05,08

Микроструктура тонких пленок железа с перпендикулярной магнитной анизотропией

© Н.М. Лядов¹, И.Р. Вахитов^{1,2}, А.И. Гумаров^{1,2}, И.А. Файзрахманов¹, Р.И. Хайбуллин^{1,2}

¹ Казанский физико-технический институт им. Е.К. Завойского —

обособленное подразделение ФИЦ "Казанский научный центр Российской академии наук",

Казань, Россия

² Казанский (Приволжский) федеральный университет, Казань, Россия E-mail: nik061287@mail.ru

Поступила в Редакцию 20 мая 2024 г. В окончательной редакции 4 июня 2024 г. Принята к публикации 4 июня 2024 г.

С использованием просвечивающей электронной микроскопии высокого разрешения и магнитометрии исследована микроструктура тонких пленок железа с перпендикулярной магнитной анизотропией (ПМА) и без нее, сформированных методом ионно-стимулированного осаждения. Установлено, что пленки железа с ПМА, в отличие от пленок без ПМА, представляют собой нанокомпозитную пленку, состоящую из наночастиц железа размером 4–5 nm и парамагнитного оксида железа (FeO и Fe₂O₃). Полученные данные в целом указывают на то, что ключевую роль в возникновении ПМА играет нанокомпозитная структура пленок со слабо обменно-связанными ферромагнитными наночастицами железа в парамагнитной матрице.

Ключевые слова: ионно-стимулированное осаждение, нанокомпозит, электронная микроскопия, магнитные свойства.

DOI: 10.61011/FTT.2024.08.58602.127

1. Введение

Тонкие ферромагнитные пленки с перпендикулярной магнитной анизотропией (ПМА) вызывают повышенный интерес в связи с их потенциальным применением в магнитно-сенсорных устройствах спинтроники и стрейнтроники [1-4]. Хорошо известно, что структура, магнитно-фазовый состав и толщина тонких ферромагнитных пленок являются основными факторами, которые определяют их магнитные характеристики и, в частности, магнитно-анизотропные свойства, в т.ч. ПМА. Например, эпитаксиальные пленки ферромагнитных металлов толщиной в несколько атомных слоев, формируемых методом молекулярно-лучевой эпитаксии, проявляют спин-переориентированный переход, который имеет квантовую природу [5,6]. Другим примером являются ферромагнитные тонкие пленки с колончатой структурой [7,8]. Такие пленки также характеризуются наличием ПМА, а ее механизм связан с магнитной анизотропией формы. Магнитострикция, как механизм появления ПМА, также играет существенную роль. В качестве примера можно привести результаты наших исследований пленок никеля, которые осаждались методом ионностимулированного осаждения [9]. Пленки никеля толщиной 200-300 nm на подложке из плавленого кварца после термического отжига в вакууме проявляли ПМА, что было связано с появлением в пленке никеля макронапряжений растяжения. Есть примеры, когда ПМА тонких пленок обусловлена магнитно-кристаллической анизотропией [10]. Таким образом, механизм появления ПМА в тонких пленках может иметь разную физическую природу, и какой из них "работает" в каждом конкретном случае, не всегда очевидно, а именно это определяет область практического применения ферромагнитных пленок с ПМА.

Очевидно, что структура и фазовый состав тонких пленок, в т. ч. ферромагнитных, зависят, а фактически определяются, методикой и условиями их осаждения. Под условиями осаждения понимается большой набор параметров: остаточный вакуум, скорость осаждения, температура подложки, ее структурные параметры, чистота прекурсоров и т. д. Среди ионно-плазменных методов осаждения тонких ферромагнитных пленок наиболее перспективным с точки зрения контролируемости процесса является ионно-стимулированное осаждение (ИСО) [11].

