05,01

Изменение интеграла обменного взаимодействия при внедрении атомов водорода в кристаллическую решетку терфенола

© А.А. Алероев^{1,2}, И.С. Терёшина¹, Т.А. Алероева³, Н.Ю. Панкратов^{1,¶}, С.А. Никитин¹

¹ Московский государственный университет им. М.В. Ломоносова,

Москва, Россия ² Грозненский государственный нефтяной технический университет,

Грозный, Россия

³ Российский государственный аграрный университет — МСХА им. К.А. Тимирязева,

Москва, Россия

[¶] E-mail: pankratov@phys.msu.ru

Поступила в Редакцию 18 июня 2024 г. В окончательной редакции 18 июня 2024 г. Принята к публикации 20 июня 2024 г.

Исследовано влияние гидрирования на структурные и магнитные характеристики соединения $Tb_{0.3}Dy_{0.7}Fe_2$ (Терфенол-Д). Получен гидрированный состав $Tb_{0.3}Dy_{0.7}Fe_2H_3$ с температурой Кюри вблизи комнатной и точкой магнитной компенсации при T = 140 К. Установлены основные механизмы, ответственные как за изменение температуры Кюри при гидрировании, так и за возникновение заметной по величине объемной магнитострикции в области температуры Кюри. Определено изменение результирующего обменного интеграла при внедрении фиксированного количества атомов водорода (3 at.H/form.unit в кристаллическую решетку соединения $Tb_{0.3}Dy_{0.7}Fe_2$.

Ключевые слова: редкоземельные соединения, фазы Лавеса, гидриды, температура Кюри, магнитострикция.

DOI: 10.61011/FTT.2024.08.58603.156

1. Введение

В настоящее время соединения типа RFe₂ со структурой фаз Лавеса привлекают внимание не только с практической, но и с фундаментальной точки зрения [1-3]. Благодаря простой кристаллической и магнитной структуре, эти соединения рассматриваются теоретиками как модельные объекты, способные демонстрировать высокую температуру Кюри, большую намагниченность насыщения, гигантскую магнитострикцию, большой магнитокалорический эффект [4-5]. К примеру, магнитострикционные деформации соединений TbFe2 и DyFe2 в области температур близких к комнатной, достигают значений $\sim 2 \cdot 10^{-3}$. Оба состава обладают значительной по величине магнитокристаллической анизотропией (МКА), и, следовательно, максимальные значения магнитострикции могут быть получены только в достаточно сильных магнитных полях. Подобрав вполне определенное соотношение тербия и диспрозия, оказалось возможным значительным образом уменьшить МКА. Данный подход привел к открытию состава Tb_{0.3}Dy_{0.7}Fe₂ (в литературе это соединение со структурой фаз Лавеса, а также уточненный состав Tb_{0 27}Dy_{0 73}Fe_{1 95}, называют терфенол-Д) [6]. Благодаря гигантской магнитострикции $(\lambda \sim 10^{-2})$ при комнатной температуре, наблюдаемой в относительно слабых магнитных полях (из-за малой величины магнитокристаллической анизотропии), терфенол-Д широко используют в гидроакустике, магнитострикционных силовых приводах, микроэлектронике и других областях [7–9].

Следует особо отметить тот факт, что соединения RFe_2 легко поглощают водород [9], максимальное количество которого может достигать 4 at.H/form.unit. Атомы водорода, проникая в кристаллическую решетку данных соединений и располагаясь в междоузлиях, как правило, не вызывают изменение типа кристаллической структуры. Однако, в зависимости от количества поглощенного водорода изменение объема элементарной ячейки, межатомных расстояний между магнитоактивными атомами, а также изменение магнитных свойств может быть значительным [9–12]. Гидрированные образцы приобретают новые свойства, отличные от своих исходных составов, что может значительно расширить область применения данных материалов, например, в качестве датчиков и сенсоров в водородной энергетике.

