08,10

Наноструктурирование поверхности эпитаксиальных пленок Bi₂Te₃ при ионно-плазменной обработке

© С.П. Зимин^{1,2}, И.И. Амиров¹, В.В. Наумов¹, М.С. Тиванов³, Л.С. Ляшенко³, О.В. Королик³, Е. Abramof⁴, Р.Н.О. Rappl⁴

¹ Ярославский филиал Физико-технологического института им. К.А. Валиева РАН,

Ярославль, Россия

² Ярославский государственный университет им. П.Г. Демидова,

Ярославль, Россия

³ Белорусский государственный университет,

Минск, Беларусь

⁴ Materials and plasma research and development group (GPDMP), National Institute for Space Research (INPE), São José dos Campos, 12227-010, Brazil

E-mail: zimin@uniyar.ac.ru

Поступила в Редакцию 20 мая 2024 г. В окончательной редакции 6 июня 2024 г. Принята к публикации 10 июня 2024 г.

Исследовано влияние ионно-плазменной обработки на морфологию поверхности и оптические свойства эпитаксиальных пленок Bi₂Te₃. Пленки теллурида висмута выращены методом молекулярно-лучевой эпитаксии на подложках (111) BaF₂ и имели толщину 290 nm. Ионно-плазменная обработка поверхности пленок осуществлялась в реакторе высокоплотной аргоновой плазмы высокочастотного индукционного разряда (13.56 MHz) низкого давления. Энергия ионов Ar⁺ задавалась в пределах 25–150 eV, продолжительность обработки находилась в интервале 10–120 s. Обнаружено эффективное наноструктурирование поверхности теллурида висмута, приводящее к появлению наноструктур различной формы и архитектуры с геометрическими размерами 13–40 nm. Из спектров оптического пропускания определена величина ширины запрещенной зоны $E_g = 0.87 - 1.29$ eV для наноструктурированных систем Bi₂Te₃. Полученные величины E_g в несколько раз превышают значения для объемного теллурида висмута (~ 0.16 eV), что может быть объяснено реализацией квантовых размерных эффектов.

Ключевые слова: теллурид висмута, эпитаксиальные пленки, ионно-плазменная обработка, наноструктуры, комбинационное рассеяние света, спектры отражения и пропускания.

DOI: 10.61011/FTT.2024.08.58608.131

1. Введение

Теллурид висмута (Bi2Te3) является полупроводниковым соединением группы А^V₂В^{VI}, имеет малую ширину запрещенной зоны ~ 0.16 eV и более полувека широко применяется в термоэлектрических устройствах [1]. Кристаллическая структура Bi₂Te₃ является слоистой, состоящей из пентаслоев (quintuple layers) Те¹-Ві-Те²-Ві-Те¹ с внутренними ковалентными связями и слабыми ван-дер-Ваальсовыми связями между пентаслоями. Обнаружение в теллуриде висмута свойств топологического изолятора [2-4], возросший в последнее время интерес к уникальным свойствам слоистых 2D материалов [5,6] предопределили новые направления исследования Bi₂Te₃, связанные с формированием низкоразмерных систем и приборных устройств на их основе. Это позволило не только улучшить параметры термоэлектрических приборов, но и предложить области практического использования теллурида висмута в электронике, оптоэлектронике, в материаловедении микроволновых поглотителей и т.д. [6-12].

Для модификации поверхности объемных и пленочных образцов Bi₂Te₃ и придания ей заданных морфологических и структурных свойств авторы различных работ использовали технологические методы, включающие импульсную фотонную обработку [13], фемтосекундное лазерное воздействие [14], электронное облучение [15], термический отжиг [16-18] и т.д. Известно [19], что метод ионно-плазменной обработки является достаточно эффективным для формирования поверхности твердых тел с требуемыми параметрами, начиная от ее планаризации и заканчивая созданием ансамблей наноструктур различной архитектуры. В настоящее время известны только несколько работ [20,21] о применении метода ионно-плазменной обработки к образцам теллурида висмута. Целью настоящей работы было изучение процессов наноструктурирования поверхности эпитаксиальных пленок Bi₂Te₃ на подложках фторида бария в процессе обработки в аргоновой плазме при вариации ее параметров. Актуальность проводимых исследований также связана с недостатком экспериментальных и теоретических сведений об особенностях физических процессов, происходящих при взаимодействии ионов с поверхностью слоистых 2D материалов [22,23].

