02,01,07

Относительная фаза компонент параметра порядка в двухзонной модели *s* _±-сверхпроводника с примесями

© В.А. Шестаков, М.М. Коршунов

Институт физики им. Л.В. Киренского СО РАН — обособленное подразделение ФИЦ КНЦ СО РАН, Красноярск, Россия

E-mail: v_shestakov@iph.krasn.ru

Поступила в Редакцию 18 апреля 2024 г. В окончательной редакции 18 апреля 2024 г. Принята к публикации 8 мая 2024 г.

> Получены решения уравнений Элиашберга в представлении Намбу для двухзонной модели сверхпроводников на основе железа с немагнитными примесями. Рассмотрены два варианта перехода между состояниями s_{\pm} и s_{++} — когда смена знака параметра порядка в одной из зон происходит скачком, и когда смена знака происходит плавно. Для обоих вариантов исследовано влияние калибровки, определяемой соотношением коэффициентов при матрицах Паули $\hat{\tau}_1$ и $\hat{\tau}_2$ в разложении собственно-энергетической части, которые соответствуют компонентам параметра порядка. Показано, что для решений в чистом и в борновском пределах модуль параметра порядка сохраняется. В промежуточном случае, между борновским и унитарным пределами, результат зависит от решения для чистого предела. Установлено, что стандартная калибровка для уравнений Элиашберга, в которой одна из компонент параметра порядка тождественна равна нулю, необходима для корректного описания многозонных систем.

Ключевые слова: сверхпроводники на основе железа; уравнения Элиашберга.

DOI: 10.61011/FTT.2024.08.58585.51HH

1. Введение

Сверхпроводящее состояние, являющееся фундаментальным квантовым состоянием в конденсированных средах, на микроскопическом уровне впервые получило качественное объяснение в рамках теории Бардина-Купера-Шриффера (БКШ) [1]. Однако, успехи теории сверхпроводимости для количественного описания различных аспектов этого явления связаны с развитием методов квантовой теории поля [2] и формулировкой уравнений Элиашберга [3]. Теория Элиашберга позволяет рассматривать динамическое взаимодействие, что является шагом вперед по сравнению с теорией БКШ, где потенциал взаимодействия статичен. Долгое время для многих изучаемых систем оказывалось вполне применимым однозонное приближение. Характерным контрпримером являются соединения железа, пниктиды и халькогениды, в которых присутствует многолистная поверхность Ферми. В спин-флуктуационном механизме сверхпроводимости, обусловленном кулоновским отталкиванием, получаются решения, в которых на различных листах параметр порядка сверхпроводящего состояния принимает различные знаки. Если в пределах одного листа параметр порядка не меняет знак, то такое состояние называют s_± [4]. Если же знаки параметрш а порядка одинаковы на всех листах поверхности Ферми, то это — состояние *s*₊₊. Дополнительное усложнение возникает, если учитывать рассеяние на примесях. Из-за наличия нескольких зон это рассеяние можно разделить на внутри- и межзонное [5,6]. Описание состояний s_± и s_{++} требует наличия, как минимум, двух зон, что

и является основой минимальных моделей [7]. При этом, в рамках двухзонной модели было показано, что наличие примесей может приводить к переходу между состояниями s_{\pm} и s_{++} [8,9]. В зависимости от величины обобщенного сечения рассеяния σ этот переход может происходить скачком или плавно, через бесщелевое состояние, когда параметр порядка в одной из зон обращается в нуль перед тем, как сменить знак [14]. Такое бесщелевое состояние может проявляться, например, в изменении глубины проникновения магнитного поля с увеличением концентрации примесей или дефектов [10].