Ранее в наших работах [12,13] сообщались результаты исследований структуры и магнитных свойств тонких пленок железа с толщиной 100–300 nm, полученных методом ИСО. На основе рентгеноструктурных исследований было установлено, что пленки железа являются нанокристаллическими и текстурированными. Средний размер кристаллитов α -Fe составляет ~ 5 nm с преимущественной ориентацией плоскостей (110) кристаллитов железа параллельно плоскости подложки. Было установлено, что нанокристаллиты железа имеют значительную по величине однородную деформацию ($\sim 2.6\%$). В зависимости от скорости осаждения пленки железа проявляли ПМА, о чем свидетельствует транскритиче

ская по форме петля магнитного гистерезиса, а также полосовая доменная структура [14–17]. Исследования элементного состава методом рентгеновской фотоэлектронной спектроскопии и фазового состава с использованием таких методик, как рентгеновская и электронная дифракция, мёссбауэровская спектроскопия конверсионных электронов и термомагнитный анализ, показали присутствие в пленках с ПМА значительного количества кислорода и парамагнитного (при комнатной температуре) оксида железа FeO. Пленки железа без ПМА, полученные при относительно высоких скоростях осаждения, не имели в своем составе дополнительных оксидных фаз железа.

На данный момент имеющийся набор экспериментальных данных не позволяет сделать однозначный вывод о механизме возникновения ПМА в тонких пленках железа, осажденных методом ИСО. В связи с этим, целью настоящей работы является (сравнительное) исследование микроструктуры тонких пленок железа с ПМА и без ПМА методом просвечивающей электронной микроскопии высокого разрешения (ПЭМ ВР).

2. Методика экспериментов

Тонкие пленки железа осаждались методом ИСО на подложки из монокристаллического кремния (111). Предварительно подложки обезжиривались (протирались этиловым спиртом), промывались дистиллированной водой и отжигались на воздухе при температуре $\sim 400^\circ C$ в течение 1 h. Для осаждения тонких пленок железа использовалась мишень из железа диаметром 65 mm, которая распылялась потоком ионов ксенона Хе⁺. Поток ионов создавался ионным источником типа Кауфмана. В качестве рабочего газа использовался ксенон чистотой 99.995%. Энергия ионов ксенона составляла 1 keV. Осаждение пленок проводилось в вакууме $2 \cdot 10^{-2}$ Ра. Базовое давление в вакуумной камере, т.е. давление перед напуском в ионный источник рабочего газа, составляло $1-2 \cdot 10^{-3}$ Ра. Температура подложки во время осаждения пленок не превышала 50°С. Детали экспериментальной техники осаждения были ранее подробно описаны в работе [13]. Исследованные в данной работе пленки железа осаждались при скоростях 9 (образец Fe-1) и 3.2 nm/min (образец Fe-2). Скорость осаждения контролировалась плотностью ионного тока. Плотность ионного тока для образцов Fe-1 и Fe-2 составляла соответственно 150 и 65 µA/cm². В результате были получены образцы тонких пленок железа толщиной $\sim 100{-}120\,\text{nm}.$

Исследование морфологии поверхности и элементного состава пленок, измерение толщины пленок проводилось на сканирующем электронном микроскопе (СЭМ) EVO 50 XVP со встроенным в вакуумную камеру СЭМ рентгеновским энергодисперсионным спектрометром Inca Energy-350. Структура и фазовый состав исследовались методом рентгеновской дифракции в геометрии Брэгга и скользящей геометрии с использованием дифрактометра Дрон-7 с источником Сик α и β -фильтром. Зависимость намагниченности пленок от магнитного поля (петли магнитного гистерезиса) при комнатной температуре измерялась на магнитометре с разверткой магнитного поля до 500 mT [18], а также на установке PPMS-9 методом вибрационной магнитометрии в интервале температур 4–300 К. Размеры образцов для магнитных измерений составляли $\sim 5.0 \times 5.0$ mm².

Микроструктура пленок (поперечные срезы) исследовалась методом ПЭМ ВР на электронном микроскопе Titan компании Thermo Fisher Scientific.

3. Результаты и их обсуждение

Были проведены исследования элементного состава, магнитных свойств и структуры образцов тонких пленок железа Fe-1 и Fe-2. Элементный анализ показал, что содержание кислорода в образце Fe-1 составляет \sim 4 at.%, а в образце Fe-2 \sim 21 at.%. Из данных рентгеноструктурного анализа следует, что образцы текстурированные, с преимущественной ориентацией плоскостей (110) кристаллитов железа параллельно плоскости подложки. Средний размер кристаллитов железа составляет $\sim 5.5\,\mathrm{nm}$. Кроме того, в пленках присутствует неупорядоченная компонента α -Fe ($\sim 24\%$). В образце Fe-2, помимо металлического железа α -Fe, присутствует фаза FeO. Оксид железа образуется в составе пленки железа в процессе осаждения за счет остаточного кислорода вакуумной камеры при относительно низких скоростях осаждения. Если исходить из элементного состава образца, то процентное содержание фазы FeO составляет ~ 40%. Эта величина близка к порогу перколяции для композитных материалов типа металл-диэлектрик.