2. Экспериментальная часть

Пленки теллурида висмута были выращены на свежесколотых подложках (111) BaF_2 размером $15 \times 15 \text{ mm}^2$ методом молекулярно-лучевой эпитаксии с использованием Riber 32P MBE системы, содержащей эффузионные ячейки Bi2Te3 и Te. Методика роста пленок подробно описана в работе [24]. Выбор фторида бария в качестве подложки обусловлен тем, что треугольный атомный рисунок ее поверхности, совпадающей с кристаллографической плоскостью (111) кубической решетки BaF₂, практически совпадает с атомным рисунком плоскости (001) гексагональной решетки Bi₂Te₃. При расстоянии между атомами 4.384 Å несоответствие решеток составляет около 0.04%, что обеспечивает идеальные условия для эпитаксии. Толщина выращенных пленок составляла 290 nm. Дополнительные исследования методом рентгеновской дифрактометрии [24,25] показали высокое структурное совершенство выращенных пленок с реализацией эпитаксиального роста, при котором (001) гексагональные плоскости Bi₂Te₃ были параллельны поверхности (111) ВаF₂. Все образцы, как показали измерения методом термозонда, имели р-тип проводимости.

Ионно-плазменная обработка поверхности пленок теллурида висмута осуществлялась в реакторе высокоплотной аргоновой плазмы высокочастотного индукционного разряда (13.56 MHz) низкого давления. Режимы обработки были следующими: расход аргона 20 sccm, рабочее давление в реакторе 0.14 Ра, ВЧ-мощность на индукторе 800 W, мощность ВЧ-смещения на алюминиевом подложкодержателе варьировалась в пределах 0–80 W. Средняя энергия (E_i) ионов Ar⁺, определяемая величиной ВЧ-мощности смещения, задавалась в пределах 25–150 eV. Плотность ионного тока при изменении мощности смещения не изменялась и составляла 5.2 mA · cm⁻². Продолжительность ионно-плазменной обработки (t) находилась в интервале 10–120 s.

Морфология поверхности изучалась методом растровой электронной микроскопии (РЭМ) на установке Supra 40 (Carl Zeiss) в режиме регистрации вторичных электронов (InLens). Локальный химический анализ проводился с помощью приставки энергодисперсионного рентгеновского анализа (ЭДРА) INCA Energy (Oxford Instruments).

Спектры комбинационного рассеяния света (КРС) регистрировались с помощью спектрометра с конфокальным микроскопом Nanofinder HE (LOTIS TII). Возбуждение осуществлялось твердотельным лазером 532 nm в непрерывном режиме с оптической мощностью $\sim 60 \,\mu$ W. Лазерное излучение фокусировалось на поверхность образца в пятно диаметром $\sim 0.7 \,\mu$ m. Обратнорассеянный свет диспергировался дифракционной решеткой

 600 mm^{-1} , что позволяло получать спектральное разрешение не хуже 3 сm⁻¹. В качестве фотоприемника использовалась охлаждаемая кремниевая CCD-матрица, время накопления сигнала составляло 30 s.

Спектры оптического пропускания и зеркального отражения регистрировались с помощью спектрофотометра Photon RT (EssentOptics) в неполяризованном свете со спектральным разрешением не хуже 5 nm в диапазоне длин волн 200–2500 nm. Запись спектров зеркального отражения осуществлялась при падении оптического излучения на поверхность образца под углом 8° к нормали. Размер пучка оптического излучения на исследуемой поверхности составлял около $4.5 \times 4.5 \text{ mm}^2$.

3. Результаты и обсуждение

На рис. 1 приведены типичные изображения поверхности пленок теллурида висмута в исходном состоянии. Морфология поверхности характеризовалась наличием возвышений и углублений треугольной формы с субмикронными размерами в основании, состоящих из ступеней-террас нанометровой высоты. Такая картина поверхности является типичной для эпитаксиальной пары Bi_2Te_3/BaF_2 (111) [26,27], физические модели появления ступеней-террас подробно рассмотрены в работах [28–30]. Важно отметить, что формирование подобных ступенчатых структур характерно для гетероэпитаксиальных пленок и других слоистых полупроводников [31].

Проведение уже первых экспериментов по ионноплазменному распылению пленок теллурида висмута показало уникальный отклик материала на бомбардировку поверхности ионами аргона. Было установлено, что скорости распыления Bi₂Te₃ являются аномально высокими по сравнению с другими классическими материалами электроники. В интервале используемых энергий ионов 25–150 eV скорости распыления по линейному закону

Рис. 1. Морфология поверхности пленки теллурида висмута в исходном состоянии при съемке по нормали к поверхности (a) и при отклонении от нормали на 70° (b).