В связи с вышеизложенным, целью данной работы стало получение гидрированных образцов терфенола, исследование их структурных, магнитных и магнитострикционных свойств, установление основных физических механизмов, ответственных за изменение температуры Кюри и возникновение объемной магнитострикции вблизи температуры Кюри при внедрении фиксированного количества водорода (3 at.H/f.u.) в кристаллическую решетку Tb_{0.3}Dy_{0.7}Fe₂, а также оценка относительного изменения результирующего обменного интеграла при гидрировании.

Получение образцов и методика эксперимента

Синтез исходного образца Tb_{0.3}Dy_{0.7}Fe₂ проводился в индукционной печи в атмосфере аргона путем плавления исходных компонентов Tb (99.5%), Dy (99.3%), Fe (99.9%). Все основные детали такого синтеза можно найти в работе [13]. Гидрид исходного соединения был получен как результат прямой реакции исходного образца с газообразный водородом высокой чистоты, полученным при разложении дигидрида титана TiH₂. Подробности процедуры гидрирования и определения количества водорода, поглощенного исходным образцом, также изложены ранее в работе [14].

Нами был получен гидрид с достаточно высоким содержанием водорода, а именно 3 at.H/form.unit. Фазовый состав исходного образца и его гидрида контролировался методом рентгеноструктурного анализа на дифрактометре ДРОН-3М. Температура Кюри образцов определялась с помощью термомагнитного анализа, который был выполнен с использованием маятникового магнетометра в широком интервале температур 80–720 К во внешнем магнитном поле 1 kOe.

Измерение магнитострикции производилось с помощью тензометрического метода на установке с использованием электромагнита ФЛ-1 в интервале температур 80-300 К в магнитных полях до 12 kOe [15]. Сравнительные исследования магнитострикции для исходного состава и его гидрида были сопряжены с определенными сложностями. Поскольку литые образцы в процессе гидрирования разрушаются, образуя мелкодисперсный порошок, для измерения магнитострикции использовались порошковые образцы как гидрида, так и исходного состава. Порошки прессовались под давлением 3 GPa в таблетки диаметром 10 mm толщиной 3 mm. На прессованных образцах измерялась продольная λ_{\parallel} и поперечная λ_{\perp} магнитострикция. Объемная магнитострикция вычислялась по формуле

$$\omega = \lambda_{\parallel} + 2\lambda_{\perp}. \tag{1}$$

3. Результаты и обсуждение

Рентгеноструктурный анализ показал, что все полученные составы, а именно исходное соединение $Tb_{0.3}Dy_{0.7}Fe_2$ и его гидрид $Tb_{0.3}Dy_{0.7}Fe_2H_3$ являются практически однофазными и имеют кубическую структуру типа MgCu₂. Параметр решетки (*a*) для $Tb_{0.3}Dy_{0.7}Fe_2$ и его гидрида помещены в таблицу. Полученные данные хорошо согласуются с литературными данными [13,14]. Кроме этого, в таблице приводится объем элементарной ячейки V и относительное изменение объема элементарной ячейки $\Delta V/V$ при гидрировании. Установлено, что увеличение объема элементарной ячейки $\Delta V/V$ при гидрировании достигает 20.2% для гидрида $Tb_{0.3}Dy_{0.7}Fe_2H_3$ (в пересчете на один атом водорода

Структурные и магнитные параметры соединений $Tb_{0.3}Dy_{0.7}Fe_2H_x$ (где x = 0 и 3) и YFe_2H_x (x = 0 и 4) (параметр решетки *a*, объем элементарной ячейки *V*, относительное изменение объема $\Delta V/V$, температура Кюри T_C , изменение температуры Кюри ΔT_C , температура магнитной компенсации T_k)

Состав	a, Å	$V, \mathrm{\AA}^3$	$\Delta V/V, \%$	T _C , K	$\Delta T_{\rm C}, {\rm K}$	T_k, \mathbf{K}
$Tb_{0.3}Dy_{0.7}Fe_2$	7.324	392.8	—	665	-	
$Tb_{0.3}Dy_{0.7}Fe_2H_3$	7.789	472.5	20.2	294	371	140
YFe ₂	7.357	398.2	—	545	-	
YFe ₂ H ₄	7.973*	506.8	27.2	133	412	-

 Π римечание. * Параметр решетки, рассчитанный для кубической структуры типа MgCu2.

