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We consider the problem of determining the threshold values of the electric field F at which new size-quantized

subbands appear in the accumulation layer on the surface of an n-type semiconductor. The difficulties of such

determination in experimental and computational works presented in the literature are discussed. An explanation

of the available facts is proposed as a manifestation of the quadratic dependence of the energy E of the shallow

level on the depth of the potential well near the appearance threshold. Formulae of threshold dependence E(F)
for the case of parabolic conduction band in the bulk of semiconductor are obtained. The possibility of application

of the threshold approximation not only to the main, but also to the excited subbands is shown. In the case

of non-parabolic conduction band, the threshold character in dependence of the size-quantized level energy on

quasimomentum along the surface is considered. Numerical calculations of two-dimensional spectra under the

conditions of the appearance of the main subband, the first and the second excited ones have been performed

with n-InAs parameters and analyzed by means of the derived expressions for the threshold behavior. A method

to determine the threshold of a subband appearance from available data in the region above the threshold is

proposed. An instability of the self-consistent solution of the system from the Poisson equation and the effective

mass equation in the case of the second excited subband is observed and investigated. Arguments are presented

in favor of interpreting this instability as evidence of the formation of two-dimensional valence-type subbands with

negative mass in the accumulation layer. We discuss a possible connection between the appearance of such a

spectrum in the potential well, the deep of which is comparable to the bandgap, and L.V. Keldysh’s assumption

about the origin of the amphotericity of impurities that create deep levels in the semiconductor bandgap.
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1. Introduction

When creating an accumulation layer on the surface of

an n-type semiconductor in a metal-insulator-semiconductor

structure, the number of occupied size-quantized subbands

is determined experimentally from the dependence of the

surface density ns of electrons on the potential Vg of the

metal gate. When a new subband appears, the number

of electrons in it is relatively small and poorly determined.

Therefore, the value of Vgc when a new subband appears is

found by linear extrapolation of the measured dependence

of ns(Vg) to zero (see for example [1], Figures 3 and 9).
In this case, it is discovered that quasi-two-dimensional

electrons exist at Vg < Vgc . There was no generally accepted

explanation for this observation.

When an electron accumulation layer near the surface

is formed by the adsorption of positive ions due to the

formation of a band-bending region, the number of size-

quantized subbands is determined either experimentally by

photoelectron spectroscopy, which is difficult, or by solving

the effective mass equation. In the latter case for electrons

with a nonparabolic conduction band, the energy of levels

size-quantized normal to the surface depends on the lateral

component of the quasimomentum k2
‖ along the surface.

In case of band bending corresponding to the beginning

of the separation of the size-quantized subband from the

continuous spectrum, the calculation of the two-dimensional

energy spectrum showed the existence of a two-dimensional

subband, the spectrum of which began at a certain critical

value k‖c > 0 [2]. As an explanation, a hypothesis was

put forward about the possible existence of size-quantized

subbands, their minimum located at k‖c 6= 0.

However, in both cases described, when a new subband

appears, its minimum will necessarily be located near

the boundary of the continuous spectrum, and it should

correspond to a small binding energy. In such cases,

one should expect a quadratic dependence of the energy

spectrum on the depth of the potential well, characteristic

of the threshold effect ([3] Ch. I, § 2). This makes it difficult

to detect the shallow state at an early stage deepening of

the potential well when k || increases from zero, as noted

in [4]. It is important that the correct determination of the

moment when a new subband appears in a two-dimensional

spectrum affects not only the quantitative assessment of
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Figure 1. The potential well potential of the accumulation

layer, the position of the minima of the two subbands and the

corresponding wave functions normalized to unity are shown. Ec

and EF mark the position of the bottom of the conduction band

and the Fermi level in the bulk, U0 — the band bending on the

surface. Energies are referenced from the bottom of the conduction

band in the bulk.

the density of quasi-two-dimensional electrons, but also

allows for consideration of the intersubband scattering

channel, even if the occupation of a new subband does

not yet appear, for example, in the spectrum of magneto-

oscillations.

The existing theoretical considerations of threshold de-

pendencies in the literature are limited only to the threshold

of the ground state entering the discrete spectrum, typically

illustrated by a rectangular or sufficiently localized potential

well. In the present work, the theory is generalized to the

case of the appearance of excited states in order to also be

able to determine accurately appearing of a new excited

subband in the two-dimensional spectrum. This case is

distinguished by the fact that the wave function of the n-th
excited level has n nodes in the region of the well between

the turning points and, accordingly, significantly deviates

from zero in the intervals between the nodes (see Figure 1).
In contrast, the unnormalized wave function of the shallow

ground state, under the zero boundary condition at the well

wall, remains small everywhere up to the turning point.

In addition, excited states appear in a potential well when

its depth is significantly greater than the depth at which

the ground state of a discrete spectrum emerges. Both

of these factors increase the contribution of the integral

over the region of the potential well to the normalization

of the eigenfunction of the corresponding state relative

to the contribution of the asymptotic neighborhood of

infinity, where the eigenfunction decreases exponentially. At

the same time, the smallness of the contribution from the

integral over the well region is usually considered the main

condition for the applicability of the threshold approximation

to the dependence of the spectrum on the depth of the

potential well.

The second distinction of the potential of the accu-

mulation layer from model rectangular or well-localized

potentials is the slow, like 1/z 2, decay of the self-consistent

potential with imposed Friedel oscillations as one moves

away from the surface (see numerical calculations in [5],
Figs. 4 and 9). Such behavior at large distances is a universal

consequence of the screening of the surface charge by a

degenerate electron gas as follows from the results of the

study [6]. Therefore, in the case of a potential obtained by

solving a self-consistent system of Poisson and Schrödinger

equations, it is required to determine what the boundary of

the well is and where the asymptotic exponential decay of

the solution begins. Both elements are essentially used in

deriving the dependence of energy on the well depth near

the threshold of the emergence of a new state in the discrete

spectrum.

The noticeable deviation of the wave functions from zero

in the well for excited states with low energy necessitated

the consideration of the first correction to the threshold

formulas, which takes into account the finite ratio of the

contribution to the normalization integral from the well

region to the contribution from the region of exponential

decay. This allows expanding the scope of application

of threshold formulas for determining the moment of

appearance of a shallow state. Theoretical formulas were

verified by numerical simulation of the energy spectrum of

quasi-two-dimensional electrons in an accumalation layer on

the surface of a degenerate n-InAs type semiconductor.

Currently, there are a number of works in which the

assumption of the existence of a subband in the two-

dimensional spectrum, starting at k‖ 6= 0 is used to con-

struct a physical picture of the observed experimental facts

or to interpret the results of theoretical calculations in terms

of
”
kinematic binding“ or a barrier formed by a coordinate-

dependent effective mass (see [7–9] and references therein).
Therefore, it seems important to establish the reality of the

existence of such an unusual spectrum.

