10,03

Влияние атомной массы и изотопной разупорядоченности на фононные спектры кристаллов изотопно-обогащенного германия

© Т.В. Котерева¹, В.А. Гавва¹, В.А. Липский¹, А.В. Нежданов², В.Г. Плотниченко³, А.Д. Буланов^{1,2}

¹ Институт химии высокочистых веществ им. Г.Г. Девятых РАН,

Нижний Новгород, Россия

² Нижегородский государственный университет им. Н.И. Лобачевского,

Нижний Новгород, Россия

³ Научный центр волоконной оптики им. Е.М. Дианова РАН,

Москва, Россия

E-mail: kotereva@ihps-nnov.ru

Поступила в Редакцию 23 апреля 2024 г. В окончательной редакции 23 апреля 2024 г. Принята к публикации 20 июня 2024 г.

Изучено влияние средней атомной массы и изотопной разупорядоченности на фононные спектры решеточного ИК-поглощения и комбинационного рассеяния света (КРС) для монокристаллов изотопов германия ⁷²Ge, ⁷⁴Ge и ⁷³Ge в сравнении с ⁷²Ge_{0.5}⁷⁴Ge_{0.5}. При темпратуре 15 К в инфракрасных (ИК) спектрах наблюдались различия в ширине и положении полос двухфононного поглощения монокристаллического германия ⁷²Ge_{0.5}⁷⁴Ge_{0.5} и ⁷³Ge. В спектрах КРС первого и второго порядков найден сдвиг частот фононов в коротковолновую область, связанный с уменьшением средней атомной массы монокристаллов германия.

Ключевые слова: элементарные полупроводники, стабильные изотопы германия, изотопные эффекты, комбинационное рассеяние света, ИК-поглощение.

DOI: 10.61011/FTT.2024.08.58611.97

1. Введение

Получение, изучение свойств и практическое применение веществ с высокой степенью химической и изотопной чистоты является одним из динамично развивающихся направлений фундаментальных и прикладных исследований. Особый интерес вызывает получение кристаллических твердых полупроводников и изучение влияния изотопного состава на их свойства. Одним из перспективных объектов для этих исследований является германий. Разработанная недавно гидридная технология получения стабильных изотопов германия с высокой степенью химической и изотопной чистоты [1] позволила получать образцы в количестве, достаточном для проведения исследований. Принципиальная возможность получения германия в виде монокристаллов с высокой химической чистотой и наличие пяти стабильных изотопов ⁷⁰Ge (20.57%), ⁷²Ge (27.45%), ⁷³Ge (7.75%), ⁷⁴Ge (36.50%), ⁷⁶Ge (7.73%) [2] позволила использовать его в качестве объекта для получения фундаментальных знаний о влиянии изотопного состава на свойства полупроводников.

Влияние изотопного состава на свойства кристаллов связано с двумя факторами: изменением средней атомной массы и изотопной разупорядоченностью. Изменение атомной массы приводит к изменению параметра решетки кристаллов и деформации фононного спектра, который, в свою очередь, может оказывать влияние на электронные свойства твердых тел через механизм электрон-фононного взаимодействия. Изучение зависимости ряда свойств от атомной массы изотопа Ge показало, что в большинстве случаев она хорошо описывается в рамках модели виртуального кристалла [3,4]. Изотопический беспорядок оказывает сильное влияние на теплопроводность [5] и термоэдс [6] германия в области низких температур.

Хорошо разработанными методами изучения изотопных эффектов в фононном спектре кристаллов являются комбинационное рассеяние света (КРС) и абсорбционная инфракрасная (ИК) спектроскопия. Ранее эти методы использованы для изучения колебательных спектров кристаллов изотопов Ge и Si в работах [7,8].