На рис. 1 приведены петли магнитного гистерезиса, которые показывают, что образец Fe-2 имеет ПМА (поле ПМА $H_a = 290 \text{ mT}$), а намагниченность насыщения заметно меньше по сравнению с α -Fe и составляет $\sim 60\%$ от намагниченности насыщения α -Fe. Как и ожидалось, образец Fe-2 с ПМА неоднороден как по структуре, так и по фазовому составу, и значительно отличается от образца Fe-1 без ПМА.

На рис. 2, а и b приведены обзорные темнопольные ПЭМ-изображения поперечных срезов тонких пленок железа без ПМА (образец Fe-1) и с ПМА (образец Fe-2). Темнопольные ПЭМ-изображения получены путем выделения диафрагмой небольшого сектора на интенсивном кольце электронной микродифракции от плоскостей (110) α -Fe (межплоскостное расстояние $d \approx 2.05$ Å). Вследствие этого на темнопольных ПЭМ-изображениях наблюдается контрастирование мелкодисперсных частиц фазы α -Fe с плоскостями (110), перпендикулярными подложке. На обзорном снимке (рис. 2, b) образца Fe-2 виден оксидный слой кремния толщиной ~ 20 nm. Этот слой возник на поверхности подложки из кремния в процессе ее отжига в атмосфере воздуха. Темнопольное

Рис. 1. Зависимости намагниченности пленок железа *a*) без ПМА (Fe-1) и *b*) с ПМА (Fe-2). *M_s* — намагниченность насыщения, *H_c* — коэрцитивное поле, *H_a* — поле анизотропии.

Рис. 2. Темнопольное изображение поперечных срезов пленок железа: *a*) без ПМА и *b*) с ПМА.

изображение образца Fe-1 (рис. 2, a) в целом менее контрастное — вероятно, из-за большей толщины поперечного среза, вследствие чего оксидный слой кремния на нем не виден. В пользу этой версии говорит тот факт, что и у образца Fe-2 по мере продвижения от центра ямки травления к периферии контраст на снимке между оксидным слоем кремния и кремнием пропадает. Далее снимки поперечных срезов обоих образцов ничем не отличаются: наблюдается слой толщиной 20–25 nm, состоящий из мелкодисперсных частиц железа, который непосредственно примыкает к подложке, а выше этого слоя наблюдается слой более крупных взаимно ориентированных нанокристаллов железа.

На рис. 3 приведены светлопольные ПЭМ-изображения высокого разрешения поперечных срезов и картины электронной микродифракции для образцов Fe-1 без ПМА (a, b) и Fe-2 с ПМА (c, d). Дифракционное кольцо (110) (рис. 3, b и d) α -Fe состоит из областей повышенной интенсивности и размытых областей, которые можно отнести к нанокристаллитам железа и межкри-

сталлитным неупорядоченным областям железа. Межплоскостное расстояние составляет 2.03-2.05 Å, что соответствует d_{110} для α -Fe. Это хорошо согласуется с результатами ранее проведенных исследований методом ПЭМ [12] и рентгеноструктурного анализа пленок железа [13]. На картине электронной микродифракции образца Fe-2 присутствуют дополнительные рефлексы, которые можно отнести к фазам оксида железа FeO и Fe₃O₄. Вместе с тем, наблюдается относительно большой разброс межплоскостных расстояний для оксидной фазы на различных участках пленок железа с ПМА (образец Fe-2), которые можно отнести к магнетиту (Fe₃O₄) или гематиту (Fe₂O₃). На картине электронной микродифракции для образца Fe-2 (рис. 3, d) присутствует также интенсивный рефлекс от плоскостей (111) FeO с $d_{111} \approx 2.5 - 2.6$ Å. Другие, интенсивные рефлексы от оксидной фазы FeO, такие как (200) и (220), относительная интенсивность которых составляет 100 и 53% [19], не наблюдаются. Вероятно, что это связано с текстурированным ростом также и оксидной фазы. Рефлекс с $d \approx 2.5 - 2.6$ Å можно также отнести к гематиту Fe₂O₃ $(d_{110} = 2.519 \text{ Å})$ [19]. Однако, учитывая ранее полученные результаты рентгеноструктурного анализа образцов тонких пленок железа с ПМА [13], можно утверждать, что оксидной фазой является FeO.