In this work, an attempt is made to answer posed

questions through numerical modeling using semiconductor

parameter values with a degenerate electron gas close to

those studied experimentally. All calculations, the results

of which are presented in the following sections, were

carried out with the electron gas parameters for a typical

direct-gap semiconductor, which was chosen as n-InAs with

a donor concentration of N+ ∼ 1 · 1017 cm−3. For the

remaining parameters, the same values as in the work [4]
were adopted: effective electron mass m∗ = 0.023, bandgap

Eg = 430meV, dielectric constant ǫ = 12.6.

In the section
”
Parabolic conduction band“ the effective

atomic units e∗ = m∗ = ~ = 1 are mainly used. The

relationship between a. u.∗ and usual atomic units a. u.
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is indicated in formulas (3.4) in [4]. In the section

”
Nonparabolic conduction band“ conventional atomic units

are used.

In some cases, it is more convenient to normalize energy

values to the Fermi energy of the ideal electron gas

with the specified concentration, spatial coordinates — by

multiplying by the Fermi quasimomentum. As a rule, this

normalization is explicitly indicated.

2. Threshold effects in the spectrum
of quasi-two-dimensional electrons
with a parabolic conduction band
in the bulk of a semiconductor

2.1. Problem statement

A n-type direct-bandgap semiconductor with a degenerate

electron gas in the bulk is considered under conditions

where an electron-attracting electric field is applied to the

surface, generated either by the charge of positive ions

adsorbed on the surface or by a voltage applied to a metal

gate separated from the surface by a dielectric film. The

band diagram of such a structure is presented in Figure 1.

The energy spectrum of this problem is calculated using

the method described in [4], as a result of solving the self-

consistent system of equations for the wave functions 9E

and the electrostatic potential φ (in dimensional units)

− ~
2

2m∗
19E(r) + U(r)9E(r) = E9E(r), (1)

−ǫ∇2φ(r) = 4πe(N+ − N(r)), (2)

N(r) = 2

∫

E≤EF

D {E} |9E(r)|2 , (3)

under given boundary conditions on the eigenfunctions 9E

and the potential φ. Here U(r) = −eφ(r) is the potential

energy of the electron, E is the state energy, D denotes

the differential spectral measure over the energy spectrum,

and the integration is carried out over all occupied states,

including size-quantized subbands.

2.2. Threshold effect formulas

Typically, the Schrödinger equation is considered, where

the potential energy is proportional to the parameter λ.

In the case of a rectangular well, its depth is directly

proportional to this parameter. If at a certain threshold value

λt the eigenvalue E = 0 appears in the energy spectrum

of the Schrödinger equation, then with a further increase

in λ there is a shallow level in the well, whose binding

energy depends quadratically on the detuning λ − λt . Such

a dependence can be identified for many types of potential

wells, for which explicit solutions of the corresponding

Schrödinger equation exist. This suggests the existence of a

threshold-type dependence in the case of a potential well of

a sufficiently arbitrary form under certain conditions.

If the specification of the well potential is limited by the

requirement that the Schrödinger equation has an eigenvalue

E = 0, decays sufficiently rapidly to zero at infinity, and

is proportional to the parameter λ, then the proof of the

threshold behavior of the level depending on the detuning

λ − λt is carried out in two ways in [10] (problem 4.27).
Unfortunately, this conclusion is incorrect, and the correct

result was obtained after unjustified assumptions. There-

fore, we will follow the original idea of the threshold

phenomenon, as it was formulated in the article by Bethe

and Peierls [11]. This involves a weak dependence of the

wave function of the shallow state on energy in the well

region and the explicit form of the dependence of the

wave function on energy far from the well in the region

that provides the main contribution to the normalization

coefficient. Similar considerations are also used in the

theory of scattering of slow particles on a potential well

with a shallow level (see [12] and Chapter IX in [3]).
The derivation of the threshold dependence of the

binding energy without restricting the potential well’s linear

dependence on the parameter was presented in [13].
Here, only the formulas necessary as the basis for further

transformations will be reproduced here.

Let the Schrödinger equation (in atomic units) with the

potential U(z , λ) depending on the parameter λ

[

−1

2

d2

dz 2
+ U(z , λ)

]

9E(λ)(z ) = E(λ)9E(λ)(z ) (4)

have an eigenvalue E(λt) = 0 at a certain value of the

parameter λt . The problem is considered on the semi-axis

0 ≤ z < ∞ with boundary conditions

9E(0) = 0, lim
z→∞

9E(z ) < const. (5)

Regarding the potential, the asymptotic condition is consid-

ered to be satisfied

lim
z→∞

U(z , λ) ∝ 1/z 2+α, α > 0,

thanks to which two linearly independent solutions of

equation (4) with E = 0 have asymptotics at infinity of

∼ const and ∼ z according to Shpets theorem [14]. If

the solution 90 remains bounded at infinity, then E = 0 is

eigenvalue and 90 is eigenfunction.

To simplify the notation, let us introduce the designation

of eigenfunctions as vectors in Hilbert space

90(z ) = |0〉, 9E(λ)(z ) = |E〉. (6)

Since the dependence of the energy E on the parameter λ

near the threshold is being studied, we expand the potential

as a function of λ into a series near the point λt up to

first-order terms

U(x , λ) = U(z , λt) +
dU(z , λ)

dλ
(λ − λt). (7)

Next, equation (4) at λ = λt is projected onto the state |E〉,
and at the parameter λ, onto the state |0〉, and the first is
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subtracted from the second. Considering the self-adjointness

of the original equation, we derive

(λ − λt)

〈

0

∣

∣

∣

∣

∂U
∂λ

∣

∣

∣

∣

E

〉

= E(λ)〈0|E〉. (8)

Due to the locality condition of the potential energy U(z , λ)
and the smallness of eigenvalue E(λ), the main contribution

to the scalar product 〈0|E〉 is given by the region outside

the potential well, where the normalized eigenfunctions are

known explicitly and are equal, respectively,

90(z ) = C0, 9E(z ) = CE exp(−κz ). (9)

The normalization constants calculated with the same ne-

glect of the well contribution are equal to C0 = 1/
√
2π [15]

and CE =
√
2κ, κ =

√

2|E|), E = −κ2/2.
Having calculated the scalar product on the right-hand

side of (8) and explicitly restoring the matrix element

expression on the left-hand side, we derive the formula

−κ2
2κ

= (λ − λt)

∞
∫

0

dz
90(z )9E(z )

C0CE(κ)

∂U
∂λ

∣

∣

∣

∣

λt

, λ > λt . (10)

After obvious transformations, we derive an expression

for the energy of a new level near the threshold of its

appearance in the potential well

E(λ) = −2





∞
∫

0

dz
90(z )9E(z )

C0CE(κ)

∂U
∂λ

∣

∣

∣

∣

λt





2

(λ − λt)
2, λ > λt .