Спектры ИК-поглощения монокристаллов изотопов германия ⁷⁰Ge и ⁷⁴Ge в области 520-1000 сm⁻¹ изучены в [9]. Наблюдался сдвиг полос в длинноволновую область с увеличением атомной массы изотопа. Показано влияние легирующей примеси на коэффициент ослабления в области поглощения кристаллической решетки. Табличные данные о положении максимумов полос ИКпоглощения кристаллической решетки изотопов ⁷²Ge, ⁷³Ge, ⁷⁴Ge, ⁷⁶Ge получены в [10]. В [11] исследовалось влияние изотопного беспорядка на спектры ИКпоглощения германия с использованием образцов ⁷⁶Ge и Ge с природным изотопным составом. Изучаемые образцы различались как по средней атомной массе, так и по степени изотопной разупорядоченности, что затрудняет выделение влияния каждого фактора. Таким образом, выявление эффектов, вызванных только изо-

Образец	natGe	⁷² Ge	⁷³ Ge	⁷⁴ Ge	$^{72}\text{Ge}_{0.5}{}^{74}\text{Ge}_{0.5}$
Средняя атомная масса Фактор изотопической разупорядоченности g	72.605 5.87 \cdot 10 ⁻⁴	72.0002 5.27 \cdot 10 ⁻⁸	$73.0002 \\ 1.93 \cdot 10^{-7}$	$73.9991 \\ 3.53 \cdot 10^{-7}$	$72.9999 \\ 1.88 \cdot 10^{-4}$

Таблица 1. Значения средней атомной массы и фактора изотопической разупорядоченности образцов германия

топным беспорядком, возможно при сравнении спектров образцов с одинаковой атомной массой.

Изучению комбинационного рассеяния света в кристаллах германия посвящен ряд работ. В [12] исследованы спектры КРС первого порядка для природного германия, его изотопов ⁷⁰Ge (95.9%), ⁷³Ge, ⁷⁴Ge (95.8%), ⁷⁶Ge (86.0%) и сплава, содержащего 42.7% ⁷⁰Ge и 48% ⁷⁶Gе при температуре 10 К. Установлено, что величина сдвига увеличивается с уменьшением атомной массы изотопа. Обнаружен дополнительный сдвиг и уширение полосы КРС при температуре 77 К для изотопно разупорядоченных образцов природного германия и сплава ⁷⁰Ge⁷⁶Ge. В работе [13] проведено сравнение формы полосы КРС изотопа германия ⁷⁰Ge, природного германия и сплава ⁷⁰Ge⁷⁶Ge. Для кристаллов природного Ge и сплава ⁷⁰Ge⁷⁶Ge наблюдалось дополнительное рассеяние в низкоэнергетической части основной полосы КРС, связанное с изотопным беспорядком, об уширении линий не сообщалось.

В [14] изучен спектр КРС второго порядка для германия природного изотопного состава. Установлена корреляция спектра КРС с плотностью фононных состояний, измеренной методом нейтронного рассеяния [15].

Исследование фононных спектров германия с различным значением фактора изотопной разупорядоченности проводился авторами многих работ [12,13,16–19]. Однако результаты сравнительного анализа изотопно разупорядоченного кристалла с образцом германия с такой же средней атомной массой редко встречаются в литературе.

В [16,17] представлены сравнительные данные о влиянии изотопного состава германия на спектр КРС второго порядка для изотопа ⁷⁰Ge (95.9%), сплава ⁷⁰Ge_{0.5}⁷⁶Ge_{0.5} и германия с природным изотопным составом. Сведения о спектрах КРС второго порядка для других изотопов германия в литературе отсутствуют.

Цель настоящей работы — проведение сравнительного анализа влияния изотопной разупорядоченности и средней атомной массы на фононные спектры первого и второго порядка обогащенных кристаллов германия с более высокой степенью обогащения, чем ранее исследованные образцы.

Для исследований влияния средней атомной массы были использованы образцы монокристаллов изотопов германия ⁷²Ge, ⁷³Ge и ⁷⁴Ge с более высокой степенью изотопного обогащения (более 99.9%). Для сравнительного изучения вклада изотопной разупорядоченности впервые был выращен монокристалл сплава $^{72}Ge_{0.5}{}^{74}Ge_{0.5},$ имеющий практически одинаковую (различие ~ 0.0004 at.%) с ^{73}Ge среднюю атомную массу.

2. Экспериментальная часть

2.1. Характеристика исследуемых образцов изотопов германия

Изотопы ⁷²Ge, ⁷³Ge, ⁷⁴Ge получены гидридным методом, подробно описанным в [1]. Для получения образца 72 Ge_{0.5} ⁷⁴Ge_{0.5} сплавляли эквимолярные количества изотопов ⁷²Ge и ⁷⁴Ge в тигле из высокочистого кварцевого стекла с покрытием из аморфного диоксида кремния. После расплавления загрузки ее выдерживали в течение 1 h в переменном электромагнитном поле индуктора для гомогенизации расплава. Затем расплав подвергали направленной кристаллизации методом Бриджмена.