Стандартный подход при рассмотрении теории Элиашберга заключается в следующем. В представлении Намбу [11] матрица собственно-энергетической части, задающая уравнения Элиашберга, записывается в виде разложения по матрицам Паули $\hat{\tau}_j$, где j = 0, ..., 3 и индекс "0" соответствует единичной матрице

$$\Sigma(\mathbf{k}, i\omega_n) = i\omega_n [1 - Z(\mathbf{k}, i\omega_n)]\hat{\tau}_0 + \chi(\mathbf{k}, i\omega_n)\hat{\tau}_3$$
$$+ \phi_1(\mathbf{k}, i\omega_n)\hat{\tau}_1 + \phi_2(\mathbf{k}, i\omega_n)\hat{\tau}_2, \qquad (1)$$

где $i\omega_n = (2n+1)i\pi T$ — мацубаровские частоты, n целое число; функции Z, χ, ϕ_1 и ϕ_2 — произвольные действительные независимые функции, относительно которых и разрешается система уравнений Элиашберга. Функции Z и χ , соответственно, связаны с перенормировкой мацубаровских частот $i\omega_n$ и одноэлектронных возбуждений квазичастиц за счет динамического спаривающего взаимодействия и эффектов, связанных с наличием примесей в системе. Функции ϕ_1 и ϕ_2 определяют параметр порядка сверхпроводника и сверхпроводящую щель

$$\Delta_{1,2}(\mathbf{k}, i\omega_n) = \phi_{1,2}(\mathbf{k}, i\omega_n)/Z(\mathbf{k}, i\omega_n).$$
(2)

Если $\phi_1 = \phi_2 = 0$, то система находится в нормальном (несверхпроводящем состоянии). Если либо $\phi_1 \neq 0$, либо $\phi_2 \neq 0$ или же обе функции отличны от нуля одновременно, то такие решения соответствуют сверхпроводящему состоянию. Ненулевые решения для ϕ_1 и ϕ_2 обладают следующим свойством: для пары функций ϕ_1 и ϕ_2 существует бесконечное множество решений, отличающихся произвольным фазовым множителем $\exp(i2\theta)$. Каждая такая пара решений удовлетворяет соотношению $\phi_1^2 + \phi_2^2 = \text{const}$ [11,12]. На практике выбирают такую калибровку, чтобы коэффициент при матрице $\hat{\tau}_1$ (т.е., φ_1) либо при $\hat{\tau}_2$ (т.е., φ_2) был равен нулю. Это сокращает количество уравнений в системе и упрощает расчеты. Такая калибровка справедлива для однозонных сверхпроводников, классических и необычных, а также многозонных сверхпроводников с электрон-фононным взаимодействием [11,12]. Однако далеко не очевидно, работает ли она в случае, когда в многозонной системе меняется структура сверхпроводящего параметра порядка, и при этом в одной из зон реализуется бесщелевое состояние.

В настоящей работе для двухзонной модели сверхпроводников на основе железа с немагнитными примесями мы исследуем решения системы уравнений Элиашберга, в которой учитываются оба коэффициента при матрицах Паули в разложении собственно-энергетической части (1). Показано, что в борновском пределе, где параметр порядка при переходе $s_{\pm} \rightarrow s_{++}$ меняет знак скачком, решения обладают свойством, сохраняющим модуль параметра порядка, $\phi_{1\alpha n}^2 + \phi_{2\alpha n}^2 = {
m const.}~{
m B}$ случае промежуточной силы рассеяния, когда параметр порядка меняет знак плавно, результат зависит от калибровки исходного решения, полученного для чистого предела. Стандартная калибровка для уравнений Элиашберга, в которой одна из функций, ϕ_{1an} или ϕ_{2an} , равна нулю, не только допустима для снижения вычислительных затрат, но и необходима для устойчивости и сходимости решений.

2. Модель и метод

В настоящей работе мы используем подход ξ -интегрированных функций Грина в рамках двухзонной модели сверхпроводников на основе железа [7]. Функция Грина представляет собой матрицу в зонном пространстве и пространстве Намбу:

$$\hat{\mathbf{g}}(i\omega_n) = \hat{g}_{\alpha}(i\omega_n) \otimes \mathbf{1}_{\alpha\beta}, \qquad (3)$$

где

$$\hat{g}_{\alpha}(i\omega_n) = -\pi N_{\alpha}(i\tilde{\omega}_{\alpha n}\hat{\tau}_0 + \phi_{1\alpha n}\hat{\tau}_1 + \phi_{2\alpha n}\hat{\tau}_2)/Q_{\alpha n}, \quad (4)$$

 $Q_{\alpha n} = \sqrt{\tilde{\omega}_{\alpha n}^2 + \phi_{1\alpha n}^2 + \phi_{2\alpha n}^2}, i\tilde{\omega}_{\alpha n} \equiv i\omega_n Z_{\alpha}(i\omega_n), \phi_{1(2)\alpha n} \equiv \equiv \phi_{1(2)}^{\alpha}(i\omega_n), N_{\alpha}$ — плотность состояний квазичастиц

на уровне Ферми в нормальном металле в зоне с индексом $\alpha = (a, b)$, а $\mathbf{1}_{\alpha\beta}$ — единичная матрица в зонном пространстве.