(11)
This formula differs from the usually obtained quadratic

dependence of the binding energy on the parameter near

the threshold in that the energy clearly depends on the

matrix element of the derivative of the potential with

respect to the parameter λ. The normalization factor

CE(κ) depends significantly on energy. However, the

solutions to the Schrödinger equations will not depend

on the energy E in the well region after dividing by

normalizing constants and are close to each other due to

the identical initial condition 9E(0) = 0 and the smallness

of the energy E relative to the potential energy U (see
equation (4)).
Furthermore, under the integral, the difference between

the eigenfunctions for the two energy eigenvalues is re-

tained, which is usually neglected, reducing the integral to

the average value of the potential over the eigenfunction for

the zero eigenvalue. The latter is assumed to be constant

and equal to one in the well region [16].
If the first approximation (before normalizing 9λt ≃ 9λ

in the well region) is carried out with sufficient accuracy

in all cases, the second will be incorrect when considering

the appearance of the next n + 1 bound state in the well, in

addition to the already existing n state. This is because when

En+1 = 0 and higher values of this parameter all solutions

will have n + 1 nodes in the well region in addition to the

zero boundary condition. As a result, the square of the

wave function, even a shallow excited state, will take on

large positive values in the region of the potential well,

contributing significantly to the normalization integrals, as

well as to the overlap integral 〈0|E〉 on the right-hand side

of equation (8).
To extend the threshold approximation to the case of

excited states, it is necessary to consider the consequences

of rejecting the condition that the values of the normaliza-

tion integral and the overlap integral are formed not in the

region of the potential well but in the asymptotic region

of exponential decay at infinity. Let us divide the overlap

integral into two terms and estimate the contribution of each

to the formula for the threshold dependence

〈0|E〉 =

∫

dz90(z )9E(z )

= C0CE

[

z∗

∫

0

dz
90(z )9E(z )

C0CE
+

1

κ
e−κz∗

]

= C0CE

[

Iqw(z ∗) +
1

κ
+

1

κ

(

e−κz∗ − 1
)

]

. (12)

Here, Iqw(z∗) denotes the contribution to the integral from

the potential well region. The constants C0,CE account for

differences between the eigenfunction 90(z ∗) from unity

and 9E(z ∗) from exp(−κz ∗) (see (9)). Substituting (12)
into equality (8), we obtain instead of (10)

−κ2
2

[

Iqw(z ∗) +
1

κ

(

e−κz∗ − 1
)

]

+
−κ
2

= (λ − λt)

∞
∫

0

dz
90(z )9E(z )

C0CE

∂U
∂λ

∣

∣

∣

∣

λt

, λ > λt . (13)

The extinction constant κ is considered to be a small

parameter of the theory. Therefore, the first term on the left-

hand side is a quantity of the second order of smallness. The

overlap integral cannot be greater than the normalization

value, and even after dividing by the constants C0,CE and

will remain on the order of unity. The largest number in

square brackets can be the effective well size z ∗, but it is

multiplied by a small parameter — the binding energy. Thus,

it follows from formula (13) under the condition κ2z ∗ < 1,

there must exist a certain neighborhood of the parameter

λ values near the threshold, in which the usual formula for

the threshold dependence is preserved.

It should be noted that the equality (13) defines the

parameter λ as a parabolic function of κ provided that the

square bracket on the left side of (13) and the integral on the

right side are weakly dependent on the energy E = −κ2/2,
and therefore on λ. Generally this allows determining the

parameters of the parabola using the least-squares method

and find the threshold value of the parameter λt . However,

it is more convenient to do this in the area of linear
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dependence between κ and λ, if such a region is sufficiently

well defined. In any case, formula (13) enables the accurate
determination of the threshold for the appearance of a new

level. Moreover, the results of numerical simulation show

that the region of linear dependence λ(κ) exists even in

a self-consistent potential well and is quite sufficient for

determining threshold values.

2.3. Results of the numerical experiment

Figure 2 shows the results of self-consistent calculations

of the dependence of the energy spectrum of quasi-two-

dimensional electrons in the accumulation layer on the

electric field F applied to the surface. New size-quantized

subbands are observed to appear with the increase of the

electric field strength. In a small neighborhood of field

values where a new subband appears, the iterative solution

of the self-consistent Poisson–Schrödinger equation system

ceases to converge, leading to gaps in the curves.

The mechanism of this loss of convergence when a

shallow bound state appears is discussed in [5] (end of

section 3.2) and in [4] (Appendix A). Here we demonstrate

that the threshold theory allows us to determine the field

values at which a new subband appears in the two-

dimensional spectrum. Although exactly at such values,

a self-consistent calculation of the electronic spectrum is

impossible.

1

10–3

10–2

10–1

10–4

–
/

E
E

j
0 F

0 100 200 300 400

F, kV/cm

E1

E0

E2

Figure 2. The position of the subbands minima in the energy

spectrum of quasi-two-dimensional electrons in the accumulation

layer of an n-type semiconductor as a function of the electric

field applied to the surface. To induce the appearance of the

shallow main subband, E0, a negative field had to be applied to the

surface to reduce the depth of the Konstantinov-Shik self-consistent

potential well until the dimensional quantization level disappeared

(see the discussion of this phenomenon in Ref. [5], section 3.1).

0.05

0.01

0.02

0.03

0.04

0

–
/

E
E

0
0 F

0 5 10 15 20

F F– , kV/cmt0

Figure 3. Determination of the threshold field Ft0 for the

appearance of the main subband by fitting the parameters of

the parabolic dependence according to formula (11) using the

least-squares method for four calculated points (black squares for

F − Ft0 > 0). The threshold field was determined by selecting the

position of the fifth point, taking into account the requirement

that the minimum of the parabola lies on the abscissa axis.

Ft0 = −10.4 kV/cm.

Figure 3 shows the result of fitting the threshold field

value for the main subband E0 shown in Figure 2. The four

points at the final detuning values F − Fc are taken from

the calculated curve E0. The Fc field, which determines

the position of the fifth point, was selected so that drawing

a parabola through the five points using the least-squares

method would result in a curve tangent to the x -axis. It

was possible to do this with a certain accuracy, but in the

absence of software implementation, the process turned out

to be quite tedious.

