03.1

Перемежаемость в отрывном течении за внезапным расширением осесимметричного канала при докритических числах Рейнольдса

© В.М. Молочников, Н.Д. Пашкова

Институт энергетики и перспективных технологий, ФИЦ "Казанский научный центр РАН", Казань, Россия E-mail: vmolochnikov@mail.ru

Поступило в Редакцию 8 мая 2024 г. В окончательной редакции 6 июня 2024 г. Принято к публикации 6 июня 2024 г.

Представлены экспериментальные данные о перемежаемости течения за внезапным расширением осесимметричного канала при докритических числах Рейнольдса. Установлена зависимость коэффициента перемежаемости в зоне присоединения потока от числа Рейнольдса. Предложен возможный механизм периодической турбулизации потока в отрывной области.

Ключевые слова: внезапное расширение, визуализация течения, амплитуда колебаний скорости, турбулизация потока, перемежаемость, вихревые структуры.

DOI: 10.61011/PJTF.2024.19.58653.19985

Переход к турбулентности относится к наиболее сложным проблемам механики жидкости и газа. Несмотря на то что первые исследования этого явления были выполнены еще в конце XIX века [1,2], природа турбулентности остается одной из самых неразрешимых загадок классической механики. Более того, в научной среде отсутствует даже однозначное определение термина "турбулентность" [3]. По этой причине авторы большинства классических работ, посвященных этой проблеме, предпочитают ограничиваться перечислением свойств, которыми обладают турбулентные потоки [4,5]. Одним из таких свойств является перемежаемость — чередование участков ламинарного и турбулентного течения на осциллограммах скорости (компонент скорости) [6]. Перемежаемость иногда рассматривается в качестве одного из последовательных этапов процесса перехода от ламинарного к турбулентному режиму течения [6]. Для ее количественной характеристики Эммонсом [7] впервые введен коэффициент перемежаемости у — доля времени, в течение которого поток является турбулентным.

Наиболее изученным на данный момент примером возникновения пространственно-временной перемежаемости при переходе к турбулентности является течение в круглой трубе. Перемежаемость в этом случае отражает возникновение турбулентности в виде локализованных пятен. Рейнольдс называл их "вспышками" [8]. Перемежаемость наблюдалась и в ранних исследованиях Ротта [9]. Позже турбулентные пятна были разделены на два типа: турбулентные порывы (в англоязычной литературе "паффы") и турбулентные пробки [10]. Формированию и эволюции этих структур в последние годы посвящено значительное количество экспериментальных [11] и численных [12] исследований. Измерение перемежаемости часто используется для дополнительной детализации ламинарно-турбулентного перехода в сдвиговом слое на границе отрывного пузыря, формируемого вблизи передней кромки пластины или крылового профиля [13,14].

В настоящей работе представлены результаты экспериментального исследования отрывного течения за осесимметричным внезапным расширением круглой трубы (рис. 1, а). Числа Рейнольдса, рассчитанные по среднерасходной скорости и диаметру подводящей трубы, составляли Re = 1407, 1455, 1540, 1640 и 1700. При этом среднерасходная скорость потока U_b, которая вычислялась делением соответствующего объемного расхода рабочей жидкости на площадь сечения канала, принимала значения $U_b = 0.635$, 0.656, 0.695, 0.74 и 0.767 m/s соответственно. Величина объемного расхода определялась по результатам измерения времени заполнения мерной емкости. В этих режимах в области присоединения потока обнаружен перемежающийся характер течения. Перед расширением располагался прямой участок трубы с внутренним диаметром $d = 17.4 \,\mathrm{mm}$ и длиной L = 920 mm. Степень расширения трубы $(D/d)^2$ составляла 2.78. Здесь D = 29 mm — диаметр трубы после расширения. В качестве рабочей жидкости использовался водный раствор глицерина. Температура рабочей жидкости и ее кинематическая вязкость контролировались перед каждым опытом. Расход жидкости через рабочий участок обеспечивался гидростатическим напором, создаваемым напорным баком с постоянным уровнем, и регулировался дозатором с системой сопел. Были выполнены визуализация течения в области внезапного расширения и измерение мгновенных векторных полей скорости при помощи техники SIV (smoke image velocimetry) [15]. В качестве трассеров использовались полиамидные частицы размером до 5 µm.

Результаты измерений показали, что при всех числах Рейнольдса, реализуемых в нашем эксперименте, перед внезапным расширением формировалось развитое ламинарное течение с профилем скорости, соответствую-

Рис. 1. Схема эксперимента (*a*) и осциллограмма продольной компоненты скорости потока *u* на входе в расширяющийся канал при Re = 1640 (*b*).

Рис. 2. Стоп-кадры визуализации течения в области внезапного осесимметричного расширения. *а* — период ламинарного режима во всей области измерений; *b* — возникновение турбулентности в области присоединения потока (I). Направление потока слева направо.