возрастали с 1.2 до 20 nm · s⁻¹, что превышает значения скоростей распыления (при аналогичных условиях эксперимента) для халькогенидов свинца PbTe, PbSe, PbS, которые входят в число лидеров среди полупроводников по скоростям распыления. Для энергии ионов 150 eV при пересчете на плотность ионного потока 1 mA · cm⁻² скорость распыления теллурида висмута составила $3.8 \,\mathrm{nm}\cdot\mathrm{s}^{-1}$. Это значение почти в 2 раза превышает скорости распыления халькогенидов свинца $(1.6-1.9\,\text{nm}\cdot\text{s}^{-1})$ и в несколько раз выше скоростей для Si, InN, GaN, InSb и GaAs (0.02-0.7 nm · s⁻¹) [32]. С физической точки зрения полученный результат может быть объяснен слоистым строением теллурида висмута со слабым ван-дер-Ваальсовым взаимодействием между пентаслоями. Аналогичный эффект был описан нами ранее для кристаллов слоистого полупроводника GaTe в [33].

3.1. Морфология поверхности пленок теллурида висмута после обработки ионами аргона

Высокие значения скоростей распыления для пленок Bi₂Te₃ резко уменьшили технологические возможности варьирования режимами плазменной обработки, оставляя для экспериментов при фиксированной плотности ионного потока только компромисс малых значений энергии ионов и небольших длительностей процессов. На рис. 2 и 3 приведены изображения поверхности пленок теллурида висмута после обработки ионами аргона при минимально возможной энергии ионов 25 eV при длительности процесса 90 и 120 s. Из рисунков следует, что в результате обработки происходило эффективное наноструктурирование поверхности. При длительности процесса $t = 90 \, \text{s}$ (рис. 2) на поверхности формировался однородный ансамбль квазиплоских наноструктур треугольной формы. Латеральные размеры стороны равностороннего треугольника составляли 60 ± 10 nm, поверхностная плотность находилась в интервале $(3-4) \cdot 10^9 \, \text{cm}^{-2}$. Высоты наноструктур равнялись $20 \pm 5 \,\mathrm{nm}$, стороны всех треугольников были упорядочены вдоль нескольких направлений, соответствующих кристаллической структуре поверхности. При $t = 120 \,\mathrm{s}$ (рис. 3) ситуация изменилась — на фоне исчезновения четкой огранки наноструктур произошло резкое увеличение их поверхностной плотности до $(1-2) \cdot 10^{10} \, {\rm cm}^{-2}$, латеральные размеры уменьшились до 25 ± 5 nm, высоты не превышали 20 nm.

При увеличении энергии ионов до 50 eV морфология поверхности продолжала свои изменения. На рис. 4 показана морфология поверхности пленок теллурида висмута после обработки ионами аргона с энергией 50 eV в течение 40 s. На снимках видно, что происходит формирование ансамбля треугольных нанообластей, отделенных друг от друга возвышениями с высотой до 20 nm. Треугольные ямки являются равносторонними с

a 20 nm 100 nm 20 nm

Рис. 2. Морфология поверхности пленок теллурида висмута после обработки ионами с энергией 25 eV, 90 s. *a*, *b* — съемка по нормали к поверхности, *c* — при отклонении от нормали на 70°.

Рис. 3. Морфология поверхности пленок теллурида висмута после обработки ионами с энергией 25 eV, 120 s. *a*, *b* — съемка по нормали к поверхности, *c* — при отклонении от нормали на 70°.

Рис. 4. Морфология поверхности пленок теллурида висмута после обработки ионами с энергией 50 eV, 40 s. a, b — съемка по нормали к поверхности, c — при отклонении от нормали на 70°.

Рис. 5. Морфология поверхности теллурида висмута после бомбардировки ионами с энергий 100 eV, 10 s. *a*, *b* — съемка по нормали к поверхности, *c* — при отклонении от нормали на 70°.

размерами сторон 40 ± 10 nm, их поверхностная плотность составляет $(4-5) \cdot 10^{10}$ cm⁻², стороны треугольников одинаково ориентированы в плоскости пленки. С точки зрения общего взгляда на сформированную картину можно говорить о создании квазиоднородной волнистой поверхности с латеральным размером около 60 nm.

Увеличение энергии ионов аргона до 100 eV, дополненное обязательным условием уменьшения длительности процесса, привело к формированию более мелкого в латеральном направлении однородного нанорельефа. Морфология поверхности для условий обработки $E_i = 100 \text{ eV}, t = 10 \text{ s}$ приведена на рис. 5. На поверхности сформировался однородный ансамбль полусферических структур, размеры которых в латеральном направлении и расстояния между краями полусфер не превышали 20 nm.