However, formula (10) and, especially, (13) suggest that

it would be more convenient to use the region of the linear

dependence of the extinction constant κ on the parameter, in

this case the field F , on the plane (κ, F). Then extrapolating

the right line to the point where κ = 0 will allow us to

determine the threshold field Ft0 for the main subband.

The implementation of such a construction is presented in

Figure 4, where the exponent decay constant is replaced by

the normalized value |kz |/kF .

Table 1 summarizes the results of this extrapolation.

The third column of the table shows the minimum field

values, starting from which a self-consistent iterative cal-

culation allows to find the minimum energy for a given

subband. Figure 4 shows that the linear dependence is

replaced by a nonlinear one at an extinction parameter of

the order of 0.3. According to Formula (13), this allows
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Figure 4. The initial sections of the curves presented in Figure 2

are reconstructed in the corresponding coordinates.

us to estimate coefficient for the square of the extinction

constant.

In any case, under the parameters of the conducted

calculation, which are, as shown in [4], close to the

characteristics of real objects, the region of a purely

threshold linear dependence is clearly noticeable and can

be used to refine the threshold field values.

With the threshold field values known accurately, we

can consider the position of the subband minima on a

much larger scale of field changes. The result of this

approach is presented in Figure 5. It is evident that

the characteristic quadratic dependence of the binding

energy on the parameter, which modifies the depth of the

potential well, spans approximately one and a half orders

of magnitude and can be effectively used to refine the

threshold field based on experimental data.

In conclusion of this section, Figure 6 shows the result

of testing the applicability of the threshold theory to the

energy level localized in a self-organizing Konstantinov–Shik
potential well. The details of the spectrum calculation are

described in the paper [5]. The dependence of the depth of

the effective potential well of the density functional theory

Table 1. The threshold fields for three subbands of Figure 2,

determined from Figure 4

Number Equation of the Threshold Minimum

subbands right line Figure 4 field Ft , kV/cm field, kV/cm

E0 E0 =105.3|kz |−10.4 −10 −6.5

E1 E1 =300.9|kz |+56.7 57 75

E2 E2 =667.9|kz |+229.8 230 250

E1

E0

E2

1

21

10–3

10–2

10–1

10–4
–

/
E

E
j

0 F
104 105

F F– , kV/cmt j

Figure 5. The minimum energies of the three calculated subbands

of size quantization, presented in Figure 2, plotted as a function

of the excess over the threshold field value for each subband. The

dashed lines show the slopes of the power-law dependence of

the minimum energy on the detuning. The number 2 marks the

parabolic slope corresponding to the threshold formula (11). The
number 1 indicates a commonly observed linear dependence. The

threshold fields are provided in Table 1.

1.0 0.2
Rs

16

14

12
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8

6

4

2

0

–
U

, 
a.

 e
.

0

0 0.2 0.4 0.6 0.8 1.0

|k |, a. e.z

Figure 6. Dependence of the potential minimum U0 potential in

the self-organizing potential well near the impenetrable boundary

of a degenerate electron gas on the extinction constant of the wave

function in the bulk. The level energy E = −|kz |
2/2.
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on the extinction parameter of wave functions in the volume

is plotted using curves numbered 1 in Figure 4, a, b of the

article [5]. The dependence of the level energy on Rs ,

curve 1(b), was refined in [4], Figure 11.

The presence of a rectilinear section in Figure 6 clearly

demonstrates the validity of the threshold approximation in

a certain vicinity of the moment of appearance of the bound

state and in the case of a nonlinear dependence of the

Poisson solution on the parameter — positive background

density.

The approximation of the calculated dependence by a

straight line, in principle, allows answering the question

posed in the paper [17] about the boundary of the existence

of such a bound state. For this purpose it is necessary to

find the value U0 from Figure 6 and the corresponding value

Rs , at which |kz | = 0.

3. Nonparabolic energy spectrum of the
semiconductor conduction band

The case of the energy spectrum of quasi-two-dimen-

sional electrons of an accumulation layer on the surface

of a direct-bandgap semiconductor is considered, taking

into account the finite width Eg of the bandgap within

the framework of the two-band Kane model. Spectra

are calculated using the effective mass equation for the

nonparabolic conduction band [18], the solution method of

which is described in [4]. The dispersion law E j(k‖, kz ),
unlike the parabolic case, non-trivially depends on the

components k‖ of the quasimomentum along the surface

of the semiconductor due to the dependence of the binding

energy k2
z on k‖ (see [4], Figure 7, b).

The electrostatic potential energy U(z ) of electrons enters
the effective mass equation at Eg 6= 0 through the energy-

dependent quasipotential Uqp(U, E). As a consequence,

threshold effects in this case are determined not by one

parameter such as the gate voltage Vg , but by two: Vg and

k2
‖. The dependence E j(Vg) at k‖ = 0 will be analogous to

the dependence in Figure 2 with a similar inability to obtain

a self-consistent solution in the vicinity of the creation of a

new subband.

However, a peculiar threshold behavior will be present

in E j(k‖)-dependence for a fixed value of Vg and therefore

U(z ). The main feature of this case is that the minimum

detectable value of the bottom position of the j subband

E jm = E j(0) at given Vg not zero, but is equal to a small

but finite negative value. The threshold behavior in this

case occurs in the dependence Eg(k‖) in the vicinity of the

bottom.

At small negative energy values E , the corresponding

wave functions 9E have a large spatial extent beyond the

boundary of the potential well deep into the semiconductor.

This results in instability in the iterative solution process

of the self-consistent system of effective mass and Poisson

equations. However, the same large spatial extension of

wave functions from this region of low binding energies

makes it possible to analyze the energy spectrum using the

threshold effect theory.

3.1. Refinement of the threshold theory in the
case of a quasipotential in the effective mass
equation for a nonparabolic conduction band

Let the minimum Em(0, k2
zm) of the size-quantized sub-

band lie close to the boundary of the continuous spectrum

of a given quasipotential well Uqp(z ). We will find the

dependence of the energy on the quasimomentum k‖

parallel to the surface. To do this, we consider the effective

mass equation for the nonparabolic conduction band in the

two-band approximation (see [4], equations (4.17), (4.39))
at two energy values E and the condition k2

zm < 0.

[

− ~
2

2m∗
c

d2

dz 2
+ Uqp(z , Em)

]

9Em(z ) = k2
zm9Em(z ), (14)

[

− ~
2

2m∗
c

d2

dz 2
+ Uqp(z , E)

]

9E(z ) = k2
z9E(z ). (15)

Here, the quasipotential is defined by the formula

Uqp(z , E) = U(z )

(

1 + 2
E
Eg

)

− U2(z )

Eg
. (16)

The dependence of the energy E(k‖, kz ) on quantum

numbers is given by the roots of the dispersion equation

2m∗
c E

(

1 +
E
Eg

)

= k2
‖ + k2

z , (17)

corresponding to the conduction band

Ec =
Eg

2





√

1 +
2(k2

‖ + k2
z )

m∗
cEg

− 1



 (18)

and the valence band

Ev = −Eg

2





√

1 +
2(k2

‖ + k2
z )

m∗
cEg

+ 1



 , (19)

where Eg is a bandgap width.

