## 03,13

# Исследование межслоевой поверхности пленок *p*-Bi<sub>2-x</sub>Sb<sub>x</sub>Te<sub>3</sub> топологических термоэлектриков методами сканирующей туннельной спектроскопии и микроскопии

© Л.Н. Лукьянова, И.В. Макаренко, О.А. Усов, В.А. Данилов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: lidia.lukyanova@mail.ioffe.ru

Поступила в Редакцию 11 апреля 2024 г. В окончательной редакции 12 мая 2024 г. Принята к публикации 17 июня 2024 г.

В слоистых пленках топологических изоляторов *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> и *p*-Bi<sub>2</sub>Te<sub>3</sub>, осажденных дискретным испарением, исследована морфология межслоевой поверхности Ван-дер-Ваальса (0001) методом сканирующей туннельной микроскопии. Проведена систематизация примесных и собственных дефектов, возникающих в процессе формирования пленок. Установлено, что в пленке твердого раствора *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> с низкой теплопроводностью возрастает плотность вакансий теллура  $V_{Te}$  и искажений по высоте в распределении атомов Te(1) на поверхности (0001) по сравнению с *p*-Bi<sub>2</sub>Te<sub>3</sub>. Методом сканирующей туннельной спектроскопии определены локальные параметры поверхностных электронных состояний фермионов Дирака. Показано, что в пленке *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> с высокой термоэлектрической эффективностью точка Дирака *E*<sub>D</sub> смещается к потолку валентной зоны. Несмотря на то, что в объеме исследованные пленки имеет проводимость *p*-типа, на поверхности пленок находятся электроны, поскольку уровень Ферми *E*<sub>F</sub> располагается выше точки Дирака *E*<sub>D</sub>. Флуктуации энергии точки Дирака  $\Delta E_D / \langle E_D \rangle$ , края валентной зоны  $\Delta E_V / \langle E_V \rangle$  и энергии уровней поверхностных дефектов *E*<sub>p</sub> в пленках *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> ниже, чем в *p*-Bi<sub>2</sub>Te<sub>3</sub> вследствие изменения плотности состояний на поверхности (0001). Ширина запрещенной зоны *E*<sub>g</sub> в исследованных пленках возрастает по сравнению с оптическими данными вследствие инверсии краев валентной зоны и зоны проводимости в топологических изоляторах.

Ключевые слова: халькогениды висмута и сурьмы, слоистые пленки, поверхностные дефекты, поверхностная концентрация фермионов, топологический изолятор.

DOI: 10.61011/FTT.2024.08.58595.86

### 1. Введение

Высокоэффективные термоэлектрические материалы на основе халькогенидов висмута и сурьмы [1], кроме того являются сильными трехмерными топологическими изоляторами (3D TИ) с аномальными свойствами поверхностных состояний фермионов Дирака [2–5]. Появление топологических поверхностных состояний связано с инверсией электронных зон и определяется сильным спин-орбитальным взаимодействием [2,3]. Объемная часть термоэлектрика приобретает свойства изолятора, в то время как поверхностные электроны приобретают специфические металлические свойства, за счет жесткой связи между спином и импульсом [4,5].

Однако в топологических термоэлектриках существует остаточная объемная проводимость, связанная с объемными дефектами [6,7]. Варьирование состава термоэлектрика позволяет частично уменьшить объемную проводимость за счет компенсации вкладов акцепторных и донорных собственных дефектов [8,9].

Для исследования и систематизации примесных и собственных дефектов применяются методы сканирующей туннельной микроскопии (СТМ) и сканирующей туннельной спектроскопии (СТС) [10–12]. Эти методы

дают возможность получить информацию о локальных параметрах поверхностных электронных состояний фермионов Дирака из анализа изображений морфологии и спектров дифференциальной туннельной проводимости  $dI_t/dU$ .

Спектры  $dI_t/dU$ , пропорциональные электронной плотности состояний [13], позволяют определить энергию точки Дирака  $E_D$  и ее флуктуации относительно среднего значения  $\Delta E_D$ , положение краев валентной зоны  $E_V$  и зоны проводимости  $E_C$ , положение уровня Ферми  $E_F$ , ширину запрещенной зоны  $E_g$ , энергию уровней дефектов  $E_P$  и поверхностную концентрацию фермионов  $n_s$ . Настоящая работа посвящена исследованию морфологии и спектров  $dI_t/dU$  в слоистых пленках p-Bi<sub>2</sub>Te<sub>3</sub> и твердого раствора p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>, имеющего высокую термоэлектрическую эффективность [14].