Для понимания общей картины процессов, происходящих на начальном этапе ионно-плазменной обработки, были проведены дополнительные исследования, связанные с изучением влияния величины энергии ионов Е_i на морфологию поверхности пленок Bi2Te3 при малых временах обработки. Энергия ионов в эксперименте варьировалась в диапазоне 50-150 eV, продолжительность обработки была одинаковой и составляла t = 10 s. Результаты данных исследований сведены на рис. 6. Морфология поверхности не зависела от энергии ионов и картина наблюдаемого нанорельефа была практически идентичной описанному на рис. 5 случаю для $E_i = 100 \, \text{eV}, t = 10 \, \text{s}.$ Это свидетельствует о том, что начальные физические процессы формирования нанорельефа для применяемого диапазона энергий ионов являются одинаковыми, а последующие изменения в создании наноструктур с различными размерами и формой определяются различными температурными режимами, зависящими от энергии ионов и длительности процесса.

В ходе исследований были обнаружены дополнительные возможности в наноструктурировании поверхности теллурида висмута при проведении последовательных ионно-плазменных обработок в разных режимах. Некоторые примеры сформированного нанорельефа в результате двухшаговых обработок приведены на рис. 7, из которых видно, что реализация таких условий увеличивает разнообразие форм и размеров создаваемых ансамблей наноструктур на поверхности теллурида висмута. Важно отметить, что наблюдаемые при ионно-плазменной обработке наноструктуры треугольной и гексагональной формы являются типичными при создании наноструктур на поверхности Bi_2Te_3 и объясняются особенностями строения кристаллической решетки теллурида висмута [34–37].

Рис. 6. Морфология поверхности пленки теллурида висмута после распыления ионами с энергией 50 eV(a), 125 eV(b), 150 eV(c) в течение 10 s. Съемка проведена при отклонении от нормали на 70°

Рис. 7. Морфология поверхности пленок теллурида висмута после проведения двухшаговых обработок: $E_i = 25 \text{ eV}, t = 120 \text{ s} + E_i = 50 \text{ eV}, t = 10 \text{ s} (a), E_i = 25 \text{ eV}, t = 90 \text{ s} + E_i = 100 \text{ eV}, t = 10 \text{ s} (b).$

3.2. Химический состав поверхности, данные спектроскопии комбинационного рассеяния

Для изучения возможного изменения химического состава поверхности пленок теллурида висмута после плазменных обработок был применен метод ЭДРА. Измерения выполнялись при напряжении 6 kV при наклоне

образца на угол 70°, что позволяло увеличить соотношение сигналов "поверхность/объем" и более корректно описывать химический состав на поверхности [33]. В исходном состоянии содержание теллура и висмута на разных участках поверхности составляло 61.83 ± 0.10 и 38.17 ± 0.10 at.%. После проведения ионно-плазменной обработки во всех описанных выше режимах результат был одинаковым — содержание халькогена уменьшалось, а содержание металла увеличивалось. Эти изменения были небольшими, не превышали для каждого химического элемента 3-4 at.%, однако стабильно подтверждали обогащение поверхности атомами металла. Применение для теоретического анализа известных формул для случая бинарных соединений в рамках линейной каскадной теории [33,38] показало, что отношение парциальных коэффициентов распыления теллура и висмута в рассматриваемом случае составляет 2.4, что должно приводить к преобладающему распылению теллура в двухкомпонентном материале и обогащению поверхности металлом.

Для спектров КРС объемного Bi₂Te₃ характерно [39,40] наличие пиков E_g^1 , A_{1g}^1 , E_g^2 , $A_{1g}^2 \sim 35$, 61, 101, 132 cm⁻¹. В нашем случае пик E_g^1 не наблюдается, поскольку не пропускается краевым фильтром. Пики A_{1g}^1 , E_g^2 , A_{1g}^2 регистрировались во всех образцах Bi₂Te₃ как до, так и после плазменных обработок (рис. 8, *a*). При возбуждении спектров КРС лазером с длиной волны 532 nm (60 μ W, 30 s) положение, ширина на полувысоте, и соотношение интенсивностей пиков A_{1g}^2 и E_g^2 не изменялись (рис. 8, *b*). Аналогичный результат был получен авторами работы [20] при обработке в аргоновой плазме чешуек теллурида висмута толщиной ~ 100 nm.

3.3. Оптические характеристики

Экспериментально определенные спектральные зависимости коэффициента отражения *R* и коэффициента

Рис. 8. Спектры КРС Bi₂Te₃ до и после обработки в аргоновой плазме при возбуждении 532 nm до (*a*) и после нормировки на максимум сигнала (*b*).