щим решению Пуазейля. Однако используемой длины предвключенного участка трубы (L/d = 52.9) оказалось недостаточно, чтобы полностью погасить возмущения, формируемые на входе в этот участок. Поэтому перед расширением наблюдались остаточные низкочастотные, с частотой порядка f = 1 Hz (Sh $= f d/U_b \approx 0.023$), колебания продольной компоненты скорости потока, относительная амплитуда которых на оси канала изменялась от $A_U/U_c \approx 0.11$ при Re = 1407 до $A_U/U_c \approx 0.157$ при Re = 1700. Здесь $U_c = U_c(x)$ — осредненная по времени скорость потока на оси канала. Здесь осреднение также проводилось примерно по 30 периодам колебаний скорости. Пример осциллограммы скорости на оси канала при Re = 1640, на которой видны такие колебания, показан на рис. 1, *b*.

В результате визуализации течения (отслеживание траекторий движения трассеров в плоскости лазерного ножа) было установлено, что при каждом фиксированном значении числа Рейнольдса за внезапным расширением периодически происходит потеря устойчивости течения и его локальная турбулизация (рис. 2). Потеря устойчивости начинается в сдвиговом слое в области присоединения потока и быстро распространяется вверх по течению. Область I, в которой наблюдается периодическая локальная турбулизация потока с образованием разномасштабных вихревых структур, занимающих практически все поперечное сечение канала, показана на рис. 2, *b*. Видно, что в одном и том же опыте существуют промежутки времени, в которых в области I вихревое движение жидкости отсутствует (рис. 2, *a*). При Re = 1640 и 1700 область турбулизации потока достигает приблизительно середины рециркуляционной зоны (x/d = 5-5.5). С уменьшением числа Рейнольдса потеря устойчивости также начинается в окрестности зоны присоединения потока, однако протяженность области турбулизации вверх по потоку снижается. Таким образом, в зоне потери устойчивости наблюдается чередование по времени ламинарных (рис. 2, *a*) и турбулентных (рис. 2, *b*) состояний потока.

Осциллограммы компонент скорости потока на оси симметрии канала в этой зоне, полученные методом SIV на относительно продолжительном временном интервале (примерно 30 периодов колебаний скорости потока в сечении канала перед внезапным расширением), подтвердили перемежающийся характер течения для всех исследуемых чисел Рейнольдса. В качестве примера фрагмент осциллограмм продольной и и поперечной v компонент скорости при Re = 1640 на оси канала в области присоединения потока для x/d = 10.3 приведен на рис. 3, а. Начало координат расположено в начальном сечении внезапного расширения (рис. 1, а). Значения компонент скорости и ее среднеквадратичных пульсаций нормировались на среднерасходную скорость потока U_b в подводящем канале. Частота съемки в методе SIV составляла 2900 Hz при Re = 1407 и 1455; 3300 Hz при Re = 1540; 3500 Hz при Re = 1640; 4000 Hz при Re = 1700. Как оказалось, продолжительность отдельных периодов возникновения турбулентных состояний потока при фиксированном числе Рейнольдса изменяется в течение времени наблюдений. По осциллограммам и с использованием методики [16] был рассчитан коэффициент перемежаемости у. Результаты показали, что с увеличением числа Рейнольдса значение у возрастает (рис. 3, b). Монотонно возрастает и средняя частота f_{turb} возникновения периодов турбулентного режима течения от $f_{turb} \approx 0.6 \,\text{Hz} \,(\text{Sh} \approx 0.016)$ при Re = 1407 до $f_{turb} \approx 1.2$ Hz (Sh ≈ 0.027) при Re = 1700.

Рис. 3. a — осциллограммы продольной u/U_b (1) и поперечной v/U_b (2) компонент скорости потока при Re = 1640, x/d = 10.3, y/d = 0; b — зависимость коэффициента перемежаемости γ в области присоединения потока от числа Рейнольдса (x/d = 10.3, y/d = 0).

С ростом числа Рейнольдса в области перемежающегося характера течения амплитуда пульсаций продольной компоненты скорости потока A_U/U_c (x/d = 10.3) увеличивается примерно в 1.3 раза при Re = 1407 и 1455 и примерно в 6.5 раза при Re = 1640 и 1700. Таким образом, отрыв потока выступает в качестве своеобразного усилителя пульсаций скорости.

Механизм возникновения перемежаемости течения в области присоединения потока за внезапным расширением канала можно представить следующим образом.

Низкочастотные колебания скорости во входном сечении внезапного расширения канала распространяются на всю область отрыва потока и, соответственно, приводят к раскачиванию сдвигового слоя с частотой этих колебаний. Кроме того, в сдвиговом слое развивается конвективная неустойчивость в виде вихрей Кельвина-Гельмгольца. При раскачивании слоя смешения за счет возмущений на входе в зоне присоединения потока в фазе его торможения создаются условия для максимального нарастания конвективной неустойчивости. При достижении некоторого значения числа Рейнольдса это приводит к избирательному росту указанной неустойчивости, наибольшему в области максимального неблагоприятного продольного градиента давления, который имеет место в окрестности точки присоединения потока. В результате в этой области возникает перемежающийся характер течения — чередование участков ламинарного и турбулентного течения, наблюдаемое на осциллограммах скорости потока. На возможность подобного механизма применительно к сдвиговому слою на границе ламинарного отрывного пузыря, формируемого вблизи передней кромки профиля крыла (пластины), указывают и авторы работы [13].

