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The interaction of wrinkles and vertical folds in single-layer and multilayer graphene sheets lying on a flat

substrate was simulated. It is shown that when the sheet slides freely on the substrate, the interaction of wrinkles

and folds is reduced to tugging of the part of the sheet located between them. The interaction of two wrinkles

always leads to the growth of the larger one due to the disappearance of the smaller one, and the interaction of a

fold with a wrinkle always leads to an increase in the first and the disappearance of the second. The interaction

of two folds can only lead to a change in their shape. Therefore, with low uniaxial compression, only one wrinkle

can form in the sheet, and with strong uniaxial compression, only several stable folds can form. The pinning of

sheet atoms on the substrate can lead to the existence of several stable wrinkles. Depinning the sheet at high

temperatures leads to the disappearance of wrinkles and the formation of vertical folds from them. This scenario

explains the mechanism of action of thermal annealing of small wrinkles in graphene.
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1. Introduction

Carbon atoms can create numerous structures, of which

the monatomic crystalline layer — graphene has recently

attracted much attention from researchers [1–5]. This nano-
material raises interest because of its unique electronic [6],
mechanical [7] and thermal properties [8,9].
A popular method for producing graphene is the chemical

vapor-phase deposition (CVD) method, in which graphene

is grown on a substrate in a carbon-rich environment. The

CVD method often results in the occurrence of topological

defects (during the cooling the graphene sheet undergoes

an out-of-plane deformation bending), such as ripples [10]
and wrinkles [11]. Defects of this type can be formed

because of the roughness of the substrate [12] and because

of the different thermal expansion of graphene and the

substrate [13]. The presence of such defects can change the

properties of graphene: electrical conductivity [11], thermal

conductivity [14,15], elasticity [16]. The wrinkle and fold

structures formed on the sheet can be used as channels for

the injection and storage of liquid between graphene and its

substrate [17], as well as for its spatially selective chemical

functionalization [18]. For this reason the understanding the

laws of wrinkle and crease formation and explaining the

mechanisms of their interactions is important for creating

graphene-based nanodevices.

Out-of-plane (transverse) deformations of graphene can

be divided into ripples (corrugations), wrinkles and crum-

pling (folds) depending on their physical dimensions and

topology [19,20]. Quasi-analytical models based on vari-

ations calculus [11,21–26], models based on continuum

mechanics using the finite element method [27,28] and full-

atomic models using molecular dynamics were used for

describing individual wrinkles and folds [29–31].

A two-dimensional chain model describing the longitu-

dinal section of the nano-ribbon was recently proposed to

describe the dynamics of wrinkles and folds of graphene

nano-ribbon lying on a flat substrate [32]. The purpose of

this study is to use this model for explaining the mechanisms

of interaction of wrinkles and folds in single-layer and

multilayer graphene sheets lying on a flat substrate.

2. 2D model of a multilayer graphene
sheet on a flat substrate

It is convenient to use a two-dimensional molecular

chain model for describing a multilayer graphene sheet

which allows describing uniaxial deformations of the sheet

with high accuracy. Longitudinal and bending transversely

isotropic oscillations of a sheet can be described using only

the dynamics of a molecular chain, which constitutes a

linear section of the sheet. Such a 2D model of the chain

describing the longitudinal and bending movements of the

nano-ribbon is presented in Ref. [33,34]. This model was

used to describe the wrinkles and folds of a single-layer

graphene sheet on a flat substrate [32].
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A scheme for construction of a chain model of a

multilayer graphene sheet lying on a flat substrate is shown

in Figure 1. The model of a single-layer graphene sheet lying

in a plane parallel to the plane xy , with a zigzag structure

along the axis x describes a cross section of the sheet in

which all atoms with the same coordinate x correspond

to one particle. All these atoms move synchronously in

case of transversely isotropic oscillations, changing only the

coordinates xz , but without changing the coordinate y . In

this case, the Hamiltonian of the sheet can be written as the

2D chain

H =
∑

n

[

1

2
M(u̇n, u̇n) + V (rn) + U(θn) + Z(un)

+
1

2

∑

|k−n|>5

W (rn,k)

]

, (1)

where the two-dimensional vector un = (xn, z n) sets the

coordinates of n-th particle of the chain with a mass of

M = 12mp (mp = 1.66 · 10−27 kg — proton mass).