By assumption, the asymptotic behavior of the eigen-

functions at infinity is determined by the condition

lim
z→∞

U(z ) = 0 imposed on the electrostatic potential. Ac-

cordingly, in this area we have

9Em = Cm exp (−|kzm|z ), 9E(z ) = CE exp(−|kz |z ).
(20)

Note that the quasipotential in formula (16) depends

explicitly on the energy of the two-dimensional state, which

is why the difference in the projections of equations (14)
and (15) onto the corresponding eigenvectors will contain

the energy difference E − Em at a constant electrostatic po-

tential. When calculating the non-parabolic two-dimensional

subband as a function of k2
‖, the energy changes with the
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change in lateral quasimomentum at a constant external

field. Thus, after evaluating the overlap integral 〈Em|E〉
using the explicit expressions for the eigenfunctions (20),

we obtain a threshold theory relation where the parameter

affecting the depth of the potential well is the total energy

of the two-dimensional state. The role of the binding energy

is played by the square of the quasimomentum component

normal to the surface. As a result, we obtain a relation of the

form of the threshold formula between the total energy E
and the localization energy of the degree of freedom normal

to the surface

E − Em =
Eg

2Ĩ

[

|kz | − |kzm| +
(

|kz |2 − |k2
zm|

)

×
(

Iqw(z ∗) − z ∗
)]

. (21)

Here, all variables are normalized to E0
F and kF , respectively.

The integral Ĩ is the matrix element of electrostatic potential

energy

Ĩ =





∞
∫

0

9E(z )

CE(kz )
U(z )

9Em(z )

CEm(kzm)



 , (22)

Iqw denotes the incomplete overlap integral

Iqw(z ∗) =

∣

∣

∣

∣

∣

∣

z∗

∫

0

dz
9E(z )9Em(z )

CE(kz )CEm(kzm)

∣

∣

∣

∣

∣

∣

. (23)

In general, equation (21) is structurally similar to (13).

The primary distinction is the appearance of the difference

between the energy at the minimum and the energy

of the state at finite k‖. Therefore, even in the case

of a quasipotential, one can expect the existence of an

energy region where the threshold theory conditions for the

spectrum E j(k‖) are satisfied.

3.2. Results of numerical experiments

Figure 7 shows the calculated self-consistent two-dimen-

sional spectrum of electrons in the potential well of the

accumulation layer near the surface. An electron-attracting

potential, creating a band bending of −435meV, is applied

to the surface. It was not possible to calculate the low

binding energy of the minimum of the second excited

subband in this calculation. The convergence issue of the

iterative procedure for the self-consistent solution and the

irregular method used to circumvent them are described

in [4]. Here we attempted to develop a regular method

to eliminate the known difficulties in numerical calculation

of very low binding energies, which are caused by the

large spatial extent of the eigenfunctions of such states

and the limited interval over which real calculations can

be carried out.

0 1 2 3 4

( )k k|| / F
2

E1

E0

E2

EF1.0

0.5

0

–0.5

–1.0

–1.5

E
E

j/
0 F

Figure 7. The energy spectrum of quasi-two-dimensional

electrons of the accumulation layer on the surface of a degenerate

n-type semiconductor. The position of the Fermi level below unity

reflects the nonparabolicity of the spectrum in the bulk. It should

be noted that the calculation failed to obtain the spectrum of the

second excited subband E2, which would begin at k‖ = 0.

3.2.1. Standard calculation algorithm

To begin with, calculations of the spectrum were carried

out at three values of the surface potential, when either the

main subband E0, or the first excited subband E1, or the

second E2 turns out to be shallow. All three spectra in the

coordinates of threshold variables are shown in Figure 8.

The two graphs E0(|kz |) and E1(|kz |) change in a regular

way with the deepening of the quasipotential well and

both show the intersection of the abscissa axis at |kz | > 0.

This corresponds to the existence of a negative energy of

the subband minimum at k‖ = 0, since in this case with

great accuracy Em(0, kz ) = −|kzm|2 (normalization to E0
F

and kF).

It should be noted that in reality, finding |kzm| from equa-

tion (21) in the case of a normal form of the dependence

E j(|kz |) is somewhat more complex than determining the

moment of appearance of a new subband in the case of

a parabolic zone from the intersection of the straight line

with the ordinate axis in Figure 4. First, one must set

Em = −|kzm|2, then it is necessary to find the coefficients

for all powers of the quadratic trinomial with respect to

|kzm| by approximating the calculated set of pairs (E j, |kz |)
with a parabola. The found coefficients should be used

to solve the quadratic equation obtained from (21) with

respect to |kzm|, assuming, for example, E = 0 and finding

the corresponding value |kz |. After that, set Em = −|kzm|2
(normalization to E0

F and kF). The procedure can be
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Figure 8. Inverted dependence of the localization energy
√

−k2
z on the quasipotential parameter — energy E of the two-

dimensional state. A sharp difference is observed between the

graph of the second excited subband E2 and the graphs for the

main and first excited subband. All three graphs were calculated

at different values of the surface potential, selected so that the

corresponding level was at the detection limit in our calculations.

It should be noted that the higher the serial number of the subband

in this figure, the deeper the corresponding well of the electrostatic

potential. The electrostatic potential remains constant along all

curves. The quasipotential changes in connection with changes in

energy E .

simplified if there is a sufficiently long linear section with

respect to |kz |. However, relative to the minimum value of

|kzm|, the quadratic equation will still be neccesary to solve.

3.2.2. The study of the anomalous threshold

dependence of the second excited subband E2

To determine the reasons behind the emergence of a

non-physical energy dependence on the quasimomentum,

as seen in the E2 graph, possible mathematical roots for

the inaccurate determination of the near-zero eigenvalue of

the effective mass equation were examined. The impact of

transferring the zero boundary condition on the solution

from infinity to the end point L, the boundary of the

computational interval, was evaluated. This gives rise to

an admixture of growing exponential in the solution in the

vicinity of the point L, but with the selected values L gave

differences only in the third or fourth decimal place and was

discarded.

The second possible reason is the non-standard form of

the quasipotential, which consists of two terms and only one

of them changes with the variation of the parameter E . To
test this, a similar calculation was performed for three cases

of shallow subbands — the main, first and second excited —
in a rectangular potential well. The quasipotential (16) of

such a well remains a rectangular well, but now consists

of two terms.