Для изучения спектров ИК-поглощения и КРС из средней части монокристаллов вырезали плоскопараллельные пластины толщиной 1.3 mm. Обе стороны пластин были отполированы.

Содержание химических примесей в изотопно обогащенном германии по данным масс-спектрометрического анализа — менее $10^{-4}-10^{-6}$ wt%. Методом масс-спектрометрии с индуктивно-связанной плазмой (ИСП-МС) проведен анализ изотопного состава исследуемых образцов германия.

Изотопная разупорядоченность характеризовалась величиной фактора g, который определялся по формуле (1) [17]:

$$g = \sum_{i} C_{i} [(M_{i} - M_{av})/M_{av}]^{2},$$
 (1)

где M_i и C_i — масса *i*-го изотопа и его концентрация.

По данным об изотопном составе исследуемых образцов рассчитаны их средняя атомная масса $M_{\rm av}$ и фактор изотопической разупорядоченности g (таблица 1).

Видно, что значение фактора g для сплава $^{72}\text{Ge}_{0.5}$ $^{74}\text{Ge}_{0.5}$ примерно на 3 порядка выше, чем для чистых изотопов.

2.2. Регистрация спектров ИК-пропускания и КРС германия

ИК-спектры пропускания регистрировали в области $200-700 \,\mathrm{cm}^{-1}$ при температуре 298 и 15 К при помощи

ИК-Фурье-спектрометра IFS-113v, оснащенного детектором DTGS с окном из полиэтилена. Разрешение составляло 0.5 cm⁻¹. В качестве делителя луча использовалась лавсановая пленка. Источник излучения — глобар (стержень из SiC). Для охлаждения образцов до температуры 15 К использовался криостат-рефрижератор замкнутого цикла RGD 210 фирмы Leybold с окнами из КРС-5. Число накопленных сканов для последующего усреднения составляло 250.

Спектры КРС образцов монокристаллического изотопно обогащенного германия были получены с использованием комплекса ИНТЕГРА Спектра (NT-MDT, Россия) при комнатной температуре 295 К в схеме на отражение. Возбуждение осуществлялось излучением НеNe-лазера с длиной волны 632.8 nm. Излучение фокусировалось 100-кратным объективом с апертурой NA = 0.95. Мощность несфокусированного лазерного излучения, измеряемая с помощью кремниевого фотодетектора 11PD100-Si (Standa Ltd), составляла 1.9 mW. Детектирование спектров КРС проводилось охлаждаемой ПЗС-камерой ANDORTM в диапазоне 150–1000 cm⁻¹ с разрешением 0.9 cm⁻¹.

3. Результаты и обсуждение

3.1. Спектры ИК-пропускания

Результаты сравнительного исследования ИК-спектров в области фононных колебаний решетки изотопов германия ⁷²Ge, ⁷³Ge, ⁷⁴Ge и сплава ⁷²Ge_{0.5}⁷⁴Ge_{0.5} представлены на рис. 1. Значения частот фононов для изотопов ⁷²Ge, ⁷³Ge и ⁷⁴Ge увеличиваются с уменьшением их средней атомной массы. Зависимость частоты фононов от атомной массы хорошо описывается в рамках модели виртуального кристалла. Сопоставление ИК-спектров ⁷³Ge и сплава ⁷²Ge_{0.5}⁷⁴Ge_{0.5} показало, что положение и полуширина полос ИК-поглощения совпадают в пределах погрешности эксперимента, которая составила < 0.1 cm⁻¹, т.е. влияние фактора изотопной разупорядоченности на ИК-поглощение германия при комнатной температуре не обнаружено при разрешении 0.5 cm⁻¹.

В ИК-спектрах монокристаллов ⁷³Ge и сплава ⁷²Ge_{0.5}⁷⁴Ge_{0.5}, полученных при низкой температуре (15К), можно заметить, что структура некоторых полос в области двухфононного поглощения различная (рис. 2). В области поглощения фононов $(TO + TA)_x$, $(TO + TA)_{L}$ при 350 cm⁻¹ положения максимумов в пределах погрешности эксперимента совпадают, наблюдается уширение в изотопно разупорядоченном $^{72}\text{Ge}_{0.5}$ ⁷⁴Ge $_{0.5}$ по сравнению с изотопно чистым ⁷³Ge. Измеренное в местах, указанных стрелками на рис. 2. значение уширения составило 1.5-3.5 cm⁻¹. В области поглощения фононов $(LO + LA)_K$, $(LO + LA)_L$ при $500-400\,{\rm cm^{-1}}$ различий в форме полос не выявлено. Это согласуется с результатами работы [11], где показано, что дополнительное уширение линий, вызванное изотопным беспорядком, сильно зависит от энергии