The potential

V (r) =
1

2
Kx(r − a)2 (2)

describes the longitudinal stiffness of the chain, Kx — the

stiffness of the interaction, a — the equilibrium length of the

bond (chain pitch), rn = |un+1−un| — the distance between

adjacent nodes n and n + 1.

The potential

U(θ) = ε1[1 + cos(θ)] (3)

describes the bending stiffness of the chain,

θ — the angle between two adjacent bonds,

cos(θn) = −(νn−1, νn)/rn−1rn, vector νn = un+1−un.

The potential W (rn,k) describes weak non-valent in-

teractions of remote nodes of the chain n and k ,

rn,k = |un−uk | — the distance between nodes. These

interactions can be described with high accuracy by the

Lennard–Jones potential (5,11)

W (r) = ε2[5(r0/r)11 − 11(r0/r)5]/6, (4)

with equilibrium length r0 = 3.607 Å and interaction energy

ε2 = 0.00832 eV [32].

The parameters of potentials (2), (3) are determined

in [33,34] from the analysis of dispersion curves of the

graphene nano-ribbon: longitudinal stiffness Kx = 405N/m,

chain pitch a = rCC

√
3/2 = 1.228 Å (rCC = 1.418 Å —

valence bond length C−C in graphene sheet), energy

ε1 = 3.5 eV.

The potential Z(u) describes the interaction of the nodes

of the chain (atoms of the sheet) with the flat substrate on

which it lies. The energy of the interaction of the atom

with a half-space z ≤ 0 is described by the Lennard−Jones

b

a

z

y x

Figure 1. The scheme of construction of a two-dimensional chain

model for modeling wrinkles and folds of a multilayer graphene

sheet on a flat silicon oxide substrate SiO2: (a) a full-atomic

wrinkle model of a two-layer graphene lying on a flat crystal

surface SiO2, (b) a two-dimensional chain model of a two-layer

sheet lying on a flat substrate.

potential (3, 9) [27,28,35]:

Z(u) = Z(z ) = ε0[(h0/z )9 − 3(h0/z )3]/2, (5)

where ε0 — the interaction energy (adhesion energy), h0 —
the equilibrium distance to the surface of the half-space.

For a silicon oxide substrate SiO2 energy ε0 = 0.074 eV,

distance h0 = 5 Å [36].
The Hamiltonian of the K-layer sheet will have the

following form

H =

K
∑

j=1

N
∑

n=1

1

2
M(u̇n, j , u̇n, j) + E, (6)

where N — the number of nodes in each chain,

un, j = (xn, j , z n, j ) — the vector specifying the positions of

n-th node of the j-th chain (of the j-th layer). Potential

energy of a multilayer structure

E =

K
∑

j=1

N
∑

n=1

[

V (rn, j) + U(θn, j ) +
1

2

∑

|k−n|>5

W (rn, j ;k, j )

]

+

K−1
∑

j=1

K
∑

i= j+1

N
∑

n=1

N
∑

l=1

W (rn, j ;l,i ) +

K
∑

j=1

N
∑

n=1

Z(un, j),

(7)
where the first sum describes the deformation energy

of all chains (all layers of the sheet), the second sum

describes the energy of interchain interaction (interac-
tion of layers), the third sum describes the energy

of interaction of layers of the sheet with a flat sub-

strate z = 0. Here the distance rn, j = |νn, j |, the vec-

tor νn, j = un+1, j−un, j , the angle θn, j is determined us-

Physics of the Solid State, 2024, Vol. 66, No. 4



Interaction of wrinkles and folds of a graphene sheet lying on a flat substrate 597

ing the equation cos(θn, j ) = −(νn−1, j , νn, j)/rn−1, j rn, j , dis-

tance rn, j ;l,i = |un, j−ul,i |.
It should be noted that the Hamiltonians of the

chain (1) and (6) give the deformation energy of the nano-

ribbon, which falls on the longitudinal ban of the width

1y =
√
3rCC .

3. The stationary states of a uniaxially
compressed graphene sheet

It is necessary to solve the problem of the minimum po-

tential energy of a multilayer chain with periodic boundary

conditions for finding the stationary states of a uniaxially

compressed graphene sheet

E → min : {un, j}N,K
n=1, j=1 (8)

at a period value of L = (1−d)Na , where N — the number

of chain links, d < 1 — the chain compression ratio (chain
compression as a percentage p = d · 100%).
The problem (8) was solved numerically by the conjugate

gradient method, using chains of N = 300, 600, 1000 links.