The calculation results are presented in Figure 9. It is

evident that in this case all three shallow subbands change

with the depth of the potential well in a systematic manner.

The corresponding minimum values for the potentials at

which each subband appears are indicated in the caption to

the figure. These results showed that the threshold theory

is quite valid for the first two subbands. The reason for the

anomalous behavior of the third subband remains unclear. It

could be assumed, however, that the number of nodes in the

region of the quasipotential well between the turning points

is not such a reason, as the eigenfunctions of the second

excited subband are the same in both the quasipotential

well of the electrostatic potential and the rectangular one.

There was one more place in the calculation program that

could give rise to unclear consequences. Since the iterative

solution did not converge to the required accuracy without

considering the contribution to the electron density from

the full spectrum of the subband E2 in Figure 7, a forced

wave function, identical for all k || values, was applied during

the calculation of this contribution for the spectrum range

0 ≤ k < kc , based on the assumption that in this range of

low binding energies, all functions differ little in the region

of the potential well.

After eliminating this procedure, the iterative solution,

indeed, ceased to converge in the sense that the usual

criterion for exiting the self-consistency loop at the level of

the difference between the input and output of the order

1 · 10−5 was not achieved. But there was no unlimited
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E2

E0

1.00
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0.02

Figure 9. Dependence E j(|kz |) for shallow subbands in the

case of a rectangular quasipotential well. The width of the seed

potential well is 5.0, with depths U0 = −0.105 (E0), −0.795 (E1),
−1.89 (E2). There is no anomalous behavior.
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growth in the self-consistency error. Moreover, it turned out

that in this mode two types of possible solutions, presented

in Figure 10, began to alternate regularly. One is completely

non-physical, type E2 in Figure 8. The other shows a more

reasonable, at first glance, behavior in the sense of a natural

intersection of the x -axis at |kz | > 0. This This behavior

persists even when extending the calculations to about

40 cycles. That is, a stable state of the used algorithm for

a self-consistent solution of a system of nonlinear equations

has appeared.

To verify whether the dependences of the type of the 18th

or 20th cycle located in the correct parameter range are

normal, Figure 11 jointly presents the dependences E0 and

E1 from Figure 8 and the dependence E(18)
2 from Figure 10.

The figure shows that these dependencies do not belong to

the same family.

It remained to determine if the strange behavior of the

third subband spectrum was caused by the slow decay of

the self-consistent electrostatic potential. In principle, from

the theory of surface charge screening it is known that

at large distances from the surface the potential decreases

as 1/z 2. Such a slow decrease is borderline for the

opportunity of considering the neighborhood of infinity as

a region where the solution for U(z ) ≡ 0 can be used

as an asymptotics. However, the presence of potential

modulation by Friedel oscillations left the opportunity that

these oscillations produces a faster effective decay of the

potential to zero.

This question can be addressed by evaluating the correc-

tion to the basic threshold formula, which is described by

the terms in parentheses of the formula (21). To do this, it is

necessary to know where the region of exponential behavior

of the numerically found solutions begins and how well it

is expressed. A good indicator of the region of exponential

dependence of a solution can be the logarithmic derivative

of the solution, which in this region tends to a constant

equal to the decay (or growth) constant.

From this point of view, the relationship between the

logarithmic derivative and the phase φ(z ) proved to be

convenient, which is found using the trigonometric sweep

method we employ in the form ψ′(z )/ψ(z ) = tg(φ(z )
proved to be convenient. In Figure 12, the graphs of the

wave function, phase tangent and normalization integral as a

function of the upper limit are plotted for the state E = 0 of

the shallow subband E1. The boundary of the quasipotential

well is taken as the point z ∗, where the tangent becomes

equal to the known value of the extinction constant −|kz |
with an accuracy of three decimal places.

It can be seen that simultaneously, at the point z ∗, the

normalization integral almost reached its limit value of one.

As expected, the wave function of the first excited state has

one zero inside the well between the turning points for the

given binding energy −|kz |2.
For the convenience of comparing curves calculated with

different parameters, their characteristics were summarized

in Table 2. The data were taken from the calculated wave
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Figure 10. Two types of solution of a self-consistent iterative

algorithm in the case of a shallow second excited subband E2 .

The surface potential, measured from the Fermi level, is equal to

−445meV. The numbers near the curves indicate the numbers

of cycles of the self-consistent procedure for sequentially solving

the system Poisson equation — effective mass equation for a

nonparabolic conduction band. It can be seen that the differences

between curves of the same type are small, less than between

curves of different types. However, there is no convergence with a

given accuracy even within one type; there are fluctuations in the

order of the differences between the curves in the figure.
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Figure 11. Three threshold dependences for shallow subbands

of the ground, first and second excited states, taken from Figure 8

(E0 and E1) and Figure 10 (E(18)
2 ). There is no similarity between

the behavior of the first two dependences and the third when the

quasipotential well is deepened.
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Table 2. Table of parameters and results E0
F = 71.46meV

Number
Parameters Results

subbands Fs Us E/EF |kz |/kF
Turning

z ∗ Iqw(z ∗)
kV/cm meV point z t

E0 −5 −18.6
0.00 0.026 13.44 62.0 0.925

0.18 0.039 11.72 60.9 0.992

E1 136 −160.0
0.00 0.053 12.08 51.7 0.994

0.25 0.093 10.51 49.5 0.999

E(18)
2 471 −382.6

−2.7 · 10−4 0.017 25.97 61.54 0.812

0.25 0.042 20.36 61.2 0.987

10

1.0
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0
E

/E j
F

20

k zF
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2

1

*ζ

Figure 12. Curve 1 represents the wave function of the state

for E = 0 of the first excited subband E1. Curve 2 shows the

dependence of the integral of the square of this wave function as a

function of the upper limit. The dashed curve represents the spatial

dependence of the phase tangent on the coordinate z . The vertical

dashed line marks the position of the z ∗ point. The potential well

is created by the field of 136 kV/cm.

functions for two characteristic points on the graphs of all

subbands: at E = 0, i. e. near the bottom of the subband,

and at the upper boundary of the linear section, which

was used to refine the energy at the minimum of the

subband. Although this latter procedure did not improve

the results obtained with the larger length L = 350 of

the computational interval and, consequently, significantly

increased computation time.

Analysis of the table showed that the E2 data indicate,

first of all, an increase in the width of the potential well as

its depth increases due to an increase in the field on the

surface. In contrast, when moving from the field where the

main subband E0 is shallow to a higher field where the first

excited subband E1 becomes shallow, the well narrowed due

to an increase in the surface charge density of the quasi-two-

dimensional electrons as the wells depth increased.