Рис. 1. ИК-спектры пропускания монокристаллов изотопов германия при T = 298 К: кривая $1 - {}^{72}$ Ge, $2 - {}^{73}$ Ge, $3 - {}^{72}$ Ge_{0.5} 74 Ge_{0.5}, $4 - {}^{74}$ Ge. Отнесение фононов [11]. Спектры сдвинуты по оси ординат для удобства.

Рис. 2. ИК-спектры пропускания ⁷³Ge и сплава ⁷²Ge_{0.5}⁷⁴Ge_{0.5} при T = 15 К. Кривая $I - {}^{72}$ Ge_{0.5}⁷⁴Ge_{0.5}, $2 - {}^{73}$ Ge.

фононов; и только поперечные-оптические фононы в точках L, K, W и X в зоне Бриллюэна подвергаются значительному влиянию изотопного беспорядка.

Сдвиг полос, связанный с изотопным беспорядком, может больше проявляться в длинноволновой части спектра, как продемонстрировано в [11]; это подтверждается нашими экспериментальными данными. Сдвиг частоты в область коротких длин волн в 72 Ge_{0.5} 74 Ge_{0.5} по сравнению с 73 Ge был определен нами из ИК-спектров для фонона (L + TA)_Z, отнесенного по данным [11] (и (L + TA)_{W,X} по данным [15,20]), при 320 сm⁻¹ составил 2.5 ± 0.5 сm⁻¹. Это значение превышает рассчитанный в [21] вклад от ангармоничности в природном германии 0.08 сm⁻¹ при температуре 10 К, следовательно, можно предполагать, что природа сдвига связана с влиянием изотопной разупорядоченности. Следует отметить, что точность определения максимума была

Рис. 3. *a*) Спектр КРС первого порядка изотопов германия ⁷²Ge, ⁷³Ge, ⁷⁴Ge и сплава ⁷²Ge_{0.5}⁷⁴Ge_{0.5}. Кривая $1 - {}^{74}$ Ge, $2 - {}^{72}$ Ge_{0.5}⁷⁴Ge_{0.5}, $3 - {}^{73}$ Ge, $4 - {}^{72}$ Ge; *b*) сравнение спектров комбинационного рассеяния ⁷³Ge и разупорядоченного образца сплава 72 Ge_{0.5}⁷⁴Ge_{0.5}; *c*) частота комбинационного рассеяния как функция средней атомной массы, измеренная при 298 K, для изотопически чистых и разупорядоченных образцов Ge.

невысока у фонона $(L + TA)_Z$ из-за уровня шума и слабой интенсивности полос поглощения.

3.2. Спектры комбинационного рассеяния

Для кристаллов с алмазоподобной кристаллической решеткой, к которым относится и германий, характерно трехкратное вырождение состояний фононов в центре зоны Бриллюэна ($\mathbf{k} = 0$), которые активны в спектрах комбинационного рассеяния. На рис. 3 представлен спектр КРС первого порядка для образцов монокристаллических изотопов германия ⁷²Ge, ⁷³Ge, ⁷⁴Ge и сплава ⁷²Ge_{0.5}⁷⁴Ge_{0.5}. Для получения информации о частоте максимума и полуширине полос проводилась нормировка интенсивности к единице и аппроксимация линии функцией Лоренца. Погрешность определения частоты и полуширины при такой обработке спектров не превышали 0.01 и 0.1 сm⁻¹ соответственно. Точность положения пиков рамановских полос определялась инструментальной погрешностью прибора и составила 0.3 сm⁻¹.

С уменьшением средней атомной массы изотопов наблюдался сдвиг полос КРС первого порядка в высокочастотную область. Зависимость положения максимумов полос от атомной массы хорошо описывается выражением $\omega \propto M^{-1/2}$. Известно, что сдвиг частот, обусловленный изотопной разупорядоченностью, пропорционален параметру *g* согласно выражению [12]:

$$\Delta \omega = g \, \frac{\omega^2}{12} \int_0^\infty \frac{1}{(\omega^2 - \omega_i^2)} \, N_{\rm d}(\omega_i) d\omega_i, \qquad (2)$$

где ω — частота оптического фонона, $N_{\rm d}(\omega_i)$ — функция плотности состояний.