На рис. 3, *а* представлен фрагмент ПЭМ-изображения микроструктуры образца Fe-1, полученный в режиме высокого разрешения. На снимке видны кристаллические плоскости (110) α -Fe, расстояние между которыми составляет 2.06–2.08 Å. Плоскости имеют разную ориентацию относительно горизонтальной линии фотографии. Границы между нанокристаллитами плохо выражены, и это затрудняет определение их среднего размера и формы. Кроме того, в пленке присутствует значительная доля неупорядоченной фазы железа.

На рис. 3, с представлен фрагмент ПЭМ-изображения микроструктуры образца Fe-2, полученный в высоком

Рис. 3. Светлопольные изображения и микродифракция поперечных срезов образцов тонких пленок железа Fe-1 без ПМА (*a*, *b*) и Fe-2 с ПМА (*c*, *d*).

разрешении. На фотографии видны кристаллиты с разной ориентацией кристаллических плоскостей, а также неупорядоченные области. Межплоскостные расстояния составляют около 2.1 Å вне зависимости от ориентации кристаллитов, что близко по значению к межплоскостному расстоянию d_{110} для α -Fe. С другой стороны, 2.1 Å близко по значению к межплоскостному расстоянию $d_{200} = 2.15$ Å FeO. Поскольку в анализируемом слое нанокристаллы располагаются с произвольной ориентацией (кольца на дифракционной картине), то электроны проходят сквозь стопки нанокристаллов (заметен муар на ПЭМ-ВР-изображениях). Поэтому различить нанокристаллы Fe и FeO по различию рассеяния или поглощения электронов оказалось невозможным. Нанокристаллы по форме вытянутые, и их размер составляет $\sim 5 \times 10 \, \text{nm}^2$. Кроме того, на полноформатной фотографии видны также кристаллические плоскости с $d \approx 1.43$ Å, что соответствует плоскостям (200) α -Fe.

жиме высокого разрешения не позволила установить детали микроструктуры пленок железа с ПМА. Ожидалось, что наличие большой доли парамагнитной при комнатной температуре оксидной фазы в образце Fe-2 с ПМА должно привести к формированию нанокомпозитной пленки с ферромагнитными наночастицами α -Fe в немагнитной матрице. По этой причине мы измерили температурные зависимости намагниченности образцов Fe-1 и Fe-2 при их охлаждении в магнитном поле (FC) и без поля (ZFC), которые представлены на рис. 4, *а* и *b*. Данная методика весьма информативна при исследованиях композитных магнитных материалов, т. к. позволяет получать данные о магнитной микроструктуре материала [15,20].

Таким образом, электронная микроскопия даже в ре-

Практически монотонные температурные зависимости намагниченности ZFC и FC (H = 5 Oe) образца Fe-1 свидетельствуют об однородности его магнитной струк-

Рис. 4. Зависимость магнитного момента от температуры при охлаждении в слабом магнитном поле (FC) и без поля (ZFC) образцов пленок железа *a*) Fe-1 без ПМА и *b*) Fe-2 с ПМА.