The solution of the problem showed that the following

three basic states of a longitudinally compressed chain are

possible: a uniformly compressed flat state, a state with a

localized convex wrinkle (with a bubble-like empty area

between the sheet and substrate) — see Figure 2, a−c

and the state with the vertical fold of the sheet —
see Figure 2, d−i.

Let {un,k}N,K
n=1, j=1 is the solution of the minimum energy

problem (8) (stationary state of a longitudinally compressed

graphene sheet on a flat substrate). The state will be

characterized by the energy E , tension of the chain in a

weakly deformed straight region of the chain

F =

K
∑

j=1

V ′(rn, j ) +
1

2

n+50
∑

k=n+6

W ′(rn, j ;k, j )

+

K
∑

i=1,i 6= j

n+50
∑

k=n

W ′(rn, j ;k,i )(x k,i − xn, j )/rn, j ;k,i (9)

and amplitude

A = max
n

(z n,K) −
20

∑

n=1

(z n,K + z N+1−n,K)/40.

The tension of the chain (9) in a straight section does

not depend on the node number n. It is sufficient to

determine the tension F for n = 1 if the deformation of the

chain is concentrated in its center. The amplitude A for a

wrinkle or fold is found as the maximum deviation from the

equilibrium value of the transverse coordinate of the upper

sheet (chains with j = K). For a uniformly compressed

linear state A = 0.

The dependence of the energy E , tension F and ampli-

tude of the transverse displacement A on the compression

a b c

d e f

g h i

Figure 2. The type of wrinkle for (a) single-layer, (b) two-layer,

(c) three-layer graphene sheet lying on a flat silicon oxide substrate

(compression d = 0.05, N = 300). The type of fold for a single-

layer, double-layer, three-layer sheet with d = 0.20 (d), (e), (f )
and d = 0.30 (g), (h), (i).

ratio of the sheet d is shown in Figure 3. The numerical

solution of the problem (8) showed that the homogeneously

compressed flat state of the sheet is stable at d ≤ d0, where

the critical value is d0 > 0. Hooke’s law holds when a flat

sheet is homogeneously compressed (stretched) (A ≡ 0):
energy E ∝ d2, tension F ∝ d — see curves 1.

Wrinkles with an empty inner cavity exist with com-

pression dw,1 ≤ d ≤ dw,2, where the minimum value is

dw,1 ∈ (0, d0). The energy E and the amplitude A

monotonously increase with an increase of compression and

the tension F monotonously decreases — see curves 2, 4, 6.

The decrease of F is attributable to the increase of

amplitude, the part of the surface of the
”
bubble“ adjacent

to the substrate monotonously decreases. The interaction

of this part of the sheet with the substrate causes tension

in the rest of the chain (this tesion prevents the chain from

lying completely on the substrate).

An increase of the chain compression results in the

collapse of wrinkles — they fold forming a fold with a

dense narrow multilayer leg with a drop-shaped head —
see Figure 2, d−i. Vertical folds exist with the compression

d ≥ d f , where the minimum value is d f ∈ (d0, dw,2).

The critical value of compression d0, dw,1, dw,2, d f , for

K-layered sheets are given in the table. The value d0 does

not depend on the length of the chain. The width of the

wrinkle interval dw,2−dw,1 and the value d f monotonously

decrease with an increase of the number of chain links N.

The energy and amplitude of the fold grow as linear

functions with an increase of d : E ∝ d, A ∝ d; and the

residual tension in the chain monotonously tends to a

constant value: F → F0 > 0, for d → 1 — see curves 3, 5, 7.

The reason is that the growth of the fold in case of

compression of the chain is attributable to the increase of

the length of its leg, while the shape of the part of the

leg adjacent to the substrate practically does not change —
see Figure 2, d−i. It should be noted that the residual

tension in a chain with a fold is always less than the tension

in a chain with a wrinkle.
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The critical compression values d0 , dw,1 , dw,2, d f for K-layered chain (for K-layered sheet) of N links

N 300 600 1000

K d0 dw,1 dw,2 d f dw,1 dw,2 d f dw,1 dw,2 d f

1 0.035 0.017 0.136 0.094 0.013 0.068 0.050 0.011 0.041 0.033

2 0.026 0.014 0.163 0.109 0.011 0.082 0.057 0.009 0.049 0.037

3 0.021 0.013 0.191 0.125 0.010 0.096 0.065 0.008 0.068 0.039

d
0 0.1 0.2 0.3
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6

A
, 
n
m

c
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E
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Figure 3. The dependence (a) of energy E, (b) of tension F ,

(c) of amplitude of transverse displacements A from compression

ratio d of a multilayer cyclic chain of N = 300 links. Curves 1 —
for longitudinal uniform compression; curves 2, 4, 6 — for a

wrinkle of K-layered sheet (K = 1, 2, 3); curves 3, 5, 7 — for

the fold of K-layered sheet (K = 1, 2, 3).