## 2. Морфология

Исследуемые пленки p-Bi<sub>2</sub>Te<sub>3</sub> и p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> со структурой тетрадимита состоят из анизотропных квинтетов (-Te(1)-Bi-Te(2)-Bi-Te(1)-), в которых атомы Sb замещают атомы Bi. Различие между сильными



**Рис. 1.** Морфология поверхности (0001) в (*a*) *p*-Bi<sub>2</sub>Te<sub>3</sub> и (*b*) *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>. Измерения проводили (*a*) при туннельном токе  $I_t = 0.2$  nA и напряжении U = 800 mV, (*b*)  $I_t = 0.3$  nA и U = 250 mV.

ковалентными химическими связями с небольшим добавлением ионной связи между слоями в квинтетах и слабыми силами ван дер Ваальса, действующими между квинтетами, определяет легкое расслоение кристаллов по границам Te(1)-Te(1) вдоль плоскостей спайности (0001). В рассматриваемых материалах минимальную величину свободной энергии имеет межслоевая поверхность (0001), перпендикулярная кристаллографической оси *с*. В этом случае зародыши халькогенидов висмута и сурьмы в основном располагаются вдоль оси *с* перпендикулярно плоскости подложки [15].

Пленки *p*-Bi<sub>2</sub>Te<sub>3</sub> и твердого раствора *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> для СТМ/СТС исследований были получены методом дискретного испарения в изотермической камере, которая обеспечивает вакуум 1 · 10<sup>-6</sup> Torr и однородное распределение температуры вдоль плоскости подложки, в качестве которой использовали полиимидные ленты толщиной до 20 µm [14]. Исходный термоэлектрический материал в виде порошка с размерами зерен около 10 µm подавался в нагретый до 800-850 °С кварцевый тигель, где он практически мгновенно испарялся и осаждался на подложку, нагретую до 250 °С. При формировании пленок p-Bi<sub>2</sub>Te<sub>3</sub> и p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> использовался избыточный теллур для поддержания стехиометрического состава, так как Те является легко летучим компонентом. Толщины t полученных пленок варьировались в пределах от 0.5 до 3 µm. Исследования в настоящей работе были выполнены на пленках при  $t \approx 2 \, \mu m$ .

Морфология поверхности (0001) пленок p-Bi<sub>2</sub>Te<sub>3</sub> и твердого раствора p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> была исследована методом СТМ при давлении  $1.5 \cdot 10^{-7}$  Ра с разрешением 0.05 Å при комнатной температуре, постоянном токе и с включенной обратной связью (рис. 1). Исследуемые

Физика твердого тела, 2024, том 66, вып. 8

пленки имели субмикронную толщину. Для очистки поверхности в высоковакуумной камере верхний слой пленки отслаивали липкой лентой с помощью двух взаимно-перпендикулярных направляющих.

Морфология поверхности (0001) в материалах на основе  $Bi_2Te_3$  представляет собой гексагональную плотноупакованную кристаллическую структуру в последовательности слоев *abc*, которая определяет периодический сдвиг каждого слоя в квинтете (-Te(1)-Bi-Te(2)-Bi-Te(1)-) по отношению к последующему [3,16].

Примесные и собственные дефекты в пленках  $p-Bi_{0.5}Sb_{1.5}Te_3$  приводят к искажениям электронных состояний при флуктуациях кулоновского потенциала [16] и влияют на интенсивность изображений морфологии поверхности на рис. 1. Искажения электронных состояний в [17,18] объясняются взаимодействием между слоями в квинтетах, в результате которого происходит смещение положений атомов в слоях и искривление межслоевой поверхности ван дер Ваальса.

Из анализа гистограмм рельефа поверхности (0001), построенным с помощью изображений морфологии для пленок *p*-Bi<sub>2</sub>Te<sub>3</sub> и *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te (рис. 1), были определены средние  $H_M$  и среднеквадратичные  $H_S$  отклонения искажений по высоте в распределении атомов Te(1) на поверхности. В пленках *p*-Bi<sub>2</sub>Te<sub>3</sub> средние величины  $\langle H_M \rangle = 0.068$  nm и  $\langle H_S \rangle = 0.033$  nm были рассчитаны по изображениям морфологии. поверхности (0001). В пленках *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> величины  $\langle H_M \rangle$  и  $\langle H_S \rangle$  возрастают до 0.077 nm и 0.060 nm, что соответствует росту  $\langle H_M \rangle$  на 13%, а  $\langle H_S \rangle$  на 84% по сравнению с пленками *p*-Bi<sub>2</sub>Te<sub>3</sub>. Увеличение  $\langle H_M \rangle$  и  $\langle H_S \rangle$  в пленках твердого раствора *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> определяется образованием структурных



**Рис. 2.** Локальные профили поверхности (0001) в пленках ТИ *p*-Bi<sub>2</sub>Te<sub>3</sub> на различных участках изображений морфологии поверхности. 1 — антиструктурные дефекты Bi<sub>Te</sub>, стрелками показаны близкорасположенные дефекты Bi<sub>Te</sub>, 2 — вакансия Te ( $V_{Te}$ ).