туры. В области T = 45 К наблюдается небольшая особенность (рис. 4, *a*), которая обусловлена, как мы полагаем, наночастицами железа в области переходного слоя пленка—подложка (рис. 2, *a*). Зависимости ZFC и FC (H = 50 Oe) образца Fe-2 имеют более сложный немонотонный характер и ранее не наблюдались (рис. 4, *b*). В интервале температур 4—170 К зависимости ZFC и FC характерны для нанокомпозитных материалов со слабо взаимодействующими между собой ферромагнитными наночастицами (см. например [20]). Температура блокировки T_b (положение максимума на зависимости ZFC, рис. 4, *b*) составляет около 77 К. Используя выражение

$$25k_{\rm B}T_b=K_{\rm a}V_{\rm av},$$

где $k_{\rm B}$ — константа Больцмана, T_b — температура блокировки, K_a — константа магнитной анизотропии $(\sim 10^7 \, {\rm erg/cm^3}$ для наночастиц, средний диаметр которых меньше $\sim 10 \text{ nm}$) [21–23], по среднему объему наночастицы V_{av} можно оценить средний размер наночастиц железа в образце с ПМА, который составил $\sim 4\,\mathrm{nm},$ что согласуется с результатами исследований методом ПЭМ ВР (см. выше). Оценка размера наночастиц из ширины рентгеновского рефлекса дает величину ~ 5.5 nm, что достаточно хорошо согласуется с представленной оценкой. В интервале температур 170-300 К наблюдается увеличение намагниченности на обеих температурных зависимостях (ZFC и FC). Мы полагаем, что это связано с присутствием в образце "крупных" ферромагнитных наночастиц железа или агломератов из наночастиц железа, между которыми имеется сильное магнитное взаимодействие. Взяв за температуру магнитной необратимости T_{irr} точку пересечения зависимостей ZFC и FC $(T_{\rm irr} \approx 300 \, {\rm K})$ [20], можно оценить средний размер этих частиц, который составил ~ 6 nm.

4. Заключение

Структура и фазовый состав тонких пленок железа, формируемых методом ИСО, неоднородна. Имеется полоса мелкодисперных частиц железа, которая непосредственно примыкает к подложке. Выше этой полосы наблюдается укрупнение нанокристаллов α-Fe и их ориентированный рост. Пленки железа с ПМА, в отличие от пленок без ПМА, представляют собой нанокомпозит, состоящий из наночастиц железа размером 4-5 nm и оксида железа (FeO). Полученные данные в целом подтверждают сделанный ранее вывод о механизме возникновения ПМА в тонких пленках железа, формируемых методом ИСО [12,13]. А именно, это однородная микродеформация нанокристаллитов железа, которая ведет к появлению дополнительного магнитного момента во всех направлениях благодаря магнитоупругому эффекту. Усреднение этих моментов в плоскости пленки дает ноль из-за случайной ориентации кристаллитов железа. Однако, благодаря текстурированности пленок, индуцированный магнитный момент нанокристаллитов в перпендикулярном направлении суммируется. В результате возникает ПМА.

Благодарности

Авторы благодарят В.И. Вдовина и А.К. Гутаковского за ПЭМ-исследования в Институте физики полупроводников им. А.В. Ржанова СО РАН.