4. Interaction of wrinkles and folds

The dependence of the residual tension F on the degree

of compression of the chain d (monotonous decrease for

wrinkles and growth for folds with increase of d —
see Figure 3, b) allows making a conclusion that if two

wrinkles are present in a compressed cyclic chain, then the

larger one will grow because of the decrease of the small

one. Each wrinkle will exert pressure (force F) on the part

of the chain adjacent to the substrate. If a wrinkle exerts

less pressure, then as a result of the addition of pressures

directed against each other, it will begin to draw in a chain,

increasing its own amplitude and reducing the amplitude of

the other wrinkle. The fold always exerts a weaker pressure

than the wrinkle, so it will always pull the chain into itself

until the wrinkle disappears.

The interaction of wrinkles and folds is reduced to the

pulling of a part of the chain located between them. There-

fore, wrinkles and folds can interact over long distances if

the chain can freely slide over the substrate. The interaction

of a pair of wrinkles should result in the growth of a larger

wrinkle due to the disappearance of a smaller one, and the

interaction of a fold with a wrinkle should always result in

the growth of the former one due to the disappearance of

the latter one.

Let’s conduct a numerical simulation of the interaction

of wrinkles and folds. Let’s take two stationary states of

a cyclic chain of N = 300 links with different compression

values d1 and d2 for this purpose. Let’s combine these

two chains into one cyclic chain of 2N links with a

period (length) of L = (2−d1−d2)aN. The first half of the

chain will correspond to deformations of the chain with

compression d1, the second half of the chain will corre-

spond to deformations of the chain with compression d2.

Compression of the combined chain d = (d1 + d2)/2.
Let’s simulate the dynamics of the combined chain. Let’s

numerically integrate the system of equations of motion

corresponding to the Hamiltonian (6) for this purpose:

Mün. j = − ∂H

∂un, j

, n = 1, . . . , 2N, j = 1, . . . , K, (10)

with the initial condition

{xn, j(0) = xn, j,1, z n, j (0) = z n, j,1}N,K
n=1, j=1,

{xn, j(0)=N(1−d1)a+xn−N, j,2, z n, j(0)=z n−N, j,2}2N,K
n=N+1, j=1,

{ẋn, j(0) = 0, ż n, j(0) = 0}2N,K
n=1, j=1,

(11)
where {xn, j,i , z n, j,i}N,K

n=1, j=1 is the solution of the prob-

lem (8) with compression d = di , i = 1, 2.

Numerical integration of the system of equations of

motion (10) with the initial condition (11) showed that the

interaction of two wrinkles always results in the growth

of a wrinkle with the largest amplitude because of the

disappearance of a wrinkle with a smaller amplitude —
see Figure 4, a and 5, a. For instance, only one wrinkle

corresponding to the compression of the combined chain
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d = 0.055 remains in the chain for a single-layer sheet

at d1 = 0.06, d2 = 0.05, as a result of interaction. The

interaction of wrinkles also results in the disappearance of

the second wrinkle for a three-layer sheet at d1 = 0.20,

d2 = 0.10 — only one wrinkle remains in the chain, the

growth of which results in its transition to a fold.

The interaction of the fold with the wrinkle always results

in an increase of the fold because of the disappearance of

the wrinkle — see Figure 4, b and 5, b. The interaction of

the two folds results only in a periodic change in their shape

due to the pulling of chains. Therefore, it can be concluded

that the compression of a single-layer and multi-layer sheet

can only result in the formation of one wrinkle at d < d f

and in the formation of several folds at d > d f . We will

simulate the dynamics of a uniformly compressed chain at

different compression values to verify this.
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Figure 4. Interaction: (a) wrinkles corresponding to compression

d1 = 0.06, d2 = 0.05; (b) folds and wrinkles with d1 = 0.08

and d2 = 0.06; (c) two folds with compression d1 = 0.10

and d2 = 0.08 chains of N = 300 links. The number of sheet

layers is K = 1. The dependence on time t of the shape of the first

layer {un = xn,1, hn = z n,1−h0}
600
n=1 is shown.
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Figure 5. Interaction: (a) wrinkles corresponding to compression

d1 = 0.15, d2 = 0.10; (b) folds and wrinkles with d1 = 0.50

and d2 = 0.15; (c) two folds with compression d1 = 0.50

and d2 = 0.20 chains of N = 300 links. The number of sheet

layers is K = 3. The dependence on time t of the shape of the first

layer {un = xn,1, hn = z n,1−h0}
600
n=1 is shown.