дефектов и искажениями поверхностных электронных состояний вследствие замещений атомов Sb — Bi [19,20].

На профилях (рис. 2, 3), полученных из морфологии поверхности (0001) (рис. 1), возникает длинноволновая модуляция, которая определяется локальными искажениями плотности поверхностных электронных состояний. Более четко выраженная длинноволновая модуляция наблюдается в пленках p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> с замещениями атомов Sb  $\rightarrow$  Bi. На морфологии поверхности в пленках твердого раствора p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> наблюдались флюктуации интенсивности в виде темных и светлых пятен (рис. 1), а величины  $H_M$  и  $H_S$  возрастали по сравнению с пленками p-Bi<sub>2</sub>Te<sub>3</sub>.

Поверхностные дефекты в исследуемых пленках *p*-типа наблюдаются в виде изменений в распределении высот между соседними атомами на профилях поверхности (рис. 2, 3) и определяют рельеф поверхности (0001). В пленках *p*-Bi<sub>2</sub>Te<sub>3</sub> и *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> наиболее вероятно образование акцепторных антиструктурных дефектов висмута Bi<sub>Te</sub>, заряженных вакансий теллура  $V_{\text{Te}}$  и нейтральных примесных дефектов замещения Sb  $\rightarrow$  Bi в пленках твердого раствора *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>.

В соответствии с разностью диаметров атомов Bi, Sb и Te антиструктурные дефекты Bi<sub>Te</sub> наблюдаются на профилях в виде выступов ~ 0.04 nm, нейтральные примесные дефекты замещения в виде провалов ~ 0.05–0.06 nm, глубина провалов вакансий достигает 0.08–0.09 nm [21,22]. Для идентификации дефектов были проанализированы по 8 профилей для каждой из пленок *p*-Bi<sub>2</sub>Te<sub>3</sub> и *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>. Данные о поверхностных точечных дефектах в исследованных пленках были близки к расчетным значениям, полученным в работе [21]. Кроме отмеченных на профилях поверхности дефектов провалы и выступы на рис. 2 и 3 могут относиться к



**Рис. 3.** Локальные профили поверхности (0001) в пленках ТИ *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> на различных участках изображений морфологии поверхности (a, b). *1* — антиструктурные дефекты Bi<sub>Te</sub>, на рис. 1, *a* показаны близкорасположенные дефекты Bi<sub>Te</sub>, *2* — вакансия Te (V<sub>Te</sub>), *3* — примесные дефекты замещения Sb — Bi.

дефектам, расположенным в глубоких слоях квинтета (-Te(1)-Bi-Te(2)-Bi-Te(1)-).

Акцепторные антиструктурные дефекты  $Bi_{Te}$  и вакансии теллура  $V_{Te}$  были обнаружены как в пленках p- $Bi_2Te_3$ , так и в p- $Bi_{0.5}Sb_{1.5}Te_3$ . Однако в твердом растворе плотность вакансий  $V_{Te}$  была выше (рис. 2, 3), что является одной из причин увеличения  $H_M$  и  $H_S$ . Преимущественное влияние вакансий теллура  $V_{Te}$  на искажения поверхностных электронных состояний за счет наибольшей глубины провалов на профилях поверхности (0001) и большей энергии образования является наиболее вероятным по сравнению с нейтральными дефектами замещения Sb — Bi. Антиструктурные дефекты  $Bi_{Te}$  с меньшей энергией образования, чем вакансии  $V_{Te}$ , слабее влияют на величины  $\langle H_M \rangle$  и  $\langle H_S \rangle$ .