Собственно-энергетическая часть в таком подходе также является матрицей той же размерности, что и функция Грина. Она также диагональна по зонным индексам (в общем случае это не так, однако в рамках рассматриваемой работы недиагональными вкладами можно пренебречь) и содержит два вклада — от сверхпроводящего взаимодействия и от рассеяния на немагнитных примесях

$$\hat{\boldsymbol{\Sigma}}(i\omega_n) = \hat{\boldsymbol{\Sigma}}^{\text{SC}}(i\omega_n) + \hat{\boldsymbol{\Sigma}}^{\text{imp}}(i\omega_n).$$
(5)

Удобно разложение собственно-энергетической части по матрицам Паули, наравне с выражением (1), представить в следующем виде:

$$\hat{\Sigma}_{\alpha}^{\mathrm{SC(imp)}}(i\omega_n) = \sum_{j=0}^2 \Sigma_{j\alpha}^{\mathrm{SC(imp)}}(i\omega_n)\hat{\tau}_j.$$
(6)

Мы предполагаем, что вклад от сверхпроводящего взаимодействия обусловлен, в первую очередь, обменом спиновыми флуктуациями и имеет отталкивательный характер, но также может дополнительно содержать электрон-фононную часть, соответствующую притяжению. В собственно-энергетическую часть все эти вклады входят посредством функции взаимодействия $\lambda_{\alpha\beta}^{\phi}(n-n')$ и $\lambda_{\alpha\beta}^{Z}(n-n')$:

$$\Sigma_{0\alpha}^{\rm SC}(i\omega_n) = -i\pi T \sum_{\omega'_n,\beta} \lambda_{\alpha\beta}^Z(n-n') \tilde{\omega}_{\beta n'} / Q_{\beta n'}, \qquad (7)$$

$$\Sigma_{1(2)\alpha}^{\rm SC}(\omega_n) = -\pi T \sum_{\omega'_n,\beta} \lambda^{\phi}_{\alpha\beta}(n-n') \phi_{1(2)\beta n'}/Q_{\beta n'},\qquad(8)$$

где

$$\lambda_{\alpha\beta}^{\phi,Z}(n-n') = 2\lambda_{\alpha\beta}^{\phi,Z} \int_{0}^{\infty} d\Omega \, \frac{\Omega B(\Omega)}{(\omega_n - \omega_{n'})^2 + \Omega^2}, \quad (9)$$

определяется через константы связи $\lambda_{\alpha\beta}^{\phi,Z}$ и нормированную бозонную спектральную функцию $B(\Omega)$, описывающую спектр спиновых возбуждений в системе [7]. Величины $\lambda_{\alpha\beta}^{\phi}$ могут быть как положительными (притяжение), так и отрицательными (отталкивание) из-за вкладов кулоновского отталкивания, спиновых флуктуаций и электрон-фононного взаимодействия, в то время как величины $\lambda_{\alpha\beta}^{Z}$ всегда положительны. Для простоты обычно полагают $\lambda_{\alpha\beta}^{Z} = |\lambda_{\alpha\beta}^{\phi}| \equiv |\lambda_{\alpha\beta}|.$

Вклад от примесей учитываем в приближении *Т*матрицы [7,13,14], что приводит к следующим выражениям:

$$\Sigma_{0a}^{\rm imp} = -i\Gamma_a \left[\sigma (1 - \eta^2)^2 \tilde{\omega}_{an} / Q_{an} + (1 - \sigma) \left(\eta^2 N_a \tilde{\omega}_{an} / (N_b Q_{an}) + \tilde{\omega}_{bn} / Q_{bn} \right) \right] / (2D_{\rm imp}),$$
(10)

$$\begin{split} \Sigma_{1(2)a}^{\text{imp}} &= \Gamma_a \left[\sigma (1 - \eta^2)^2 \phi_{1(2)an} / Q_{an} \right. \\ &+ (1 - \sigma) \left(\eta^2 N_a \phi_{1(2)an} / (N_b Q_{an}) + \phi_{1(2)bn} / Q_{bn} \right) \right] / (2 \mathcal{D}_{\text{imp}}), \end{split}$$