 $\Delta V/V = 6.7\%$). В таблице для сравнения представлены структурные параметры бинарного соединения YFe₂ (иттрий — слабомагнитный аналог редкоземельных элементов) и его гидрида с максимальным содержанием водорода YFe₂H₄ [16–18]. Видно, что для последнего $\Delta V/V = 27.2\%$, а, следовательно, $\Delta V/V$ в пересчете на один атом водорода, составляет 6.8%, что достаточно хорошо коррелирует с данными для гидрида Tb_{0.3}Dy_{0.7}Fe₂H₃ [16,19]. Более того, важно отметить, что тип редкоземельного атома не оказывает заметного влияния на величину изменения объема элементарной ячейки $\Delta V/V$ при гидрировании.

На рис. 1 представлены результаты термомагнитного анализа для $Tb_{0.3}Dy_{0.7}Fe_2$ и его гидрида $Tb_{0.3}Dy_{0.7}Fe_2H_3$. Видно, что величина намагниченности σ исследуемых составов при нагреве и приближении к температуре Кюри резко уменьшается (в случае исходного состава намагниченность падает практически до 0). Температуру Кюри мы определили из анализа температурной зависимости производной намагниченности по температуре

60 Tb_{0.3}Dy_{0.7}Fe₂ emu/g 40 Tb_{0 3}Dy_{0 7}Fe₂H $T_{\rm C}$ 20 H = 1 kOe0 100 200 300 400 500 600 700 T, K

Рис. 1. Термомагнитный анализ $Tb_{0.3}Dy_{0.7}Fe_2$ и его гидрида $Tb_{0.3}Dy_{0.7}Fe_2H_3$.

Рис. 2. Температурная зависимость $d\sigma/dT$ для Tb_{0.3}Dy_{0.7}Fe₂ и Tb_{0.3}Dy_{0.7}Fe₂H₃.

 $d\sigma/dT$ (см. рис. 2). Значения $T_{\rm C}$, соответствующие минимуму производной $d\sigma/dT$, также представлены в таблице. Видно, что для Tb_{0.3}Dy_{0.7}Fe₂H_x, где x = 0 и 3, значения температуры Кюри составляют 665 и 294 К соответственно. Данные значения хорошо согласуются с известными литературными данными для таких составов, как Tb_{0.27}Dy_{0.73}Fe₂ и Tb_{0.41}Dy_{0.59}Fe₂ [13,14]. В таблице показано также изменение температуры Кюри $\Delta T_{\rm C}$, равное 371 К при внедрении 3 атомов водорода в кристаллическую решетку исходного соединения. Таким образом, гидрид Tb_{0.3}Dy_{0.7}Fe₂H₃ имеет температуры, что может быть важно с практической точки зрения.

Более того, для гидрида Tb_{0.3}Dy_{0.7}Fe₂H₃ наблюдается еще один ярко выраженный минимум на кривой M(T)в области низких температур (см. рис. 1), вблизи $T_k \sim 140$ К. Уменьшение намагниченности можно объяснить явлением компенсации магнитных моментов редкоземельной и железной подрешеток в гидрированном образце. Данное явление не наблюдается в исходном составе Tb_{0.3}Dy_{0.7}Fe₂. Следовательно, в результате гидрирования могут быть получены образцы с новым набором магнитных характеристик: варьируя содержание водорода в образцах, можно менять температуру Кюри и температуру магнитной компенсации.

На рис. 3 и 4 показаны полевые и температурные зависимости объемной магнитострикции для гидрида $Tb_{0.3}Dy_{0.7}Fe_2H_3$ соответственно. Из рис. 3 видно, что в области температур ниже и выше точки магнитной компенсации ($T_k = 140$ K), значения объемной магнитострикции малы (не превышают значения $6 \cdot 10^{-6}$). Кривые $\omega(H)$ демонстрируют линейный рост, тенденция к насыщению отсутствует в магнитных полях до 12 kOe. В то же самое время, в области температур $T < T_C$ ($T_C = 294$ K), объемная магнитострикция достигает значений на порядок выше ($42 \cdot 10^{-6}$), возрастая линейно с увеличением напряженности магнитного поля. Из рис. 4

можно видеть, что в области температуры магнитной компенсации $T_k \sim 140 \text{ K}$ объемная магнитострикция меняет знак с положительной (при $T > T_k$) на отрицательную (при $T < T_k$).