пропускания T представлены на рис. 9 и 10 соответственно. Для необработанного образца значение коэффициента пропускания во всем исследованном спектральном диапазоне практически постоянно и составляет порядка процента. Для подвергнутых плазменной обработке пленок Bi₂Te₃ в области 1000–1500 nm наблюдалось резкое увеличение значений коэффициента пропускания (рис. 9), характерное для края собственного поглощения полупроводниковых материалов.

Значение коэффициента отражения для необработанной пленки Bi_2Te_3 для $\lambda > 500$ nm выходит на плато и составляет 20%. Для всех пленок после плазменной обработки наблюдалось увеличение отражательной способности. Максимальное значение коэффициента отражения на уровне 60% соответствовало энергиям ионов 125 и 150 eV продолжительностью 10 s.

В спектре зеркального оптического отражения (рис. 11) можно выделить несколько четких пиков A_1-A_6 , описанных в [41]. Пик A_1 находится ближе к краю поглощения; вершина основного широкого максимума состоит из двух пиков A_2 и A_3 , коротковолновая часть максимума образована группой пиков $A_{4,5}$, A_6 . Энергетические положения пиков отражательной способности A_1-A_6 пленок Bi₂Te₃ приведены в табл. 1.

В области от 1 до 4 eV находится один из главных максимумов отражательной способности, содержащий триплетную структуру [42]. Наблюдаемые пики триплета обозначены как E_1 , E_2 , E_3 . В работе [42] сделано предположение, что триплетная структура обусловлена спинорбитальным расщеплением, а электронные переходы, ответственные за пики E_1 , E_2 , E_3 , происходят в точке Г (центр зоны Бриллюэна).

Из спектральных данных оптического пропускания (T) и отражения (R) пленок Bi₂Te₃ был рассчитан показатель поглощения (α) согласно выражению

$$\alpha = -\frac{1}{d} \ln \left(\frac{\sqrt{(1-R)^4 + 4T^2R^2} - (1-R)^2}{2TR^2} \right),$$

где *d* — толщина образца.

Известно, что пленки Bi2Te3 являются узкощелевыми полупроводниками с шириной запрещенной зоны 0.125-0.16 eV [43,44]. Соответственно, для исходного образца пленки Bi₂Te₃ в исследуемом спектральном диапазоне 200-2500 nm край собственного поглощения не наблюдается и значение ширины запрещенной зоны не может быть определено. Однако, для обработанных плазмой пленок Bi₂Te₃ в исследуемом спектральном диапазоне характерно наличие достаточно резкого края поглощения (рис. 9). Линеаризация зависимости $(\alpha h v)^2$ от (hv) (координаты Тауца) в области высокоэнергетичных фотонов позволяет отнести наблюдаемый край поглощения к прямым разрешенным оптическим переходам. Значения ширины запрещенной зоны исследуемых пленок Eg, определенные с помощью экстраполяции прямолинейного участка зависимости $(\alpha h v)^2$ от (hv) до

Рис. 9. Спектры оптического пропускания пленок Bi₂Te₃ до и после обработки в аргоновой плазме.

Рис. 10. Спектры зеркального оптического отражения поверхности пленок Bi₂Te₃ до и после обработки в аргоновой плазме.

Рис. 11. Спектры зеркального оптического отражения поверхности пленок Bi₂Te₃ до и после обработки в аргоновой плазме — энергетическая зависимость.

Режимы обработки	Initial state	25 eV, 120 s	50 eV, 40 s	100 eV, 10 s	125 eV, 10 s	150 eV, 10 s	Данные [41]	Данные [42]
A_1, eV	0.71	0.50	0.56	0.67	0.77		0.4 (при 90 К)	
A_2 , eV	1.18	1.18	1.18	1.18			1.36	
$A_3(E_1)$, eV		1.67	1.76	1.76	1.65	1.66	1.80	1.78
$A_{4,5}(E_2), \mathrm{eV}$			2.67	2.71	2.9	2.89	2.95	
$A_6(E_3)$, eV		3.34					3.40	3.23

Таблица 1. Энергетические положения пиков $A_1 - A_6$ отражательной способности поверхности пленок $Bi_2 Te_3$

Таблица 2. Параметры наноструктур на поверхности и значения ширины запрещенной зоны пленок Bi₂Te₃