где Γ_a — интенсивность рассеяния на примесях, пропорциональная концентрации примесей $n_{\rm imp}$ и эффективному сечению рассеяния σ :

$$\Gamma_a = 2n_{\rm imp}\sigma/(\pi N_a),\tag{12}$$

$$\sigma = \pi^2 u^2 N_a N_b / (1 + \pi^2 u^2 N_a N_b), \tag{13}$$

величина $\eta = \nu/u$ задает соотношение между внутризонной (ν) и межзонной (u) компонентами рассеивающего потенциала примеси,

$$D_{imp} = (1 - \sigma)^2 + \sigma^2 (1 - \eta^2)^2 + \sigma (1 - \sigma) \kappa_{imp}, \quad (14)$$

$$\kappa_{\rm imp} = \eta^2 (N_a^2 + N_b^2) / (N_a N_b) + 2(\tilde{\omega}_{an} \tilde{\omega}_{bn} + \phi_{1an} \phi_{1bn} + \phi_{2an} \phi_{2bn}) / (Q_{an} Q_{bn}).$$
(15)

Подставив выражения (7), (8), (10) и (11) в формулы (6) и (5) и приравняв получившуюся правую часть выражения (5) правой части разложения вида (1), мы получаем систему уравнений Элиашберга:

$$\begin{split} \tilde{\omega}_{an} &= \omega_n + \pi T \sum_{\omega'_n,\beta} \lambda^Z_{a\beta}(n-n') \tilde{\omega}_{\beta n'} / Q_{\beta n'} \\ &+ \Gamma_a \left[\sigma (1-\eta^2)^2 \tilde{\omega}_{an} / Q_{an} \\ &+ (1-\sigma) \left(\eta^2 N_a \tilde{\omega}_{an} / (N_b Q_{an}) + \tilde{\omega}_{bn} / Q_{bn} \right) \right] / (2\mathbf{D}_{imp}), \end{split}$$
(16)
$$\phi_{1a} &= \pi T \sum_{\omega'_n,\beta} \lambda^{\phi}_{a\beta}(n-n') \phi_{1\beta n'} / Q_{\beta n'} \\ &+ \Gamma_a \left[\sigma (1-\eta^2)^2 \phi_{1an} / Q_{an} \\ &+ (1-\sigma) \left(\eta^2 N_a \phi_{1an} / (N_b Q_{an}) + \phi_{1bn} / Q_{bn} \right) \right] / (2\mathbf{D}_{imp}),$$
(17)
$$\phi_{2a} &= \pi T \sum_{\omega'_n,\beta} \lambda^{\phi}_{a\beta}(n-n') \phi_{2\beta n'} / Q_{\beta n'} \\ &+ \Gamma_a \left[\sigma (1-\eta^2)^2 \phi_{2an} / Q_{an} \\ &+ (1-\sigma) \left(\eta^2 N_a \phi_{2an} / (N_b Q_{an}) + \phi_{2bn} / Q_{bn} \right) \right] / (2\mathbf{D}_{imp}).$$
(18)

Здесь мы привели половину набора уравнений Элиашберга для одной зоны *a*; для зоны *b* уравнения получаются парной заменой зонных индексов в этих уравнениях.

На первый взгляд, уравнения (17) и (18) идентичны и должны давать один и тот же набор решений. Однако оба уравнения содержат не только компоненты "1" и "2" параметра порядка для одной зоны, но величину параметра порядка для второй зоны через знаменатели $Q_{\alpha n}$. Учитывая, что при вызванном немагнитными примесями переходе между s_{\pm} - и s_{++} -состояниями параметр порядка в одной из зон меняя знак проходит через нуль, важно определить, какого вида калибровка применима для семейства решений такой системы уравнений Элиашберга.