Значения *g* для образца природного Ge составляет 5.87 · 10⁻⁴, для сплава ⁷²Ge_{0.5}⁷⁴Ge_{0.5} — 1.88 · 10⁻⁴. Величина сдвига в спектре КРС для образца природного изотопного состава согласно [12] и нашим экспериментальным данным [7] составила ~ 0.4 сm⁻¹, тогда сдвиг частоты КР оптического фонона в точке Г, вызванный изотопным беспорядком, должен быть в сплаве в 3.1 раза

A	Положение максимума полос фононов, ст ⁻¹					
Фононы	⁷² Ge	$^{72}\text{Ge}_{0.5}{}^{74}\text{Ge}_{0.5}$	⁷³ Ge	⁷⁴ Ge		
2TA(X)	160.8	159.4	159.4	158.5		
2TA(W-K, L-W)	230.2	228.0	228.0	226.9		
$TO(\Gamma)$	301.3	299.4	299.4	297.6		
TO(X) + TA(X)	353.7	351.7	351.6	350.3		
2LA(K-L)	378.4	378.3	378.3	377.7		
2TO(W)	552.7	547.8	550.1	545.5		
2TO(L)	574.9	570.0	570.6	567.3		
$2O(\Gamma)$	596.7	593.6	593.2	588.1		

Таблица 2. Значения максимумов волновых чисел фононов в спектрах КРС (рис. 4) изотопов германия и сплава 72 Ge_{0.5} 74 Ge_{0.5}. Отнесение фононов [17]

меньше, чем в природном Ge, т.е. 0.13 cm^{-1} . Разница в положении максимума на рис. 3 в спектрах образцов ⁷³Ge и сплава ⁷²Ge_{0.5}⁷⁴Ge_{0.5}, имеющих одинаковую среднюю массу, в нашей работе составила 0.07 cm^{-1} , что ниже погрешности эксперимента в 0.15 cm^{-1} .

Полуширина полос фононов в Ge определяется их временем жизни (ангармонический распад на два или более низкоэнергетических фононов) и уширением, связанным с изотопным беспорядком. Вклад в полуширину линии, возникающий из-за изотопного беспорядка, по данным [15] на два порядка меньше, чем уширение из-за ангармонического рассеяния для фононов в точке Г, поскольку плотность фононных состояний приближается к нулю в центре зоны. Для уширения полосы первого порядка, вызванного изотопной разупорядоченностью, увеличение полуширины в сплаве должно составлять $\sim 0.005 \, {\rm cm}^{-1}$ [10].

$$\Gamma_{\rm isotope} = g \, \frac{\pi \omega^2}{12} \, N_{\rm d}(\omega), \tag{3}$$

где g — фактор разупорядоченности, ω — частота оптического фонона, $N_{\rm d}(\omega) = D(\omega)$ — функция плотности состояний.

Спектры КР первого порядка, образцов изотопнообогащенного монокристаллического Ge, представленные на рис. 3, показали, что зависимость ширины линий КРС от средней атомной массы в области комнатных температур не обнаруживается, в отличие от наблюдавшейся в работе [12] при температуре 10 К. Найденное нами уширение полосы КРС для образца сплава $^{72}\text{Ge}_{0.5}$ ⁷⁴Ge_{0.5}, измеренное относительно моноизотопного 73 Ge, составило $0.33 \,\mathrm{cm}^{-1}$. Это значение превышает рассчитанное нами и предсказанное в [12], и может включать, кроме добавки, связанной с ангармонизмом, часть от изотопной разнородности образцов, а также быть вызвано различными измерительными эффектами, такими как влияние толщины слоя оксидной пленки, длина волны и глубина проникновения лазера, рассмотренными в [12]. Поэтому более точно определить механизмы уширения фононных линий оптической зоны в нашем эксперименте не представляется возможным.

Рис. 4. *а*) Спектр КРС второго порядка. Плотность состояний обертонов для оптических ветвей находится в области $520-600 \text{ cm}^{-1}$ (врезка). Наблюдаемые положения пиков перечислены в таблице 2. Кривая $1 - {}^{74}\text{Ge}, 2 - {}^{72}\text{Ge}, 3 - {}^{73}\text{Ge}, 4 - {}^{72}\text{Ge}_{0.5}{}^{74}\text{Ge}_{0.5}$.