Conversely, as the well widened with increasing field, the

calculation yielded an insufficient excess electron density in

the states of the two-dimensional spectrum near the surface.

This lack of electrons is compensated by the mechanism

embedded in the algorithm that changes the distribution of

electrons in the bulk, which ensures that the electric field

vanishes at infinity and in this case results in a smooth

broadening of the potential well.

It is important to emphasize that in the case of n-InAs
under consideration, to appear in the spectrum of the

second excited subband, a field must be applied to the

surface, where the band bending at the surface almost

matches the width of the bandgap. This allows us to

suggest that the answer to the question of where the missing

electrons in surface states might be located should be sought

in the possible formation of two-dimensional valence surface

subbands.

With such a strong band bending by the external field that

the minimum of the quasipotential may be below the top of

the valence band, the effective mass equation (17) in the

two-band Kane model may have solutions with energy E in

the bandgap below its middle −Eg < E < −Eg/2. These

states should be sought in the form of an expansion in

terms of the basis of the Bloch functions of the valence

band with the dispersion law in the form of the second root

Ev(k2) (19) of the dispersion equation. Since the initial

energy of these states is in the bandgap over the top of the

valence band, in an undoped semiconductor they are not

occupied by valence electrons. But in the case of doping of

the conduction band, electrons from there can transit to the

free states of the two-dimensional valence band and form

the missing surface charge.

Thus, the mechanism for the appearance of two types of

E2(|kz |) dependence can be represented as follows. Since

the calculation did not take into account the opportunity

of the formation of two-dimensional valence subbands

occupied with electrons, when solving the nonlinear Poisson

equation (2) (with clarification for the nonparabolic band

spectrum see section 4.1.3 in [4]) the deficit in density of
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quasi-two-dimensional electrons was compensated by the

formation of a self-consistent wide potential well, the shape

of which differs from the regular shape of the well formed

by a sequential increase in the surface field.

In the widened well, in the next self-consistent cycle,

a shallow subband from the conduction band states is

determined, which is occupied with electrons. As a

consequence, the well narrows, and the states of the second

excited subband at k‖ = 0 and in the immediate vicinity

become so shallow that they do not appear until the

deepening of the quasipotential well due to the growth of

E ≈ k2
‖ makes the energy level k2

z (k
2
‖) exceed the detection

threshold (≃ −1.5 · 10−4E0
F in our case). This leads to

a two-dimensional spectrum with the subband E2 of the

type shown in Figure 7. Accordingly, when integrating over

the spectrum, there is no contribution the E2 states in the

0 < k‖ < k‖c region and again there is a lack of electron

charge density in two-dimensional states. This again causes

a broadening of the self-consistent well, where the entire

spectrum of the second excited subband can be calculated,

but the quasipotential well takes on a different shape.

3.3. Finding

Given the multifaceted nature of the results obtained in

this section, it makes sense to discuss their implications

separately.

3.3.1. On the hypothesis of the existence of
two-dimensional spectra starting from k‖c 6= 0

The assumption made in the article [2] about the possible

existence of the subband E j(k‖) in the two-dimensional

spectrum of a semiconductor with a non-parabolic conduc-

tion band accumulation, that starts from a non-zero value of

the lateral quasimomentum k‖c 6= 0, is based on two facts.

The first is the peculiar behavior of the spectral curves

(figure 2 in [2]), calculated with the consideration of the

screening of the external field not only by electrons in

two-dimensional states, but also by bulk electrons. The

second is a characteristic pattern of the dependence of the

number of electrons in the first excited subband on the

gate voltage Vg at the initial stage of its appearance (see
inset on Figure 3 in [2]). This dependence was measured

in the paper [19] and clearly corresponds to the threshold

dependence presented here in Figure 3. Consequently, the

fact of experimental evidence in favor of the discussed

assumption can be excluded from consideration.

As for the model spectrum of the excited subband in

Figure 2 in [2], then it qualitatively resembles the graph of

the subband E2 in Figure 7 since it also begins at k‖c 6= 0

and the initial energy falls into the region of the continuous

spectrum. However, regarding our calculation, analysis of

the characteristics of the E2 graph according to the data

presented in Table 2 shows that this was a bound state

in a completely different quasipotential well. This well

is much wider, if we compare the position of its turning

points with the positions of the turning points for the usual

subbands E0 and E1, and it decays more slowly to zero at

infinity. The possible reasons for the appearance of such

a wide potential well in the case of a shortage of quasi-

two-dimensional electrons to screen the external field are

explained in Section 3.2.2. In turn, a very shallow level may

appear in a wide potential well, the binding energy of which

is beyond the resolution of a specific implementation of the

algorithm, as explained in [4] (Appendix A.1).
Thus, there is no experimental confirmation of the

existence of size-quantized subbands E j(k‖) with k‖min 6= 0.

As for the opportunity of this type of spectrum appearing

in calculations for a nonparabolic conduction band, in our

case, firstly, it appears under bandbending comparable to

Eg , where the question must be raised about the possible

influence of two-dimensional subbands corresponding to the

valence band on the result.

Secondly, it should be borne in mind that at very low

binding energies and energies E near the boundary of

the continuous spectrum, the energy of the size-quantized

level k2
z turns out to be a very slowly varying function

k‖. Namely, if we put Em = kzm = 0 in equation (21) and

take into account that near the boundary with a continuous

spectrum and low binding energy E ≃ k2
‖, then we obtain

k2
z ∼ k4

‖. This fact means that as k‖ increases, the energy

level will slowly exit the undetectable region. At the same

time, the total energy of the level will increase, since

E = k2
‖, and will reach values in the region of the continuous

spectrum by the time the final value of the binding energy

appears in the calculation. This is what is seen in Figure 7.

The results of calculations of the two-dimensional spec-

trum of electrons in the accumulation layer on the n-
InAs. surface, presented in the work [20], cannot also be

considered as proof. For such a subtle issue, they were

obtained with a too short length of the calculated interval

(kFzmax = 16), using an approximate iterative method

(mixing scheme [21]) during a self-consistency process,

which may provide a small difference between the input

and output of the iterative scheme, but does not provide

any information about the degree of proximity to the real

solution (see the discussion in [22]).