3. Результаты и обсуждения

Для расчетов были приняты следующие значения констант связи $(\lambda_{aa}, \lambda_{ab}, \lambda_{ba}, \lambda_{bb}) = (3.0, -0.2, -0.1, 0.5)$, дающие в чистом пределе сверхпроводящее состояние с s_{\pm} -структурой параметра порядка и положительной усредненной по зонам константой связи

$$\langle \lambda \rangle = [N_a(\lambda_{aa} + \lambda_{ab}) + N_b(\lambda_{ba} + \lambda_{bb})]/(N_a + N_b).$$

Критическая температура в чистом пределе составляет $T_{c0} = 41.4 \, \text{K}$. Поскольку ранее было показано [14], что наличие внутризонной составляющей в рассеивающем потенциале примеси качественно не оказывает влияния на рассматриваемые эффекты, для упрощения расчетов мы положили, что рассеяние на примесях во внутризонном канале отсутствует, $\eta = 0$. Параметр σ может принимать значения от нуля в борновском пределе для слабо рассеивающей примеси ($\pi u N_{a(b)} \ll 1$) до единицы в унитарном пределе сильного рассеивающего примесного потенциала ($\pi u N_{a(b)} \gg 1$). Унитарный предел мы не рассматриваем, поскольку, как это можно показать из уравнений (16)–(18) [7], в унитарном пределе наличие немагнитных примесей не влияет на сверхпроводящее состояние. Для исследования были выбраны два случая: борновский предел $\sigma = 0$ и промежуточный случай $\sigma = 0.5$, отличающиеся характером поведения перехода между s_±- и s₊₊-состояниями. В первом случае смена знака параметра порядка в одной из зон (в зоне b) происходит скачком, во втором случае смена знака происходит плавно с прохождением через нуль. Поведение параметра порядка в обеих зонах в зависимости от интенсивности рассеяния на примесях Га для случаев $\sigma = 0.0$ и $\sigma = 0.5$ приведено на рис. 1. Более детально влияние силы рассеивающего потенциала примеси, характеризуемой сечением σ , а также соотношения между внутри- и межзонными компонентами потенциала примеси η было исследовано в работе [14]. Там было показано, что сверхпроводящие щели меняются плавно

Рис. 1. График функции щели $\Delta_{\alpha n}$ для первой мацубаровской частоты (n = 0) в зависимости от интенсивности рассеяния на примесях Γ_a для $\sigma = 0$ и $\sigma = 0.5$ при $\eta = 0$ и $T = 0.03T_{c0}$.

Рис. 2. Графики модуля функции щели Δ_{bn} для первой мацубаровской частоты (n = 0) в зависимости от интенсивности рассеяния на примесях Γ_a . Борновский предел, $\sigma = 0$. В подписи значение фазы для каждого графика соответствует фазе решения в чистом пределе ($\Gamma_a = 0$). Прописными буквами обозначаются ветви графиков до перехода (s_{\pm} -состояние), а строчными — после перехода (s_{\pm} -состояние). Исключая случай нормального состояния, все линии графиков идеально накладываются друг на друга.

Рис. 3. Значения функции щели Δ_{bn} для первой мацубаровской частоты (n = 0), построенные на комплексной плоскости Δ_{1b0} , Δ_{2b0} . Борновский предел. Концентрические окружности показывают, что для каждого фиксированного значения семейство решений для сверхпроводящей щели лежит на окружности $\Delta_{1b0}^2 + \Delta_{2b0}^2 = \text{const.}$ Внешняя окружность соответствует решениям для чистого сверхпроводника. В подписи значение фазы для каждого графика соответствует фазе решения в чистом пределе ($\Gamma_a = 0$). Прописными буквами обозначаются ветви графиков до перехода (s_{\pm} -состояние), а строчными — после перехода (s_{++} -состояние). Стрелки указывают направление увеличения Γ_a .

вблизи перехода $s_{\pm} \rightarrow s_{++}$ для всех величин σ и η , за исключением случая слабого рассеяния с малой величиной σ , когда меньшая щель меняется скачком в точке перехода, и далее, с ростом Г, меняется плавно. Скачок сглаживается вблизи значений $\sigma = 0.11$ и переход становится плавным. При этом, с ростом температуры поведение меньшей щели меняется от скачкообразного к плавному при $T \sim 0.1T_c$. Именно поэтому критическая температура T_c не имеет никаких особенностей, связанных со ступенчатым характером перехода при малых σ , оставаясь гладкой функцией интенсивности рассеяния на примесях Γ_a .