Режимы плазменной обработки	25 eV, 120 s	50 eV, 40 s	100 eV, 10 s	125 eV, 10 s	150 eV, 10 s
Форма наноструктур	Плоские выступы треугольной формы	Ямки треугольной формы	Выступы в виде полусферы	Выступы в виде полусферы	Выступы в виде полусферы
Высота наноструктур, nm	20	20	15	15	13
Латеральный размер наноструктур, nm	25	40	20	18	17
Поверхностная плотность, cm^{-2}	$(1{-}2) \cdot 10^{10}$	$(4-5) \cdot 10^{10}$	$(9{-}10) \cdot 10^{10}$	$(1{-}2) \cdot 10^{11}$	$(1{-}2) \cdot 10^{11}$
Толщина пленки после плазменной обработки, nm	190	74	174	140	90
E_g , eV	1.15	1.06	0.87	1.29	1.28

пересечения с осью абсцисс (рис. 12), представлены в табл. 2.

Как следует из табл. 2, наноструктурирование поверхности пленок Bi_2Te_3 привело к изменению значения ширины запрещенной зоны. В зависимости от режима плазменной обработки значения E_g находятся в диапазоне 0.87–1.29 eV. Наблюдаемое существенное

Рис. 12. Спектральные зависимости показателя поглощения пленок Bi₂Te₃ в координатах Тауца.

увеличение ширины запрещенной зоны может быть связано с квантово-размерным эффектом за счет образования наноструктур с характерными размерами десятки нанометров. Согласно модели Ал.Л. Эфроса и А.Л. Эфроса [45], при размерах нанокристаллов менее боровского радиуса носителей заряда, происходит квантово-размерное увеличение ширины запрещенной зоны. Квантово-размерная добавка к ширине запрещенной зоны возрастает обратно пропорционально квадрату линейного размера нанокристаллов [46]. Подобный эффект для теллурида висмута был описан в нескольких статьях [47-49]. В работе [47] для образцов Ві2Те3, состоящих из сферических наночастиц диаметром около 40 nm, было получено значение $E_g = 0.9 \,\mathrm{eV}$. В работе [48] для наночастиц Ві2Те3 со средним диаметром 35 nm значение E_g составило 1.2 eV; в работе [49] был обнаружен эффект увеличения ширины запрещенной зоны при уменьшении толщины пленок Bi₂Te₃.

4. Заключение

Результаты исследования показывают, что ионноплазменная обработка является эффективным средством формирования различных наноструктур на поверхности эпитаксиальных пленок теллурида висмута. Это связано с высокими скоростями распыления слоистого полупроводника Bi₂Te₃ в аргоновой плазме, что приводит к появлению большого объема "строительного материала" над поверхностью пленки и к реализации индуцированных плазмой процессов самоформирования наноструктур различной формы и архитектуры. При изменении величины энергии ионов оказалось возможным варьирование морфологии наноструктурированной поверхности и получение наноструктур различных размеров по высоте и в латеральном направлении. Большие перспективы, как показывают первые эксперименты, следует ожидать от проведения многоэтапных обработок, что изменяет прохождение процессов наноструктурирования при каждом новом шаге из-за измененной начальной морфологии поверхности. Обнаруженный эффект изменения оптических характеристик тонких пленок теллурида висмута за счет формирования наноструктур на поверхности, заключающийся в существенном увеличении ширины запрещенной зоны до значений 0.87-1.29 eV, может быть использован при создании оптоэлектронных систем на основе Bi₂Te₃.

Благодарности

Авторы признательны А.В. Епишину за помощь в проведении исследований.

Финансирование работы

Работа выполнена в рамках государственного задания ЯФ ФТИАН им. К.А. Валиева РАН (тема № FFNN-2022-0017) и Государственной программы научных исследований РБ "Материаловедение, новые материалы и технологии". РЭМ-исследования проведены в ЦКП "Диагностика микро- и наноструктур" при финансовой поддержке Министерства образования и науки Российской Федерации.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Б.М. Гольцман, В.А. Кудинов, И.А. Смирнов. Полупроводниковые термоэлектрические материалы на основе Bi₂Te₃. Наука, М. (1972). 320 с.
- [2] T. Zhang, P. Cheng, X. Chen, J.-F. Jia, X.-C. Ma, K. He, L.L. Wang, H.-J. Zhang, X. Dai, Z. Fang, X.-C. Xie, Q.-K. Xue. Phys. Rev. Lett. **103**, 266803 (2009).
- [3] Y.L. Chen, J.G. Analytis, J.-H. Chu, Z.K. Liu, S.-K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.-X. She. Science **325**, 178 (2009).
- [4] D.-X. Qu, Y.S. Hor, J. Xiong, R.J. Cava, N.P. Ong. Science 329, 821 (2010).
- [5] Y. Meng, H. Zhong, Z. Xu, T. He, J.S. Kim, S. Han, S. Kim, S. Park, Y. Shen, M. Gong, Q. Xiao, S.-H. Bae. Nanoscale Horiz. 8, 1345 (2023).