Из рис. 4 также следует, что температурная зависимость объемной магнитострикции $\omega(T)$ сохраняет максимальные значения в достаточно широком температурном интервале 260–285 К во внешнем магнитном поле 2 kOe. При увеличении напряженности магнитного поля до 12 kOe максимальные значения достигаются в более узком температурном интервале 265–280 К.

Напомним, что увеличение объема элементарной ячейки при гидрировании в первом приближении можно рассматривать как процесс обратный уменьшению объема V под действием гидростатического давления, т. е. как "отрицательное" давление. Известно, что сжимаемость

Рис. 3. Полевые зависимости объемной магнитострикции гидрида $Tb_{0.3}Dy_{0.7}Fe_2H_3$ при разных температурах 80, 160, 200, 260, 284 и 300 К.

Рис. 4. Температурные зависимости объемной магнитострикции гидрида Tb_{0.3}Dy_{0.7}Fe₂H₃ в разных полях 2, 5, 10 и 12 kOe.

определяется по формуле

$$\mathcal{N} = \frac{\Delta V/V}{p}.$$
 (2)

Тогда, можно определить величину смещения температуры Кюри ($T_{\rm C}$) под действием гидростатического давления с помощью следующего соотношения, связанного со смещением $T_{\rm C}$ при изменении объема элементарной ячейки ΔV :

$$\frac{d\ln T_{\rm C}}{dp} = -\frac{\mathcal{N}}{T_{\rm C}} \frac{dT_{\rm C}}{d\ln V} = -\mathcal{N} \frac{d\ln T_{\rm C}}{d\ln V}.$$
(3)

Объемы элементарной ячейки исходного соединения $Tb_{0.3}Dy_{0.7}Fe_2$ и его гидрида $Tb_{0.3}Dy_{0.7}Fe_2H_3$ отличаются на величину

$$\frac{\Delta V}{V} = \frac{V_{\text{Tb}_{0.3}\text{Dy}_{0.7}\text{Fe}_2\text{H}_3} - V_{\text{Tb}_{0.3}\text{Dy}_{0.7}\text{Fe}_2}}{V_{\text{Tb}_{0.3}\text{Dy}_{0.7}\text{Fe}_2}} = 0.202.$$
(4)

Изменение температуры Кюри при изменении объема элементарной ячейки определяется по формуле

$$\Delta T_{\rm C} = -\frac{T_{\rm C}}{\mathcal{N}} \frac{\Delta V}{V} \frac{d\ln T_{\rm C}}{dp}.$$
 (5)

Тогда величину $d \ln T_{\rm C}/dp$ можно выразить как:

$$\frac{d\ln T_{\rm C}}{dp} = \Delta T_{\rm C} \, \frac{1}{\Delta V/V} \, \frac{\mathcal{N}}{T_{\rm C}}.\tag{6}$$

Найдем величину $d \ln T_{\rm C}/dp$ исходя из того, что нам известна температура Кюри гидрида Tb_{0.3}Dy_{0.7}Fe₂H₃ (см. таблицу), а также сжимаемость $\mathcal{N} = 1.06 \cdot 10^{-3}$ kbar⁻¹ (1.06 $\cdot 10^{-9}$ cm/din) [20]:

$$\frac{d\ln T_{\rm C}}{dp} = 2.9 \cdot 10^{-3} \,\rm kbar^{-1}. \tag{7}$$

Эту же величину $d \ln T_{\rm C}/dp$ можно вычислить на основе известных термодинамических соотношений, связывающих такие величины, как объемная магнитострикция ω и намагниченность M, и полагая, что в области парапроцесса (выше температуры Кюри) намагниченность $M = \rho \sigma$ (где ρ — плотность) является функцией приведенной температуры $(T/T_{\rm C})$ и внешнего магнитного поля H

$$\left(\frac{\partial\omega}{\partial H}\right)_p = -\left(\frac{\partial M}{\partial p}\right)_H = T\left(\frac{\partial M}{\partial T}\right)_H \frac{\partial \ln T_{\rm C}}{\partial p}.$$
 (8)