Для дальнейшего анализа мы можем представить пару функций $\phi_{1\alpha n}$ и $\phi_{2\alpha n}$ как действительную и мнимую части комплексной функции $\phi_{\alpha n} = \phi_{1\alpha n} + i\phi_{2\alpha n}$, которую запишем в следующем виде:

$$\phi_{\alpha n} = |\phi_{\alpha n}| \exp(i2\theta_{\alpha}) \equiv |\phi_{\alpha n}| [\cos(2\theta_{\alpha}) + i\sin(2\theta_{\alpha})],$$
(19)
где $|\phi_{\alpha n}| = \sqrt{\phi_{1\alpha n}^2 + \phi_{2\alpha n}^2}$ — это модуль, а $2\theta_{\alpha}$ — фаза

сверхпроводящего параметра порядка в зоне а.

При получении решений системы уравнений Элиашберга (16)—(18) для сверхпроводника с примесями, на каждом шаге по Γ_a в качестве затравочных значений перенормированных мацубаровских частот и параметра порядка принимались результаты с предыдущего шага, начиная с чистого предела. Таким образом, мы можем получить решение для сверхпроводящей фазы без примесей с фиксированной фазой и модулем параметра порядка, и проследить эволюцию системы с последовательным внесением примесей. Значение температуры для расчетов было принято равным $T = 0.01T_{c0}$.

Для борновского предела результаты расчетов представлены на рис. 2 и 3, где построены, соответственно, модуль комплексной функции сверхпроводящей щели для первой мацубаровской частоты (n = 0) в зависимости от интенсивности рассеяния на примесях $|\Delta_{b0}(\Gamma_a)|$ и сама функция $\Delta_{b0}(\Gamma_a)$ на комплексной плоскости в координатах ($\Delta_{1b0}, \Delta_{2b0}$). Комплексная функция щели связна с функцией параметра порядка соотношением (2). Из этих рисунков видно, что для всех представленных семейств решений уравнений Элиашберга модуль функции щели остается неизменным для фиксированного значения Γ_a , а его фаза меняется только в момент перехода $s_{\pm} \rightarrow s_{++}$ на фиксированное значение, равное π . Тот факт, что $|\Delta_{b0}(\Gamma_a)|$ не достигает нуля в точке перехода (рис. 2), говорит об изменении щели скачком.

В промежуточном случае, $\sigma = 0.5$ (рис. 4, 5, 6 и 7) картина несколько отличается. Для решений, в которых фаза в чистом пределе составляет $2\theta_b = m\pi/4$, где m — целое число, решения ведут себя так же, как и в борновском пределе. Разница лишь в том, что рассматриваемый переход происходит плавно и модуль функции щели достигает нулевого значения (рис. 4); и только при $|\Delta_{b0}| = 0$ происходит смена фазы на величину π (рис. 5). Однако, как только мы отклоняемся от этих симметричных направлений на плоскости ($\Delta_{1b0}, \Delta_{2b0}$)

Рис. 4. Графики модуля функции щели Δ_{bn} для первой мапубаровской частоты (n = 0) в зависимости от интенсивности рассеяния на примесях Γ_a . Промежуточный случай, $\sigma = 0.5$. Представлены решения, в которых фаза в чистом пределе соответствует условию $2\theta_b = m\pi/4$. В подписи значение фазы для каждого графика соответствует фазе решения в чистом пределе ($\Gamma_a = 0$). Прописными буквами обозначаются ветви графиков до перехода (s_\pm -состояние), а строчными — после перехода (s_{++} -состояние). Исключая случай нормального состояния, все линии графиков идеально накладываются друг на друга.