Кроме того, на некоторых из рассмотренных профилей были обнаружены близкорасположенные пары антиструктурных дефектов  $Bi_{Te}$ , которые сильнее влияют на термоэлектрические свойства, чем одиночные дефекты  $Bi_{Te}$  [23]. Большая плотность дефектов в пленках твердого раствора *p*- $Bi_{0.5}Sb_{1.5}Te_3$  приводит к значительному снижению теплопроводности для области температур ниже температуры Дебая ( $T_D = 145$  K), но при этом снижается электропроводность. Оптимизация технологии формирования пленок влияет на образование дефектов и позволяет компенсировать снижение электропроводности, что обеспечивает повышение термоэлектрической эффективности до  $Z_{max} = 4.35 \cdot 10^{-3}$  K<sup>-1</sup> при T = 240 K в пленках *p*- $Bi_{0.5}Sb_{1.5}Te_3$  [14].

# 3. Спектры СТС

Исследования спектров СТС с помощью измерений дифференциальной туннельной проводимости  $dI_t/dU$  от напряжения U на произвольных участках поверхности (0001) пленок p-Bi<sub>2</sub>Te<sub>3</sub> и p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> проводились с отключенной обратной связью, с частотой 7 kHz и напряжением модуляции 5 – 10 mV при фиксированной высоте вольфрамового зонда над поверхностью и разрешением 1.5 mV [24].

Из анализа нормированных спектров  $dI_t/dU$  от U (рис. 4) были определены положение точки Дирака относительно уровня Ферми, флуктуации энергии точки Дирака, края валентной зоны  $E_V$  и зоны проводимости  $E_C$ , и ширина запрещенной зоны  $E_g$ .

Вид зависимостей  $dI_t/dU$  от U, особенно в пленках p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> (рис. 4, b), можно объяснить флуктуациями плотности состояний вследствие высокой плотности дефектов, особенно вакансий  $V_{\text{Te}}$  (рис. 1, b; 3, b). Как показано на рис. 4, в исследуемых пленках точка Дирака  $E_D$  находится в валентной зоне [11,25] и энергия  $E_D$  имеет флуктуации  $\Delta E_D$ , которые определяют относительно среднего значения  $\Delta E_D/\langle E_D \rangle$ . В пленках p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> флуктуации  $\Delta E_D/\langle E_D \rangle$  изменялись от 2 до 16% на различных фрагментах поверхности. В пленках p-Bi<sub>2</sub>Te<sub>3</sub> интервал флуктуаций  $E_D$  составлял 10–18%.



**Рис. 4.** Дифференциальная туннельная проводимость  $dI_t/dU$  в зависимости от напряжения U в пленках (*a*) p-Bi<sub>2</sub>Te<sub>3</sub> и (*b*) p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> на различных фрагментах поверхности пленок 1-3.

(a) p-Bi<sub>2</sub>Te<sub>3</sub>, энергия точки Дирака  $E_D$ , meV: I - (-220), 2 - (-226), 3 - (-288), энергия края валентной зоны  $E_V$ , meV: I - (-31), 2 - (-36), 3 - (-56), энергия края зоны проводимости  $E_C$ : I - 169, 2 - 161, 3 - 142. (b) p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>  $E_D$ : I - (-118), 2 - (-143), 3 - (-160); энергия края валентной зоны  $E_V$ , meV: I - (-97), 2 - (-126), 3 - (-135), энергия края зоны проводимости  $E_C$ , meV: I - 143, 2 - 112, 3 - 101.

Положение краев валентной зоны  $E_V$  и зоны проводимости  $E_C$  в пленках определяли методом нормализованной дифференциальной проводимости из точек перегиба зависимости  $(dI_t/dU)/(|I_t|(U))$  [26]. При определении краев зон  $E_V$  и  $E_C$  точка I = 0, U = 0 была исключена. Для более точного определения положения  $E_V$  и  $E_C$  дополнительно рассчитывали  $d^2I_t/dU^2$  [10]. Кроме флуктуаций  $\Delta E_D$  для исследуемых пленок также характерны флуктуации энергии  $E_V$  и  $E_C$ . На различных фрагментах поверхности пленок p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> (рис. 4) средние значения  $\Delta E_V/\langle E_V \rangle$  и  $\Delta E_C/\langle E_C \rangle$  были близкими и из-

менялись от 5 до 20%. Ширина запрещенной зоны  $E_g$  с учетом флуктуаций величин  $E_V$  и  $E_C$  отличается не более, чем на 1% по сравнению со средним значением (рис. 4) как для пленок p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> ( $\langle E_g \rangle = 238$  meV), так и p-Bi<sub>2</sub>Te<sub>3</sub> ( $\langle E_g \rangle = 198$  meV). Величины  $E_g$  в пленках, полученные методом СТС, вследствие инверсии зон в ТИ [3–5] выше по сравнению с оптическими данными, согласно которым в p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>  $E_g = 200$  meV [6,23], а в p-Bi<sub>2</sub>Te<sub>3</sub>  $E_g = 150$  meV [24,27]. При исследовании спектров оптического поглощения в пленках измеряется эффективная ширина запрещенной зоны  $E_g$ , которой соответствует усредненное расстояние между краями зон  $E_V$  и  $E_C$ . Это расстояние меньше максимального между краями  $E_V$  и  $E_C$  в ТИ за счет инверсии зон.