3.3.2. The role of valence band states
in the two-dimensional spectrum
of the accumulation layer

It was noted in Keldysh’s work [23] on deep levels in

semiconductors that the presence of the −U2/Eg term in

the effective mass equation (15) implies that this potential

attracts carriers of any sign. This fact was pointed out as a

possible explanation for the formation of discrete spectrum

states by some impurities deep within the bandgap both for

electrons and holes. Such an explanation of the known

amphoteric behavior of impurities with deep levels was

linked precisely to their location near the middle of the

bandgap. Therefore, it is desirable to understand, so far at

least in principle, whether the formation of two-dimensional
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Figure 13. Left panel. Energy diagram of the accumulation layer for the case of the surface potential, when the second excited subband

E2 appears. The graph of the potential energy, the positions of the minima of the subbands (E2 is shown schematically due to the

proximity to zero of the energy scale, see Table 2), and the wave functions of the corresponding states are shown. The inset represents the

position of the minimum energy of the E2 subband relative to the potential energy graphics near the turning point z t j . Note the absence

of noticeable Friedel oscillations at this scale. Right panel. The position of the quasipotetial for the bottom energy of the subband E2

generated by the potential in the left figure, relative to the edges of the bandgap. The positions of the minima of each subband are marked

(k2
z2 again is shown schematically). The dashed curve is potential energy from the left panel. The shaded area above the bottom of the

conduction band indicates occupied states of the continuous spectrum.

valence subbands in a deep potential well for electrons is

possible.

The graphs of the potential U and the quasipotential

Uqp in Figure 13 show that formally the Schrödinger

equation with such a potential (in fact — the effective

mass equation (15) with such a quasipotential) could have

discrete spectrum levels in the energy range below the

middle of the bandgap. However, the energy of states

formed from the Bloch functions of the conduction band

with the dispersion relation (18) cannot be less than −Eg/2.

Moreover, this value is reached at the minimum of the

subband at k‖ = 0 and the energy level k2
z /2m∗ = −Eg/4.

More negative values of the level energy are impossible,

since in this case the radical expression would become

negative, an imaginary component would appear in the

energy, and such a state cannot be stationary.

Thus, states with energies from the lower half of the

bandgap can only be formed from the Bloch functions of

the valence band, when the relationship between the energy

E and the quasimomentum components (k‖, kz ) will be

determined by the second root Ev (19) of the dispersion

equation (17). Such an effective mass equation for the

nonparabolic valence band within the two-band Kane model

can be obtained from the system of equations (4.13) of the

work [4] in exactly the same way as the effective mass

equation for the conduction band (15). This equation will

have the same form as (15) with an accuracy to small

smoothness corrections proportional to the derivatives of

the potential ∂U/∂z of different orders. Only its eigenvalues

E must belong to the spectrum region E < −Eg/2 due to

the aforementioned restrictions on the radical expression.

However, this equation has the drawback of associating

negative kinetic energy with the |E〉 state. Since all standard
equations of mathematical physics describe the dynamics

of free particles with positive kinetic energy, the direct

application of such an effective mass equation will give

solutions that oscillate in the sub-barrier region and decay in

the over-barrier region. It is impossible to search for wave

functions of discrete states in this form.

It is possible to proceed to the eigenfunctions and

spectrum of the time-reversed problem as a solution to

this problem. In our case, due to the real nature of

the original single-particle Hamiltonian in Kane’s theory

and the eigenfunctions of the half-space problem, this will

amount to only changing the sign of the eigenvalue E ′ = −E
and the roots of the dispersion equation. If they are

renumbered in descending order of energy from top to

bottom, then E ′
1(k

2) = −Ev(k2), E ′
2(k

2) = −Ec(k2). The

zero of the energy scale is still defined by the condition that

the electrostatic potential vanishes at infinity, corresponding
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to the edge of the continuous spectrum of the former

conduction band, which will take the place of the valence

band in this representation. The valence band moves to the

place of the conduction band with the upper limit of the

bandgap at E ′ = Eg . The solution of the Poisson equation

and the electrostatic energy do not change.

In fact, with such a transformation, the matter reduces

to replacing E → −E ′ in the quasipotential and searching

for discrete eigenvalues in the range Eg/2 < E ′ < Eg . It is

evident that under this transformation, the term linear in U
in the effective mass equation becomes repulsive instead of

attracting to the surface. Nevertheless, the term quadratic

in U can still create a potential well in this case also. Thus,

one may hope, the issue of the existence of two-dimensional

valence subbands in the accumulation layer on the surface of

an n-type semiconductor becomes a question of numerical

relationships between parameters rather than a fundamental

one. In agreement with Keldysh’s remark.

If two-dimensional subbands with a positive effective

mass are found, the obtained spectrum should be multi-

plied by −1 upon reverting to the original space. The

resulting valence-type states in the bandgap should be

occupied with electrons and contribute to the total density

of quasi-two-dimensional electrons in the accumulation

layer, as they lie below the Fermi level located in the

conduction band. It should be noted that transport

along such subbands on the surface is expected to be

of the hole type due to the negative dynamic mass

1/m∗
v = (∂Ev/∂k‖)/k‖.

As possible experimental evidence in favor of the exis-

tence of two-dimensional valence subbands in the potential

well for electrons, one might consider the gate voltage

Vg dependencies of the occupation of subbands in the

accumulation layer and inversion channel on the silicon

surface in the MOSFET structure (see Figure 1 and

Figure 3 in the article [24]). In both cases, the threshold

nature of the increase in the number of electrons in the

newly appeared subband with rising gate voltage is clearly

observed. However, in the case of an accumulation layer,

the threshold nature of the deepening of the subband near

the boundary with a continuous spectrum appears natural.

The threshold behavior observed in the inversion channel, if

assumed as to be formed by a two-dimensional conduction

subband, cannot be explained. Since such a subband would

have been detached from the boundary of the continuous

conduction band spectrum long before reaching the top

of the valence band. On the other hand, the threshold

occupation of the newly formed valence subband in the

bandgap by electrons is quite expected.

4. Conclusion

The conducted research showed the opportunity of using

threshold theory formulas to evaluate shallow binding

states, even if these states are not the ground states in

a given potential well, but are excited states that do not

conform to the commonly accepted conditions for the

existence of threshold phenomena. Amendments to the

threshold formulas were obtained, which expand the range

of applicability of the basic relations. Signatures of the

possible existence of two-dimensional valence subbands in

the energy spectrum of the accumulation layer on the

surface of n-type semiconductor were identified.

The results presented here did not confirm the hypoth-

esis regarding the existence of
”
kinetically bound“ states,

proposed in [2] and supported in [9]. The emergence of

this hypothesis is associated with an attempt to explain the

observed threshold nature of the dependence of subband

energies on gate potential. The material in this paper shows

that threshold behavior occurs without the assumption of

the existence of two-dimensional subbands, whose spectrum

starts with k‖ 6= 0.

Finally, it should be noted that the analysis of threshold

behavior can have not only a purely practical value, as a

method for more accurately determining the moment of the

appearance of a new subband, but also serve as a means of

investigating whether it belongs to the conduction band or

valence band.
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