L. Wang, L. Kong, C. Zhang, H. He, B. Wei, X. Yang, J. Mater. Chem. C, 9, 7532 (2021).
- [32] A. Polushkin, E. Danilovskiy, E. Sapozhnikova, N. Kuzmenko, A. Pushkarev, S. Makarov. Photon. Nanostructures-Fundamentals and Applications, 58, 101232 (2024).
- [33] V. Baitova, M. Knyazeva, I. Mukanov, A. Tarasevich, A. Naumov, A. Son, S. Kozyukhin, I.Y. Eremchev. JETP Lett., 118, 560 (2023).
- [34] T. Kirchartz, J.A. Marquez, M. Stolterfoht, T. Unold. Adv. Energy Mater., 10, 1904134 (2020).
- [35] S. Karpov. Opt. Quant. Electron., 47, 1293 (2015).
- [36] A. Kiligaridis, P.A. Frantsuzov, A. Yangui, S. Seth, J. Li, Q. An, Y. Vaynzof, I.G. Scheblykin. Nature Commun., 12, 3329 (2021).
- [37] J.M. Richter, M. Abdi-Jalebi, A. Sadhanala, M. Tabachnyk, J.P. Rivett, L.M. Pazos-Outón, K.C. Gödel, M. Price, F. Deschler, R.H. Friend. Nature Commun., 7, 13941 (2016).
- [38] P. Ščajev, D. Litvinas, V. Soriutė, G. Kreiza, S. Stanionyte, S. Juršėnas. J. Phys. Chem. C, **123**, 23838 (2019).

- [39] J. Peters, Z. Liu, R. Yu, K. McCall, Y. He, M. Kanatzidis, B. Wessels. Phys. Rev. B, 100, 235305 (2019).
- [40] P. Ščajev, S. Miasojedovas, S. Juršenas. J. Mater. Chem. C, 8, 10290 (2020).
- [41] K. Abiedh, Z. Zaaboub, F. Hassen. Appl. Phys. A, 127, 1 (2021).
- [42] M. Zhang, Z. Zheng, Q. Fu, P. Guo, S. Zhang, C. Chen, H. Chen, M. Wang, W. Luo, Y. Tian. J. Phys. Chem. C, 122, 10309 (2018).