Обнаруженные флуктуации энергий  $E_D$ ,  $E_V$  и  $E_C$  в пленках p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> и p-Bi<sub>2</sub>Te<sub>3</sub> определяются флуктуациями плотности состояний на поверхности ТИ и согласуются с изменениями  $H_M$  и  $H_S$ , которые характеризуют искажения высот в распределении атомов Te(1) на поверхности (0001).

В материалах *p*-типа энергию точки Дирака  $E_D$  определяли как точку пересечения линии, соответствующей экстраполяции участка линейной дисперсии фермионов  $(dI_t/dU)$  с координатой энергетической зависимости (U) [11,25]. Такой метод определения положения точки Дирака  $E_D$  обусловлен тем, что при инверсии краев зон край валентной зоны искажается существенно больше за счет заполнения электронами, чем край зоны проводимости.

Точка Дирака в пленках *p*-Bi<sub>2</sub>Te<sub>3</sub> находится в валентной зоне (рис. 4, *a*) по данным исследований спектров СTС [11,25] и ARPES [6,11]. Положение точки Дирака  $E_D$  (рис. 4, *a*) в пленках *p*-Bi<sub>2</sub>Te<sub>3</sub> толщиной около 2 $\mu$ m, сформированных дискретным испарением, согласуется с исследованиями спектров ARPES в тонких пленках *p*-Bi<sub>2</sub>Te<sub>3</sub> при *t* = 6 nm, полученных методом MBE [6].

В пленках твердого раствора *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> (рис. 4, *b*) точка Дирака  $E_D$  (рис. 4, *b*) смещается к запрещенной зоне, оставаясь вблизи края валентной зоны, при этом среднее значение  $\langle E_D \rangle$  — 21 meV относительно  $E_V$ . По данным ARPES [6] точка  $E_D$  в пленках при t = 6 nm *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> находится в глубоком "седле", образованном в запрещенной зоне, в результате искажения краев валентной зоны, связанного с инверсией зон в ТИ. В таком виде точка Дирака в пленке *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>, переходит в запрещенную зону и  $E_D = 75$  meV относительно  $E_V$ .

Из анализа положения точки Дирака  $E_D$  относительно уровня Ферми  $E_F$  были получены достаточно близкие величины  $E_D$  как по данным СТС, так и ARPES для пленок *p*-Bi<sub>2</sub>Te<sub>3</sub> и *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> несмотря на значительное различие в толщине пленок. В пленках *p*-Bi<sub>2</sub>Te<sub>3</sub> с учетом флуктуаций точки Дирака средние значения  $\langle E_D \rangle$  — 245 meV из спектров СТС (рис. 4, *a*) и  $E_D$  — 270 meV из ARPES [6]. В пленках *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>  $\langle E_D \rangle$  — 140 meV (рис. 4, b) и  $E_D$  — 170 meV [6] по данным СТС и ARPES, соответственно.

Уровень Ферми  $E_F$  в пленках p-Bi<sub>2</sub>Te<sub>3</sub> и p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> находится в запрещенной зоне и располагается выше точки Дирака (рис. 4). Несмотря на то, что объем пленок имеет проводимость р-типа, при таком расположении  $E_D$  относительно  $E_F$  на поверхности пленок находятся электроны, вследствие инверсии зон в ТИ, что подтверждается наличием вакансий теллура V<sub>Te</sub>, которые обеспечивают появление поверхностных электронов. Аналогичный результат о наличии электронов на поверхности пленок такого же состава, когда уровень Ферми  $E_{\rm F}$  выше точки Дирака  $E_D$ , был получен по данным ARPES [6], при этом холловское сопротивление пленок, измеренное в зависимости от магнитного поля, было отрицательным. Появление дырок на поверхности пленок твердых растворов *p*-Bi<sub>2-x</sub>Sb<sub>x</sub>Te<sub>3</sub> происходит в составах при  $x \ge 1.76$ , когда уровень Ферми  $E_{\rm F}$  расположен ниже точки Дирака  $E_D$  [6].