Изучены спектры КРС 2-го порядка для монокристаллов изотопов германия, представленные на рис. 4, связанные с рассеянием фотонов посредством двухфононных процессов. В таких процессах образуются либо два фонона с одинаковыми, но противоположно направленными волновыми векторами, либо образуется один фонон, а другой при этом уничтожается. Поскольку двухфононные процессы происходят гораздо реже, чем однофононные, интенсивность обертонов второго порядка в спектре КРС в десятки раз слабее, чем у основной полосы. Из-за этого ухудшается соотношение сигнал/шум, что осложняет наблюдение и интерпретацию спектров второго порядка. Кроме того, многие полосы представляют собой комбинацию частот нескольких двухфононных состояний, имеют сложную форму, что затрудняет выделение максимумов полос. Спектр КРС 2-го порядка представлен на рис. 4.

На рис. 4 показаны частоты обертона 2-го порядка в спектрах комбинационного рассеяния изотопно чистого Ge в сравнении с неупорядоченным германиевым сплавом, обозначения которых взяты из [17]. Как и для полос комбинационного рассеяния света 1-го порядка, в спектрах 2-го порядка наблюдается смещение максимумов полос в коротковолновую область с уменьшением атомной массы. Наибольшее отношение изотопного сдвига к изменению атомной массы $\Delta \omega / \Delta M$ наблюдалось в высокочастотной части спектра.

Для образцов ⁷³Ge и ⁷²Ge_{0.5}⁷⁴Ge_{0.5} с одинаковой атомной массой положение максимумов полос в пределах погрешности измерения совпадает, как показано на рис. 4 (врезка). Численные значения максимумов фононных частот для монокристаллов изотопов германия и сплава ⁷²Ge_{0.5}⁷⁴Ge_{0.5} представлены в таблице 2.

4. Заключение

Сравнительные исследования влияния изотопной разупорядоченности на спектры ИК-пропускания в области фононных колебаний решетки образцов монокристаллов изотопно чистых ⁷²Ge, ⁷³Ge, ⁷⁴Ge и сплава ⁷²Ge_{0.5} ⁷⁴Ge_{0.5} проводились при комнатной (298 K) и низкой (15 K) температурах. Показано, что при комнатной температуре зависимость частот фононов от атомной массы соответствовала модели виртуального кристалла, как $\omega \propto M^{-1/2}$, без изменения формы полос, таким образом, влияния изотопной разупорядоченности не было обнаружено.

В низкотемпературных ИК-спектрах пропускания, наблюдалось уширение полос двух фононного поглощения $(TO+TA)_x$ и $(TO+TA)_L$ в изотопно разупорядоченном монокристаллическом сплаве $^{72}\text{Ge}_{0.5}{}^{74}\text{Ge}_{0.5}$ по сравнению с изотопно чистым монокристаллом ^{73}Ge на $1.5-3.5\,\text{cm}^{-1}$. Найденный сдвиг частоты фонона $(L+TA)_Z$ на $2.5\pm0.5\,\text{cm}^{-1}$ в область коротких длин волн для $^{72}\text{Ge}_{0.5}{}^{74}\text{Ge}_{0.5}$ по отношению к ^{73}Ge предположительно связан с влиянием изотопного беспорядка.

Изучены спектры КРС первого и второго порядка для монокристаллов изотопов германия при T = 295 К. Определены частоты полос КРС, максимумы полос первого и второго порядков сдвигаются в зависимости от средней атомной массы образца. Наибольшее отношение величины изотопного сдвига к изменению атомной массы $\Delta \omega / \Delta M$ наблюдается в высокочастотной части спектра. Частоты фононных полос в спектрах комбинационного рассеяния первого и второго порядка в спектрах образцов ⁷³Ge и сплава ⁷²Ge_{0.5}⁷⁴Ge_{0.5} с одинаковой средней атомной массой совпадали в пределах погрешности измерений.

Финансирование работы

Работа выполнена при поддержке Министерства образования и науки РФ (№ ФФСР-2022-0003).

Конфликт интересов

Авторы заявляют, что у них нет конфликтов интересов.