Отсюда получаем

$$\frac{\partial \ln T_{\rm C}}{\partial p} = \frac{1}{T\left(\frac{\partial M}{\partial T}\right)_H} \left(\frac{\partial \omega}{\partial H}\right)_p.$$
(9)

Из экспериментальных данных полевых зависимостей объемной магнитострикции $\omega(H)$ (см. рис. 3) было получено значение магнитострикционной восприимчивости

$$\left(\frac{\partial\omega}{\partial H}\right)_p = 3.4 \,\mathrm{kOe^{-1}}.\tag{10}$$

Физика твердого тела, 2024, том 66, вып. 8

Используя экспериментальные данные по намагниченности, была вычислена производная

$$\left(\frac{\partial M}{\partial T}\right)_{H} = 2.2 \,\mathrm{G/K}$$

(плотность терфенола $\rho = 9.25 \, \text{g/cm}^3$)

$$\frac{d\ln T_{\rm C}}{dp} = 3.8 \cdot 10^{-3} \,\rm kbar^{-1}. \tag{11}$$

Сравнивая значения $d \ln T_{\rm C}/dp$, полученные с помощью методов, использующих разные экспериментальные данные, подтверждено, что они имеют одинаковый порядок и близкие по величине значения.

Поэтому, далее представляло особый интерес определить относительное изменение результирующего интерала обменного взаимодействия A для терфенола при изменении объема его элементарной ячейки. Величину такого изменения α можно оценить по формуле

$$\alpha = \frac{d\ln A}{d\ln V} = \frac{d\ln T_{\rm C}}{d\ln V} = -\frac{1}{\mathcal{N}} \frac{d\ln T_{\rm C}}{dp}.$$
 (12)

Мы нашли, что α составляет 2.7. Такие же вычисления были выполнены и для соединения YFe₂, которые дали величину $\alpha = 2.8$. Полученные значения для терфенола Tb_{0.3}Dy_{0.7}Fe₂ и YFe₂ совпали в пределах точности наших расчетов. Таким образом, обнаружено, что в соединениях *R*Fe₂ тип редкоземельного атома не оказывает заметного влияния на относительное изменение результирующего интеграла обменного взаимодействия *A* при изменении объема элементарной ячейки. Отметим, что для чистых редкоземельных металлов, таких как тербий или гадолиний, величина α меньше. Для Tb $\alpha = 1.8$, для Gd $\alpha = 2$ [21]. В то же самое время, для соединения с высоким содержанием железа Y₂Fe₁₇ величина α намного ($\alpha = 12$) превышаются те значения, которые получены нами для терфенола Tb_{0.3}Dy_{0.7}Fe₂ и YFe₂.

Магнитные свойства (в том числе и температура Кюри) перечисленных выше магнитных материалов определяются несколькими типами обменных взаимодействий. Так, для двухподрешечных магнетиков типа R-Fe (каким и является терфенол) свойства определяются тремя типами обменных взаимодействий: R-R, R-Fe и Fe-Fe [22]. Однако в чистых РЗМ имеет место только один тип обменного взаимодействия R-R, что соответствует наименьшей величине параметра α [21]. В соединениях Y₂Fe₁₇ и YFe₂ также имеет место только один тип обменного взаимодействия Fe-Fe, поскольку трехвалентные ионы Ү не несут заметного по величине магнитного момента. Тем не менее, величина α для этих соединениях сильно отличается (в ~ 4 раза). Такое различие в редкоземельных интерметаллидах Y2Fe17 и YFe2 может быть связано с соотношением Fe/R. Действительно, в случае соединений YFe₂ и Y₂Fe₁₇ это соотношение будет 2 и 8.5 соответственно, т.е. различие составит 4.25 и коррелирует с величиной а. Соединение Y₂Fe₁₇ известно, как соединение, в структуре которого имеются "гантели", образованные атомами Fe в кристаллографических позициях 4f. Расстояния между атомами Fe в "гантелях" меньше критического (согласно кривой Бэтте-Слетера), а параметр обменного взаимодействия между атомами Fe имеет отрицательный знак. В целом же, соединению Y_2T_{17} присущ смешанный тип обменных взаимодействий (как отрицательный, так и положительный) в парах Fe-Fe в зависимости от их кристаллографических позиций [23–24]. Смешанный тип оказывает колоссальное влияние на магнитные свойства (напомним, что температура Кюри соединения Y_2F_{17} с высоким содержанием Fe ненамного превосходит комнатную температуру, $T_C = 341$ K).