Существование вакансий теллура V<sub>Te</sub> в пленках *p*-Bi<sub>2</sub>Te<sub>3</sub> и *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> (рис. 2, 3), которые связаны с поверхностными электронами в пленках TU, позволяет считать, что вакансии V<sub>Te</sub> играют определяющую роль в формировании рельефа поверхности (0001) и изменении средних  $\langle H_M \rangle$  и среднеквадратичных  $\langle H_S \rangle$  отклонений искажений по высоте в распределении атомов Te(1) на поверхности.

# Энергии уровней, образованных дефектами

В пленках p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> и p-Bi<sub>2</sub>Te<sub>3</sub> поверхностные уровни, образованные дефектами, наблюдаются в виде пиков  $p_i$  на нормированных зависимостях  $dI_i/dU$  от U после дополнительного дифференцирования (рис. 5).

В пленке *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> энергии уровней дефектов  $E_p$ , определенные по отношению к точке Дирака в виде  $E_p(E_D) = E_p - E_D$ , составляют (7.5–305) meV, (-40–235) meV и (-22–293) meV для различных фрагментов поверхности. В пленке *p*-Bi<sub>2</sub>Te<sub>3</sub> величины  $E_p(E_D)$  имеют значения (32–414) meV, (25–415) meV, (130–460) meV (рис. 5, *b*), т.е. более высокие энергии уровней дефектов были обнаружены в пленке *p*-Bi<sub>2</sub>Te<sub>3</sub> по сравнению с твердым раствором *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> с низкой теплопроводностью и высокой термоэлектрической эффективностью [14].

Влияние поверхностных состояний фермионов Дирака в слоистых пленках ТИ на основе  $Bi_2Te_3$  на термоэлектрические свойства рассматривалось в [28]. В пленках микронной толщины вклад поверхностных состояний в электропроводность, проведенный по данным [28], составляет 10% при комнатной температуре и доходит до 80% при низких температурах. В пленках *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> толщиной 2–3  $\mu$ m влияние фермионов Дирака на коэффициент Зеебека *S*, электропроводность  $\sigma$  и параметр мощности, измеренные на межслоевой поверхности



**Рис. 5.** Производные дифференциальной туннельной проводимость  $dI_I/dU$  в зависимости от напряжения U в пленках (a) p-Bi<sub>2</sub>Te<sub>3</sub> и (b) p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>. Интервалы изменений энергии уровней дефектов  $E_p$ , указаны стрелками.

(0001) в зависимости от давления P при комнатной температуре, рассматривались в [29]. На зависимостях S(P) при давлениях, для которых параметр мощности был максимальным, наблюдались электронные изоструктурные топологические фазовые переходы, связанные с поверхностными состояниями фермионов Дирака [29].

Влияние поверхностных фермионов Дирака на термоэлектрические свойства в пленках p-Bi<sub>2</sub>Te<sub>3</sub> и p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> определяли по величине поверхностной концентрации  $n_s$  и скорости Ферми  $v_F$  в виде  $n_s = k^2 F / 4\pi$ , где волновой вектор  $k_F = |E_D| / \hbar \cdot v_F$ . Величины  $v_F = 3.3 \cdot 10^5 \text{ ms}^{-1}$  для p-Bi<sub>2</sub>Te<sub>3</sub> и  $v_F = 3.8 \cdot 10^5 \text{ ms}^{-1}$  для p-Bi<sub>2</sub>Te<sub>3</sub> и  $v_F = 3.8 \cdot 10^5 \text{ ms}^{-1}$  для p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> [6]. В расчетах  $n_s$  были учтены флуктуации энергии точки Дирака  $E_D$  (рис. 4).

Оценки поверхностной концентрации фермионов  $n_s$  показали, что в пленках p-Bi<sub>2</sub>Te<sub>3</sub> величина  $n_s = (8.15 - 13.8) \cdot 10^{12} \text{ cm}^{-2}$ , а в пленках p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>  $n_s = (1.75 - 3.25) \cdot 10^{12} \text{ cm}^{-2}$  с учетом флуктуаций  $E_D$ . Средние величины  $n_s$  равны  $1 \cdot 10^{13} \text{ cm}^{-2}$  и  $2.5 \cdot 10^{12} \text{ cm}^{-2}$  в пленках p-Bi<sub>2</sub>Te<sub>3</sub>

и *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>, соответственно. В *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> уменьшение  $n_s$  сопровождается снижением энергии точки Дирака  $|E_D|$  и ее сдвигом к потолку валентной зоны, в то время как скорость Ферми  $v_F$  возрастает по сравнению с *p*-Bi<sub>2</sub>Te<sub>3</sub>. При этом плотность поверхностных дефектов в пленках *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> выше, чем в *p*-Bi<sub>2</sub>Te<sub>3</sub>. Более высокая поверхностная концентрация  $n_s$  в пленках *p*-Bi<sub>2</sub>Te<sub>3</sub> определяет вклад поверхностных фермионов Дирака в термоэлектрические свойства, в то время как повышение скорости фермионов в пленках *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> определяет повышение поверхностной проводимости за счет увеличения вклада поверхностной подвижности [28,30].