Рис. 6. Графики модуля функции щели Δ_{bn} для первой мацубаровской частоты (n = 0) в зависимости от интенсивности рассеяния на примесях Γ_a . Промежуточный случай, $\sigma = 0.5$. Представлены решения, в которых фаза в чистом пределе не удовлетворяет условию $2\theta_b = m\pi/4$. В подписи значение фазы для каждого графика соответствует фазе решения в чистом пределе ($\Gamma_a = 0$). Прописными буквами обозначаются ветви графиков до перехода (s_{\pm} -состояние), а строчными — после перехода (s_{++} -состояние).

Рис. 5. Значения функции щели $\Delta_{bn}(\Gamma_a)$ для первой мацубаровской частоты (n = 0), построенные на комплексной плоскости $(\Delta_{1b0}, \Delta_{2b0})$ в направлениях 0, $\pi/4$ и $\pi/2$. Промежуточный случай, $\sigma = 0.5$. Подобно рис. 3, внешняя окружность соответствует решениям для чистого сверхпроводника. Прописными буквами обозначаются ветви графиков до перехода $(s_{\pm}-$ состояние), а строчными — после перехода $(s_{++}-$ состояние). Стрелки указывают направление увеличения Γ_a .

Рис. 7. Значения функции щели $\Delta_{bn}(\Gamma_a)$ для первой мацубаровской частоты n = 0, построенные на комплексной плоскости ($\Delta_{1b0}, \Delta_{2b0}$) в направлениях, отличных от $\pi m/4$, где m целое число. Промежуточный случай, $\sigma = 0.5$. Подобно рис. 3, внешняя окружность соответствует решениям для чистого сверхпроводника. Прописными буквами обозначаются ветви графиков до перехода (s_\pm -состояние), а строчными — после перехода ($s_{\pm+}$ -состояние), строчными со штрихом обозначаются области плохой сходимости решений уравнений Элиашберга. Стрелки указывают направление увеличения Γ_a .

даже на малый угол, вблизи перехода $s_{\pm} \rightarrow s_{++}$ возникает область плохой сходимости системы уравнений. Это видно на рис. 6 и 7 для случаев с фазой параметра порядка чистого сверхпроводника $2\theta_b = -0.05\pi$ и $2\theta_b = -0.55\pi$ на участке между значениями $\Gamma_a = 0.8T_{c0}$ и $\Gamma_a = 2.1T_{c0}$, где значение $|\Delta_{b0}|$ отличается от случаев с симметричными направлениями. Значения модуля Δ_{b0} для данных несимметричных направлений построены на рис. 6 для наглядности, поскольку процедура численного решения системы уравнений выходила на бесконечный цикл и останавливалась по лимиту итераций, оставляя не выполненным условие по невязке решения. Тем не менее, стоит отметить, что в каждом таком случае значение модуля функции щели для фиксированного значения Га остается неизменным. Что касается фазы такого решения, то, как видно из рис. 7, в данной области плохой сходимости она не стабильна: решение "блуждает" по комплексной плоскости ($\Delta_{1b0}, \Delta_{2b0}$) до тех пор, пока не выйдет на новое устойчивое семейство решений. Разность фаз параметра порядка для разных зон при этом остается фиксированной: $|2\theta_a - 2\theta_b| = \pi$ в s_{\pm} -состоянии и $|2 heta_a-2 heta_b|=0$ в s_{++} -состоянии.

Такое поведение решений в случае $\sigma = 0.5$ вне симметричных направлений связано с тем, что при значениях $|\Delta_{b0}|$ близких к нулю, фаза функции щели (параметра порядка) в зоне b оказывается неопределена, и система уравнений Элиашберга не может сойтись к устойчивому решению. В борновском пределе любое направление на плоскости ($\Delta_{1b0}, \Delta_{2b0}$) дает устойчивое решение, поскольку для значений σ , близких к нулю, переход $s_{\pm} \rightarrow s_{++}$ происходит скачком и функция Δ_{b0} не успевает достигнуть таких значений, при которых ее фаза оказывается неопределена. В случае симметричных направлений $2\theta_b = 0 \pm \pi m$ и $2\theta_b = \pi/2 \pm \pi m$ функция щели — действительная (уравнения разрешаются только относительно либо действительной, либо мнимой части Δ_{bn}), и ее фаза, фактически, определена для любого значения Га. Картина похожа и в случае направления $2\theta_b = \pi/4 \pm \pi m$, где уравнения (17) и (18) совпадают с точностью до знака и их решения также оказываются устойчивы.