Финансирование работы

Настоящая работа выполнена в рамках государственного задания ФИЦ КазНЦ РАН. Часть работы И.Р. Вахитова и А.И. Гумарова выполнена в Казанском (Приволжском) федеральном университете.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger. Sci. 294, 5546, 1448 (2001).
- [2] I. Žutić, J. Fabian, S.D. Sarma. Rev. Mod. Phys. 76, 2, 323 (2004).
- [3] А.А. Бухараев, А.К. Звездин, А.П. Пятаков, Ю.К. Фетисов.
 УФН 61, 12, 1288 (2018). [А.А. Bukharaev, А.К. Zvezdin,
 А.Р. Руаtakov, Ү.К. Fetisov. Phys. Usp. 61, 12, 1175 (2018)].
- [4] S. Bandyopadhyay. Magnetic Straintronics. Springer, Switzerland (2022). P. 135.
- [5] D.P. Pappas, K.P. Kämper, H. Hopster. Phys. Rev. Lett. 64, 26, 3179 (1990).
- [6] Z. Celinski, B. Heinrich. J. Appl. Phys. 70, 10, 5935 (1991).
- [7] L. Xi, J.M. Lu, J.J. Zhou, Q.J. Sun, D.S. Xue, F.S. Li. J. Magn. Magn. Mater. **322**, 15, 2272 (2010).
- [8] А.И. Линник, А.М. Прудников, Р.В. Шалаев, В.Н. Варюхин, С.А. Костыря, В.В. Бурховецкий. Письма в ЖТФ 38, 11, 5 (2012). [А.І. Linnik, А.М. Prudnikov, R.V. Shalaev, V.N. Varyukhin, S.A. Kostyrya, V.V. Burkhovetskii. Tech. Phys. Lett. 38, 6, 499 (2012)].
- [9] Н.М. Лядов, В.В. Базаров, И.Р. Вахитов, А.И. Гумаров, Ш.З. Ибрагимов, Д.М. Кузина, И.А. Файзрахманов, Р.И. Хайбуллин, В.А. Шустов. ФТТ 63, 10, 1687 (2021).
 [N.M. Lyadov, V.V. Bazarov, I.R. Vakhitov, A.I. Gumarov, S.Z. Ibragimov, D.M. Kuzina, I.A. Faizrakhmanov, R.I. Khaibullin, V.A. Shustov. Phys. Solid State 63, 11, 1723 (2021)].
- [10] А.В. Петров, С.И. Никитин, Л.Р. Тагиров, А.С. Камзин,
 Р.В. Юсупов. Письма в ЖЭТФ 118, 2, 104 (2023).
 [А.V. Petrov, S.I. Nikitin, L.R. Tagirov, A.S. Kamzin,
 R.V. Yusupov. JETP Lett. 118, 2, 117 (2023)].
- [11] J.K. Hirvonen. Mater. Sci. Rep. 6, 6, 215 (1991).
- [12] N.M. Lyadov, V.V. Bazarov, F.G. Vagizov, I.R. Vakhitov, E.N. Dulov, R.N. Kashapov, A.I. Noskov, R.I. Khaibullin, V.A. Shustov, I.A. Faizrakhmanov. Appl. Surf. Sci. **378**, 114 (2016).
- [13] N.M. Lyadov, F.G. Vagizov, I.R. Vakhitov, A.I. Gumarov, Sh.Z. Ibragimov, D.M. Kuzina, I.A. Faizrakhmanov, R.I. Khaibullin, V.A. Shustov. Vacuum 168, 108860 (2019).
- [14] В.И. Головчук, Ю.А. Бумай, М.Г. Лукашевич, Н.М. Лядов, И.А. Файзрахманов, Р.И. Хайбуллин. ФТТ **63**, *12*, 2096 (2021). [V.I. Halauchuk, Y.A. Bumai, M.G. Lukashevich, N.M. Lyadov, I.A. Faizrakhmanov, R.I. Khaibullin. Phys. Solid State **64**, *14*, 2324 (2022)].
- [15] P. Sharma, H. Kimura, A. Inoue, E. Arenholz, J.-H. Guo. Phys. Rev. B 73, 5, 052401 (2006).
- [16] P. Sharma, H. Kimura, A. Inoue. J. Appl. Phys. 101, 9, 09N502 (2007).
- [17] M. Coísson, F. Celegato, E. Olivetti, P. Tiberto, F. Vinai, M. Baricco. J. Appl. Phys. **104**, *3*, 033902 (2008).
- [18] Д.К. Нургалиев, П.Г. Ясонов. Коэрцитивный спектрометр. Патент РФ на полезную модель № 81805. Бюл. ФИПС № 9 (2009).
- [19] Л.И. Миркин. Справочник по рентгеноструктурному анализу поликристаллов. Физматгиз, М. (1961). С. 863.

- [20] L. Machala, R. Zboril, A. Gedanten. J. Phys. Chem. B 111, 16, 4003 (2007).
- [21] Г.И. Фролов. ЖТФ 74, 7, 102 (2004). [G.I. Frolov. Tech. Phys. 74, 7, 909 (2004)].
- [22] N.M. Dempsey, L. Ranno, D. Givord, J. Gonzalo, R. Serna, G.T. Fei, A.K. Petford-Long, R.C. Doole, D.E. Hole. J. Appl. Phys. 90, 12, 6268 (2001).
- [23] Z.M. Zeng, P. Khalili Amiri, J.A. Katine, J. Langer, K.L. Wang, H.W. Jiang. Appl. Phys. Lett. **101**, *6*, 062412 (2012).
- Редактор Е.В. Толстякова