В области температуры Кюри заметная по величине объемная магнитострикция возникает, как правило, изза резкой зависимости интеграла обменного взаимодействия A от расстояний между магнитоактивными ионами (Fe–Fe и R–Fe) и является, по сути, обменной магнитострикцией. Как показано в работах [23,25], соединение Y_2Fe_{17} способно продемонстрировать очень высокие значения обменной магнитострикции, поскольку для него $\alpha = 12$.

Наши исследования показывали, что в гидриде $Tb_{0.3}Dy_{0.7}Fe_2H_3$ величина объемной магнитострикции также демонстрирует большие значения вблизи температуры магнитного фазового перехода из ферримагнитного в парамагнитное состояние (температуры Кюри), благодаря высокому значению $\alpha \sim 3$. В этой области температур близких к комнатной, вклад обменной магнитострикции парапроцесса будет являться преобладающим в гидриде, в то время как другие вклады (от процессов вращения вектора намагниченности и смещения доменных границ) будут малы. Подобные составы, в которых можно варьировать содержание водорода с целью получения новых материалов с заданным комплексом свойств, весьма привлекательны для их практического использования, в частности, в водородной энергетике.

4. Заключение

В работе проведена оценка относительного изменения интеграла обменного взаимодействия А при изменении объема элементарной ячейки терфенола $Tb_{0.3}Dy_{0.7}Fe_2$ и YFe₂. Полученная величина $\alpha \sim 3$ превосходит те значения, которые демонстрируют чистые редкоземельные металлы $\alpha \sim 2$, такие как тербий и гадолиний, но уступает значению, которое имеет соединение $Y_2Fe_{17} \alpha \sim 12$. В $Tb_{0.3}Dy_{0.7}Fe_2$ увеличение объема элементарной ячейки $\Delta V/V$ наблюдается при внедрении атомов водорода в междоузлия структуры типа фаз Лавеса и достигает значений 20.2% для гидрида $Tb_{0.3}Dy_{0.7}Fe_2H_3$. В работе показано, что увеличение объема элементарной ячейки также возможно под действием внешнего приложенного магнитного поля. Именно поэтому в области температуры Кюри наблюдается заметная по величине объемная

магнитострикция, которая является фактически обменной магнитострикцией парапроцесса.