#### 5. Заключение

Исследования морфологии межслоевой поверхности (0001) в слоистых пленках ТИ p-Bi<sub>2</sub>Te<sub>3</sub> и твердого раствора p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> методом СТМ показали, что флюктуации интенсивности на изображениях морфологии связаны с образованием собственных акцепторных антиструктурных дефектов Bi<sub>Te</sub> и вакансий теллура  $V_{Te}$ , которые формируются в процессе роста пленок методом дискретного испарения. В пленках p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> при образовании твердого раствора возникают также примесные дефекты замещения Sb  $\rightarrow$  Bi. Плотность вакансий  $V_{Te}$ , средние  $\langle H_M \rangle$  и среднеквадратичные  $\langle H_S \rangle$  отклонения по высоте в распределении атомов Te(1) на поверхности (0001) в твердом растворе в p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> были выше, чем в p-Bi<sub>2</sub>Te<sub>3</sub>.

Более высокая плотность дефектов в пленках p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> приводит к снижению теплопроводности, однако при этом снижается электропроводность. Оптимизация технологии формирования пленок влияет на образование дефектов и позволяет компенсировать снижение электропроводности, что обеспечивает повышение термоэлектрической эффективности в пленках p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>, полученных дискретным испарением.

Из анализа нормированных спектров туннельной проводимости  $dI_t/dU$  от напряжения U, измеренных методом сканирующей туннельной спектроскопии, было установлено, что в исследованных пленках точка Дирака  $E_D$ , определенная относительно энергии Ферми, находится в валентной зоне, и в пленках p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> энергия  $E_D$  значительно смещается к потолку валентной зоны по сравнению с p-Bi<sub>2</sub>Te<sub>3</sub>.

Установлено, что уровень Ферми  $E_{\rm F}$  в пленках *p*-Bi<sub>2</sub>Te<sub>3</sub> и *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> располагается выше точки Дирака, поэтому вследствие инверсии зон в ТИ на поверхности пленок находятся электроны, что подтверждается наличием вакансий теллура  $V_{\rm Te}$ , при этом объем пленок имеет проводимость *p*-типа.

Флуктуации энергии точки Дирака  $\Delta E_D / \langle E_D \rangle$ , края валентной зоны  $\Delta E_V / \langle E_V \rangle$  и энергий уровней поверхностных дефектов  $E_p$ , связанные с изменениями плот-

ности состояний на поверхности (0001), в пленках *p*-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> были меньше, чем *p*-Bi<sub>2</sub>Te<sub>3</sub>.

Из оценок поверхностной концентрации фермионов Дирака  $n_s$  следует, что вклад поверхностных фермионов в термоэлектрические свойства в пленках p-Bi<sub>2</sub>Te<sub>3</sub> определяется ростом  $n_s$  до  $1 \cdot 10^{13}$  cm<sup>-2</sup>, а в пленках p-Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> — повышением скорости фермионов Дирака и, следовательно, поверхностной подвижности в ТИ.

#### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

## Список литературы

- Modules, Systems, and Applications in Thermoelectrics / Ed. D.M. Rowe. CRC Press, Boca Raton (2012).
- [2] M.J. Gilbert. Commun. Phys. 4, 1, 70 (2021).
- [3] J. Heremans, R. Cava, N. Samarth. Nature Rev. Mater. 2, 10, 17049 (2017).
- [4] M.Z. Hasan, C.L. Kane. Rev. Mod. Phys. 82, 4, 3045 (2010).
- [5] Y.L. Chen, J.G. Analytis, J.H. Chu, Z.K. Liu, S.K. Mo, X.L. Qi, H.J. Zhang, H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.X. Shen. Science. **325**, *5937*, 178 (2009).
- [6] J. Zhang, C.-Z. Chang, Z. Zhang, J. Wen, X. Feng, K. Li, M. Liu, K. He, L. Wang, X. Chen, Q.-K. Xue, X. Ma, Y. Wang. Nature Commun. 2, *1*, 574 (2011).
- [7] T. Knispel, W. Jolie, N. Borgwardt, J. Lux, Z. Wang, Y. Ando, A. Rosch, T. Michely, M. Gruninger. Phys. Rev. B 96, 19, 195135 (2017).
- [8] A.A. Taskin, Z. Ren, S. Sasaki, K. Segawa, Y. Ando. Phys. Rev. Lett. 107, 1, 016801 (2011).
- [9] Y. Ando. J. Phys. Soc. Jpn. 82, 10, 102001 (2013).
- [10] H. Nam, Y. Xu, I. Miotkowski, J. Tian, Y.P. Chen, C. Liu, C.K. Shih. J. Phys. Chem. Solids **128**, 251 (2019).
- [11] Z. Alpichshev, J.G. Analytis, J.-H. Chu, I.R. Fisher, Y.L. Chen, Z.X. Shen, A. Fang, A. Kapitulnik. Phys. Rev. Lett. **104**, *1*, 016401 (2010).
- [12] X. He, H. Li, L. Chen, K. Wu. Sci. Rep. 5, 1, 8830 (2015).
- [13] R. Rejali, L. Farinacci, S. Otte. Phys. Rev. B 107, 3, 035406 (2023).
- [14] L.N. Lukyanova, Y.A. Boikov, O.A. Usov, V.A. Danilov, I.V. Makarenko, V.N. Petrov. Magnetochemistry 9, 6, 141 (2023).
- [15] D.L. Medlin, Q.M. Ramasse, C.D. Spataru, N.Y.C. Yang. J. Appl. Phys. 2010, 108, 4, 043517.
- [16] H. Beidenkopf, P. Roushan, J. Seo, L. Gorman, I. Drozdov, Y.S. Hor, R.J. Cava, A. Yazdani. Nature Phys. 7, 12, 939 (2011).
- [17] X. Chen, H.D. Zhou, A. Kiswandhi, I. Miotkowskii, Y.P. Chen, P.A. Sharma, A.L. Lima Sharma, M.A. Hekmaty, D. Smirnov, Z. Jiang. Appl. Phys. Let. **99**, *26*, 261912 (2011).
- [18] P. Dutta, D. Bhoi, A. Midya, N. Khan, P. Mandal, S. Shanmukharao Samatham, V. Ganesan. Appl. Phys. Lett. 100, 25, 251912 (2012).
- [19] W. Ko, I. Jeon, H.W. Kim, H. Kwon, S.-J. Kahng, J. Park, J.S. Kim, S.W. Hwang, H. Suh. Sci. Rep. 3, 1, 2656 (2013).

- [20] S. Jia, H. Beidenkopf, I. Drozdov, M.K. Fuccillo, J. Seo, J. Xiong, N.P. Ong, A. Yazdani. Phys. Rev. B 86, 16, 165119 (2012).
- [21] T. Zhu, L. Hu, X. Zhao, J. He. Adv. Sci. 3, 7, 1600004 (2016).
- [22] J.C. Slater. J. Chem. Phys. 41, 10, 3199 (1964).
- [23] D. Bessas, I. Sergueev, H.-C. Wille, J. Person, D. Ebling, R.P. Hermann. Phys. Rev. B 86, 22, 224301 (2012).
- [24] L.N. Lukyanova, I.V. Makarenko, O.A. Usov, P.A. Dementev. Semicond. Sci. Technol., 33, 5, 055001 (2018).
- [25] M. Chen, J. Peng, H. Zhang, L. Wang, K. He, X. Ma, Q. Xue. Appl. Phys. Lett. **101**, *8*, 081603 (2012).
- [26] C. Wagner, R. Franke, T. Fritz. Phys. Rev. B 75, 23, 235432 (2007).
- [27] J.G. Austin, A. Sheard. J. Electron. Control 3, 2, 236 (1957).
- [28] S.Y. Matsushita, K. Ichimura, K.K. Huynh, K. Tanigaki. Phys. Rev. Mater. 5, 1, 014205 (2021).
- [29] И.В. Коробейников, Н.В. Морозова, Л.Н. Лукьянова, О.А. Усов, С.В. Овсянников. ФТП **53**, *6*, 741 (2019). [I.V. Korobeinikov, N.V. Morozova, L.N. Lukyanova, O.A. Usov, S.V. Ovsyannikov. Semiconductors **53**, *6*, 732 (2019)].
- [30] Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C.-K. Shih, M.Z. Hasan, Y.P. Chen. Nat. Phys. 10, 12, 956 (2014).

Редактор Т.Н. Василевская