- [6] J. Yao, K. Koski, W. Luo, J.J. Cha, L. Hu, D. Kong, V.K. Narasimhan, K. Huo, Y. Cui. Nature Commun. 5, 5670 (2014).
- [7] J. Liu, W. Pan, H. Wang, Z. Zhang, S. Zhang, G. Yuan, C. Yuan, Y. Ren, W. Lei. Adv. Electron. Mater. 7, 2000851 (2021).
- [8] Y. Min, G. Park, B. Kim, A. Giri, J. Zeng, J.W. Roh, S.Il. Kim, K.H. Lee, U. Jeong. ACS Nano 9, 7, 6843 (2015).
- [9] Y.J. Lin, I. Khan, S. Saha, C.C. Wu, S.R. Barman, F.C. Kao, Z.H. Lin. Nature Commun. 12, 1, 180 (2021).
- [10] M. Li, H.-W. Lu, S.-W. Wang, R.-P. Li, J.-Y. Chen, W.-S. Chuang, F.-S. Yang, Y.-F. Lin, C.-Y. Chen, Y.-C. Lai. Nature Commun. 13, 938 (2022).
- [11] M. Tang, J.-Y. Zhang, S. Bi, Z.-L. Hou, X.-H. Shao, K.-T. Zhan, M.-S. Cao. ACS Appl. Mater. Interfaces 11, 33285 (2019).
- [12] H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H.Y. Hoh, C.-X. Pan, S. Li, Q. Bao. ACS Nano 9, 2, 1886 (2015).
- [13] E.K. Belonogov, V.A. Dybov, A.V. Kostyuchenko, S.B. Kushev, D.V. Serikov, S.A. Soldatenko, M.P. Sumets. Lett. Mater. 10, 2, 189 (2020).
- [14] Z. Yue, Q. Chen, A. Sahu, X. Wang, M.Gu. Mater. Res. Express 4, 12, 126403 (2017).
- [15] S. Kudo, S. Tanaka, K. Miyazaki, Y. Nishi, M. Takashiri. Mater. Trans. 58, 3, 513 (2017).
- [16] Q.-X. Guo, Z.-X. Ren, Y.-Y. Huang, Z.-C. Zheng, X.-M. Wang, W. He, Z.-D. Zhu, J. Teng. Chin. Phys. B 30, 6, 067307 (2021).
- [17] N.I. Fedotov, A.A. Maizlakh, V.V. Pavlovskiy, G.V. Rybalchenko, S.V. Zaitsev-Zotov. Surf. Interfaces **31**, 102015 (2022).
- [18] L.D. Zhaoa, B.-P. Zhang, W.S. Liu, H.L. Zhang, J.-F. Li. J. Alloys Compd. 467, 91 (2009).
- [19] I. Levchenko, K. Ostrikov. J. Phys. D 40, 8, 2308 (2007).
- [20] I. Childres, J. Tian, I. Miotkowski, Y. Chen. Phil. Mag. 93, 6, 681 (2013).
- [21] M. Song, J.H. Chu, J. Zhou, S. Tongay, K. Liu, J. Suh, H. Chen, J.S. Kang, X. Zou, L. You. Nanotechnology 26, 26, 265301 (2015).
- [22] J. Jadwiszczak, D.J. Kelly, J. Guo, Y. Zhou, H. Zhang. ACS Appl. Electron. Mater. 3, 4, 1505 (2021).
- [23] Y. You, J. Park, J. Kimz. ECS J. Solid State Sci. Technol. 12, 075009 (2023).
- [24] C.I. Fornari, P.H.O. Rappl, S.L. Morelhão, E. Abramof, J. Appl. Phys. 119, 165303 (2016).
- [25] S.L. Morelhão, S. Kycia, S. Netzke, C.I. Fornari, P.H.O. Rappl,
 E. Abramof. Appl. Phys. Lett. 112, 10, 101903 (2018).
- [26] P. Ngabonziza. Nanotechnology **33**, *19*, 192001 (2022).
- [27] C.I. Fornari, E. Abramof, P.H.O. Rappl, S.W. Kycia, S.L. Morelhão. MRS Adv. 5, 1891 (2020).
- [28] O. Caha, A. Dubroka, J. Humliček, V. Holý, H. Steiner, M. Ul-Hassan, J. Sanchez-Barriga, O. Rader, T.N. Stanislavchuk, A.A. Sirenko, G. Bauer, G. Springholz. Crystal Growth & Design 13, 8, 3365 (2013).
- [29] H. Steiner, V. Volobuev, O. Caha, G. Bauer, G. Springholz, V. Holý. J. Appl. Cryst. 47, 1889 (2014).
- [30] Y. Tanaka, Y. Krockenberger, Y. Kunihashi, H. Sanada, H. Omi, H. Gotoh, K. Oguri. Appl. Phys. Express 15, 6, 065502 (2022).
- [31] Y. Nie, A.T. Barton, R. Addou,Y. Zheng, L.A. Walsh, S.M. Eichfeld, R. Yue, C. Cormier, C. Zhang, Q. Wang, C. Liang, J.A. Robinson, M. Kim, W. Vandenberghe, L. Colombo, P.-R. Cha,R.M. Wallace, C.L. Hinkle, K. Cho. Nanoscale 10, 31, 15023 (2018).