4. Заключение

В настоящей работе мы численно исследовали решения уравнений Элиашберга в представлении Намбу для двухзонной модели сверхпроводников на основе железа с немагнитными примесями. Мы рассмотрели, как будут вести себя решения при наличии перехода между s_{\pm} - и s_{++} -состояниями, если в исходной системе оставить ненулевыми коэффициенты при матрицах Паули $\hat{\tau}_1$ и $\hat{\tau}_2$ в разложении собственно-энергетической части. У решений для чистого сверхпроводника модуль параметра порядка сохраняется, т. е. семейство решений удовлетворяет условию $\phi_{1\alpha n}^2 + \phi_{2\alpha n}^2 = \text{const.}$ Это также справедливо и при внесении немагнитных примесей в систему в борновском пределе $\sigma = 0$, где параметр порядка при переходе меняет знак скачком. Вдали от борновского предела ($\sigma = 0.5$, где параметр порядка меняется плавно) при последовательном введении примесей в систему результат зависит от решения, полученного для чистого предела. Так, если для сверхпроводника без примесей решения уравнений Элиашберга удовлетворяют калибровкам $\phi_{1\alpha n} \neq 0$ и $\phi_{2\alpha n} = 0$, $\phi_{1\alpha n} = 0$ и $\phi_{2\alpha n} \neq 0$ или $\phi_{1\alpha n} = \phi_{2\alpha n} \neq 0$, то модуль параметра порядка также остается неизменным на каждом шаге по Га. Для всех других семейств решений в чистом пределе при внесении примесей в систему появляется область плохой сходимости решений уравнений, и мы не можем с уверенностью судить о том, как ведет себя параметр порядка в таких случаях. На основе всего сказанного, мы можем сделать вывод, что стандартная калибровка для уравнений Элиашберга, в которой одна из функций $\phi_{1\alpha n}$ или $\phi_{2\alpha n}$ тождественно равна нулю, в случае сверхпроводника, испытывающего переход со сменой знака параметра порядка, не только допустима для снижения вычислительных затрат, но и необходима для устойчивости и сходимости решений.

Финансирование работы

Работа выполнена в рамках научной тематики Госзадания ИФ СО РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] J. Bardeen, L.N. Cooper, J.R. Schrieffer. Phys. Rev. 108, 8, 1175 (1957).
- [2] А.А. Абрикосов, Л.П. Горьков, И.Е. Дзялошинский. Методы квантовой теории поля в статистической физике. Добросвет, М. (1998). 514 с.
- [3] Г.М. Элиашберг. ЖЭТФ 38, 3, 966 (1960).
- [4] P.J. Hirschfeld, M.M. Korshunov, I.I. Mazin. Rep. Prog. Phys. 74, 12, 124508 (2011).
- [5] Y. Ohashi. J. Phys. Soc. Jpn. 71, 8, 1978 (2002).
- [6] Y. Ohashi. Physica C 412–414, 41 (2004).
- [7] М.М. Коршунов, Ю.Н. Тогушова, О.В. Долгов. УФН 186, 12, 1315 (2016).
- [8] D.V. Efremov, M.M. Korshunov, O.V. Dolgov, A.A. Golubov,
 P.J. Hirschfeld. Phys. Rev. B 84, 18, 180512 (2011).
- [9] M.M. Korshunov, D.V. Efremov, A.A. Golubov, O.V. Dolgov. Phys. Rev. B 90, 13, 134517 (2014).
- [10] V.A. Shestakov, M.M. Korshunov, Yu.N. Togushova, O.V. Dolgov. Supercond. Sci. Technol. 34, 075008 (2021).
- [11] Y. Nambu. Phys. Rev. 117, 3, 648 (1960).
- [12] P. Allen, B. Mitrovic. Solid State Phys. 37, 1 (1982).
- [13] V.A. Shestakov, M.M. Korshunov, O.V. Dolgov. Symmetry 10, 323 (2018).
- [14] V.A. Shestakov, M.M. Korshunov, Yu.N. Togushova, D.V. Efremov, O.V. Dolgov. Supercond. Sci. Technol. 31, 3, 034001 (2018).
- Редактор Ю.Э. Китаев