при Найдено, гидрировании что терфенола смещение температуры Кюри $T_{\rm C}$ составляет $d \ln T_{\rm C}/dp = 2.9 \cdot 10^{-3} \, {\rm kbar}^{-1}$. В гидриде Tb_{0.3}Dy_{0.7}Fe₂H₃ эта же величина, полученная из анализа данных по объемной магнитострикции в области температуры Кюри составляет $3.8 \cdot 10^{-3} \, \text{kbar}^{-1}$. Близкие значения свидетельствуют о том, что заметная по величине магнитострикция в гидриде Tb_{0.3}Dy_{0.7}Fe₂H₃ и смещение температуры Кюри в исходном соединении Tb_{0.3}Dy_{0.7}Fe₂ при внедрении атомов водорода обусловлены одним и тем же механизмом, в основе которого лежит зависимость результирующего обменного интеграла А от объема элементарной ячейки, а следовательно от межатомных расстояний между магнитоактивными ионами.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A.E. Clark. Magnetostrictive rare earth-Fe₂ compounds. Chapter 7. In: Handbook of Ferromagnetic Materials. Elsevier, Amsterdam 1, 531–589 (1980).
- [2] К.П. Белов. Магнитострикционные явления и их технические приложения. Наука, М. (1987). 160 с.
- [3] А.С. Илюшин. Основы структурной физики редкоземельных интерметаллических соединений. МГУ, М. (2005). 174 с.
- [4] F. Stein, A. Leineweber. J. Mater. Sci. 56, 5321 (2021).
- [5] I.S. Tereshina, J. Ćwik, E.A. Tereshina, G. Politova, G. Burkhanov. V. Chzhan, A. Ilyushin. M. Miller, A. Zaleski, K. Nenkov, L. Schultz. IEEE Trans. Mag. 50, 2504604(4) (2014).
- [6] R. Abbundi, A. Clark. IEEE Trans. Mag. 13, 1519 (1977).
- [7] R. Grossinger, R. Sato Turtelli, N. Mehmood. IOP Conf. Ser. Mater. Sci. Eng. 60, 012002 (2014).
- [8] N.J. Wang, Y. Liu, H.W. Zhang, X. Chen, Y.-X. Li. China Foundry **13**, *2*, 75 (2016).
- [9] G. Wiesenger, G. Hilscher. Magnetism of hydrides. In: Handbook of Magnetic Materials / Ed. K.H.J. Buschow. Elsevier, Amsterdam 17, 293 (2008).
- [10] Н.К. Зайков, Н.В. Мушников, А.Е. Ермаков. ФММ 79, 4, 50 (1995).
- [11] Н.В. Мушников, В.С. Гавико, Т. Гото. ФММ 100, 24 (2005).
- [12] A.S. Ilyushin, I.S. Tereshina, N.Yu. Pankratov, T.A. Aleroeva, Z.S. Umhaeva, A.Yu. Karpenkov, T.Yu. Kiseleva, S.A. Granovsky, M. Doerr, H. Drulis, E.A. Tereshina-Chitrova. J. Alloys Comp. 847, 155976 (2020).
- [13] Г.А. Политова, И.С. Терешина, С.А. Никитин, Т.Г. Соченкова, В.Н. Вербецкий, А.А. Саламова, М.В. Макарова. ФТТ 47, 1834 (2005).
- [14] S.A. Nikitin, I.S. Tereshina, A.P. Touliakov, E.A. Tereshina. Low Temp. Phys. 27, 4, 297 (2001).
- [15] V.Yu. Bodriakov, T.I. Ivanova, S.A. Nikitin, I.S. Tereshina. J. Alloys Comp. 259, 265 (1997).
- [16] V. Paul-Boncour, O. Isnard, V. Shtender, Y. Skourski, M. Guillot. J. Magn. Magn. Mater. **512**, 167018 (2020).

- [17] V. Paul-Boncour, M. Guillot, G. Wiesinger, G. André. Phys. Rev. B 72, 174430 (2005).
- [18] V. Paul-Boncour, M. Guillot, O. Isnard, B. Ouladdiaf, A. Hoser, T. Hansen, N. Stuesser. J. Solid State Chem. 245, 98 (2017).
- [19] Z. Arnold, O. Isnard, V. Paul-Boncour. J. Appl. Phys. 133, 173901 (2023).
- [20] M. Brouha, K.H.J. Buschow. J. Appl. Phys. 44, 1813 (1973).
- [21] С.А. Никитин. Магнитные свойства РЗМ и их сплавов. Изд-во МГУ, М. (1989). 248 с.
- [22] С.А. Никитин. Вест. МГУ Сер. 3. Физика, астрономия 6, 27 (2011).
- [23] S.A. Nikitin, N.Y. Pankratov, M.V. Makarova, I.S. Tereshina. J. Magn. Magn. Mater. 241, 60 (2002).
- [24] S.A. Nikitin, I.S. Tereshina, N.Y. Pankratov, E.A. Tereshina, Y.V. Skourski, K.P. Skokov, Y.G. Pastushenkov. ΦΤΤ 43, 1720 (2001).
- [25] S.A. Nikitin, N.Y. Pankratov, A.I. Smarzhevskaya, G.A. Politova, Y.G. Pastushenkov, K.P. Skokov, A. del Moral. J. Appl. Phys. 117, 193908 (2015).

Редактор Т.Н. Василевская