В пользу реализации такого сценария свидетельствует тот факт, что в области перемежаемости средняя частота возникновения периодов турбулентного режима течения близка к частоте колебаний скорости потока на входе в область внезапного расширения. По-видимому, торможение потока на входе во внезапное расширение приводит к появлению локального по времени дополнительного неблагоприятного градиента давления в области присоединения потока. При этом создаются условия для максимального нарастания конвективной неустойчивости. В следующей за этим фазе ускорения восстанавливается ламинарный режим течения. Подобная закономерность установлена авторами экспериментально при исследовании турбулизации потока в круглой трубе при наличии вынужденных колебаний расхода [17]. Кроме того, справедливость предложенного механизма подтверждается данными дополнительных экспериментов авторов, в которых длина участка прямой трубы перед внезапным расширением была увеличена до L/d = 180. Результаты измерений показали, что при таком значении L/d в исследуемом диапазоне чисел Рейнольдса низкочастотные колебания скорости потока перед внезапным расширением отсутствуют, соответственно перемежаемость в области присоединения потока также не наблюдается.

Полученные новые опытные данные о возникновении перемежаемости в области присоединения потока за внезапным расширением осесимметричного канала могут быть полезны для более глубокого понимания механизмов ламинарно-турбулентного перехода в отрывных течениях. Кроме того, их можно использовать при верификации численных методов расчета подобных течений.

Благодарности

Авторы выражают признательность В.В. Леманову (Институт теплофизики им. С.С. Кутателадзе СО РАН) за полезные обсуждения результатов представленного в работе исследования.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] O. Reynolds, in Notices of the Proceedings at the Meetings of the Members of the Royal Institution of Great Britain (London, 1887), vol. XI, p. 44.
- J. Thomson, Proc. R. Soc., 28, 114 (1878).
 DOI: 10.1098/rspl.1878.0100
- [3] P.A. Davidson, *Turbulence. An introduction for scientists and engineers* (Oxford University Press, Oxford, USA, 2015), p. 57.
- [4] V. Uruba, Turbulence handbook for experimental fluid mechanics professionals (Dantec Dynamics, Skovlunde, 2012), p. 23–25.
- [5] Г. Шлихтинг, *Теория пограничного слоя* (Наука, М., 1969), с. 425–508.
- [6] J.M. McDonough, Introductory lectures on turbulence: physics, mathematics and modeling (University of Kentucky, 2007), p. 5, 9.
- [7] H.W. Emmons, J. Aeronaut. Sci., 18 (7), 490 (1951).
 DOI: 10.2514/8.2010
- [8] O. Reynolds, Phil. Trans. R. Soc. Lond. A, **174**, 935 (1883).
 DOI: 10.1098/rstl.1883.0029
- [9] J. Rotta, Ing. Arch., 24 (4), 258 (1956).DOI: 10.1007/BF00536526
- [10] I.J. Wygnanski, F.H. Champagne, J. Fluid Mech., 59 (2), 281 (1973). DOI: 10.1017/S0022112073001576
- [11] M. Avila, D. Barkley, B. Hof, Annu. Rev. Fluid Mech., 55, 575 (2023). DOI: 10.1146/annurev-fluid-120720-025957
- [12] Н.В. Никитин, Изв. РАН. Механика жидкости и газа, № 1, 32 (2021). DOI: 10.31857/S0568528121010096 [N.V. Nikitin, Fluid Dyn., 56 (1), 31 (2021). DOI: 10.1134/S0015462821010092].
- [13] E. Malkiel, R.E. Mayle, J. Turbomach., 118 (4), 752 (1996).
 DOI: 10.1115/1.2840931
- [14] A. Samson, K. Naicker, S.S. Diwan, Phys. Fluids, 33 (9), 094106 (2021). DOI: 10.1063/5.0060330
- [15] Н.И. Михеев, Н.С. Душин, ПТЭ, № 6, 114 (2016).
 [N.I. Mikheev, N.S. Dushin, Instrum. Exp. Tech., 59 (6), 882 (2016). DOI: 10.1134/S0020441216060063].
- [16] C.L. Kuan, T. Wang, Exp. Therm. Fluid Sci., 3 (2), 157 (1990). DOI: 10.1016/0894-1777(90)90084-K
- [17] V.M. Molochnikov, N.I. Mikheev, A.N. Mikheev, A.A. Paereliy, O.A. Dushina, Int. J. Heat Fluid Flow, 96, 108984 (2022). DOI: 10.1016/j.ijheatfluidflow.2022.108984