Список литературы

- M.F. Churbanov, V.A. Gavva, A.D. Bulanov, N.V. Abrosimov, E.A. Kozyrev, I.A. Andryushchenko, V.A. Lipskii, S.A. Adamchik, O.Yu. Troshin, A.Yu. Lashkov, A.V. Gusev. Cryst. Res. Technol. 52, 4, 1700026 (2017).
- [2] M. Berglund, M.E. Wieser. Pure Appl. Chem. 83, 2, 397 (2011).
- [3] А.В. Гусев, А.М. Гибин, И.А. Андрющенко, В.А. Гавва, Е.А. Козырев. ФТТ 57, 9, 1868 (2015). [A.V. Gusev, A.M. Gibin, I.A. Andryushchenko, V.A. Gavva, E.A. Kozyrev. Phys. Solid State 57, 9, 1917 (2015)].
- [4] C. Parks, A.K. Ramdas, S. Rodriguez, K.M. Itoh, E.E. Haller. Phys. Rev. B 49, 20, 14244 (1994).
- [5] T.H. Geballe, G.W. Hull. Phys. Rev. 110, 3, 773 (1958).
- [6] A.V. Inyushkin, A.N. Taldenkov, V.I. Ozhogin, K.M. Itoh, E.E. Haller. Phys. Rev. B 68, 15, 153203 (2003).
- [7] V.A. Lipskiy, V.O. Nazaryants, T.V. Kotereva, A.D. Bulanov, V.A. Gavva, V.V. Koltashev, M.F. Churbanov, V.G. Plotnichenko. Appl. Opt. 58, 27, 7489 (2019).
- [8] V.G. Plotnichenko, V.O. Nazaryants, E.B. Kryukova, V.V. Koltashev, V.O. Sokolov, A.V. Gusev, V.A. Gavva, T.V. Kotereva, M.F. Churbanov, E.M. Dianov. Appl. Opt. 50, 23, 4633 (2011).
- [9] И.А. Каплунов, В.Е. Рогалин, М.Ю. Гавалян. Оптика и спектроскопия **118**, *2*, 254 (2015). [I.A. Kaplunov, V.E. Rogalin, M.Yu. Gavalyan. Opt. Spectrosc. **118**, *2*, 240 (2015)].
- [10] В.А. Гавва, Т.В. Котерева, В.А. Липский, А.В. Нежданов. Оптика и спектроскопия **120**, *2*, 266 (2016). [V.A. Gavva, T.V. Kotereva, V.A. Lipskiy, A.V. Nezhdanov. Opt. Spectrosc. **120**, *2*, 255 (2016)].
- [11] H.D. Fuchs, C.H. Grein, M. Bauer, M. Cardona. Phys. Rev. B 45, 8, 4065 (1992).
- [12] J.M. Zhang, M. Giehler, A. Göbel, T. Ruf, M. Cardona, E.E. Haller, K. Itoh. Rev. B 57, 3, 1348 (1998).
- [13] H.D. Fuchs, P. Etchegoin, M. Cardona, K. Itoh, E.E. Haller. Phys. Rev. Lett. 70, 11, 1715 (1993).
- [14] B.A. Weinstein, M. Cardona. Phys. Rev. B 7, 6, 2545 (1973).
- [15] G. Nilsson, G. Nelin. Phys. Rev. B 3, 2, 364 (1971).
- [16] P. Etchegoin, H.D. Fuchs, J. Weber, M. Cardona, L. Pintschovius, N. Pyka, K. Itoh, E.E. Haller. Phys. Rev. B 48, 17, 12661 (1993).
- [17] H.D. Fuchs, C.H. Grein, C. Thomsen, M. Cardona, W.L. Hansen, E.E. Haller, K. Itoh. Phys. Rev. B 43, 6, 4835 (1991).
- [18] H.D. Fuchs, C.H. Grein, R.I. Devlen, J. Kuhl, M. Cardona. Phys. L Rev. 44, 16–15, 8633 (1991).
- [19] M. Cardona, P. Etchegoin, H.D. Fuchs, P. Molinas-Mata. J. Phys.: Condens. Matter 5, 33A, A61 (1993).
- [20] F.A. Johnson, R. Loudon. Proc. R. Soc. London, Ser. A 281, 1385, 274 (1964).
- [21] R.A. Cowley. J. Phys. (Paris) Colloq. 26, 659 (1965).
- Редактор Е.В. Толстякова