- [32] S. Zimin, E. Gorlachev, I. Amirov. Inductively Coupled Plasma Sputtering: Structure of IV–VI Semiconductors. In: Encyclopedia of Plasma Technology. 1st ed. CRC Press, N.Y. (2017). P. 679–691. https://doi.org/10.1081/E-EPLT-120053966 https://www.routledgehandbooks.com/doi/10.1081/E-EPLT-
- [33] С.П. Зимин, И.И. Амиров, М.С. Тиванов, Н.Н. Колесников, О.В. Королик, Л.С. Ляшенко, Д.В. Жигулин, Л.А. Мазалецкий, С.В. Васильев, О.В. Савенко. ФТТ 65, 4, 692 (2023). [S.P. Zimin, I.I. Amirov, M.S. Tivanov, N.N. Kolesnikov, O.V. Korolik, L.S. Lyashenko, D.V. Zhyhulin, L.A. Mazaletskiy, S.V. Vasilev, O.V. Savenko. Phys. Solid State 65, 4, 671 (2023)].
- [34] G. Hao, X. Qi, L. Yang, Y. Liu, J. Li, L. Ren, F. Sun, J. Zhong. AIP Adv. 2, 1, 012114 (2012).
- [35] Y. Zhao, M. de la Mata, R.L.J. Qiu, J. Zhang, X. Wen, C. Magen, X.P.A. Gao, J. Arbiol, Q. Xiong. Nano Res. 7, 9, 1243 (2014).
- [36] W. Lu, Y. Ding, Y. Chen, Z.L. Wang, J. Fang. J. Am. Chem. Soc. 127, 28, 10112 (2005).
- [37] Y. Hosokawa, K. Tomita, M. Takashiri. Sci. Rep. 9, 10790 (2019).
- [38] P. Sigmund. Elements of sputtering theory. In: Nanofabrication by Ion-Beam Sputtering / Eds T. Som, D. Kanjilal. Pan Stanford Publishing (2013). P. 1–40. https://doi.org/10.4032/9789814303767
- [39] W. Richter, C.R. Becker. Phys. Status Solidi B 84, 619 (1977).
- [40] W. Kullmann, J. Geurts, W. Richter, N. Lehner, H. Rauh, U. Steigenberger, G. Eichhorn, R. Geick. Phys. Status Solidi B 125, 131 (1984).
- [41] V.V. Sobolev, S.D. Shutov, Y.V. Popov, S.N. Shestatskii. Phys. Status Solidi B 30, 349 (1968).
- [42] D.L. Greenaway, G. Harbeke. J. Phys. Chem. Solids 26, 10, 1585 (1965).
- [43] P. Pecheur, G. Toussaint. Phys. Lett. A 135, 3, 223 (1989).
- [44] I.G. Austin. Proc. Phys. Soc. 72, 4, 545 (1958).
- [45] Ал.Л. Эфрос, А.Л. Эфрос. ФТП 16, 7, 1209 (1982).
- [46] И.Е. Тысченко, В.А. Володин. ФТП 46, 10, 1309 (2012).
- [47] Y. Saberi, S.A. Sajjadi, H. Mansouri. J. Mater. Sci.: Mater. Electron. 31, 18988 (2020).
- [48] P. Srivastava, K. Singh. J. Exp. Nanosci. 9, 10, 1064 (2014).
- [49] J. Dheepa, R. Sathyamoorthy, S. Velumani. Mater. Charact. 58, 8–9, 782 (2007).

Редактор Ю.Э. Китаев

120053966