5. The formation of wrinkles and folds
in case of compression of the chain

Let’s take a homogeneously compressed cyclic chain

of N = 1000 links to simulate the formation of wrinkles and

folds. Let’s put it in a Langevin thermostat and consider its

further dynamics. Let’s numerically integrate the system of

Langevin equations for this purpose

{

Mün, j = − ∂H

∂un, j

− ŴMu̇n, j − 4n, j

}N,K

n=1, j=1

, (12)

where Ŵ = 1/tr — the coefficient of friction (thermo-

stat relaxation time tr = 2 ps), 4n, j = (ξn, j ;1, ξn, j ;2) — a

two-dimensional vector of normally distributed random
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Figure 6. The formation of one wrinkle with compression

d = 0.025, (b) one fold at d = 0.05 and (c) of two folds at

d = 0.25 in a uniformly compressed two-layer graphene sheet (a).
Number of links N = 1000, number of layers K = 2, temperature

T = 300K. The dependence of the shape of the first layer

on time t is shown: {un = xn,1, hn = z n,1−h0}
N
n=1 .

Langevin forces with correlation functions

〈ξn, j1 ;i1(t1)ξk, j2 ;i2(t2)〉 = 2MkBTŴδnkδ j1 j2δi1i2δ(t1 − t2)

(kB — Boltzmann constant, T — thermostat temperature).
Let’s take a homogeneously compressed stationary state

of the chain as the initial condition of the system of

equations (12)

{xn, j(0) = (n − 1)(1− d)a + b j,

z n, j(0) = h0 + ( j − 1)h1,

ẋn, j (0) = 0, ż n, j (0) = 0}N,K
n=1, j+1, (13)

where b j = 0 for odd j , b j = a/2 for even j , h1 = 3.33 Å

[chain length L = (1−d)Na ]. The presence of a ther-

mostat allows removing the excess energy of the initial

homogeneous compression from the chain. Let’s take the

temperature of the thermostat of T = 300K.

Numerical integration of the Langevin equation sys-

tem (12) with the initial condition (13) showed that only

one wrinkle can form in the sheet with the compression

d < d f — see Figure 6, a. Several wrinkles are first formed

in the system in case of compression d = 0.05 > d f , one

of which absorbs all the others and then it forms a vertical

fold — see Figure 6, b. Several growing wrinkles are formed

first in case of a stronger compression d = 0.15, two of

which form vertical folds, and the rest disappear. The folds

form stable states — see Figure 6, a. The scenario of the

formation of wrinkles and folds remains the same for single-

layer, double-layer, three-layer sheets and is fully consistent

with the results of modeling of their interaction.

6. Thermal annealing of wrinkles

The above results are valid only if the chain (sheet) can

slide freely over the substrate. The wrinkles and folds

of the sheet will interact only over short distances if the

interaction with the substrate prevents such sliding, if the

chain nodes are pinned on the substrate grid. In this case,

several wrinkles may exist in the chain at the same time,

forming stable structures in this chain.

Let’s describe the interaction of the chain nodes with the

substrate with a periodic potential of x for describing the

pinning effect

Z(u)=

[

1

2
ε0−

1

4
εp

(

1−cos
2πx

a

)]{(

h0

z

)9

− 3

(

h0

z

)3}

,

(14)
where εp ≥ 0 — the height of the energy periodic relief

along the substrate (pinning energy). The potential (14)
coincides with potential (5) in the absence of pinning, at

εp = 0.

Let’s take the characteristic value of the pinning energy

εp = 0.003 eV. The solution of the problem (8) in case of

use of the potential of interaction with the substrate (14)
shows that a stable system of non-interacting wrinkles can

already exist in the compressed chain. For instance, there is

a stable system of 8 wrinkles in a single-layer chain (K = 1)
of N = 1000 links with compression d = 0.1. Let’s consider

the behavior of this system at different temperatures.

The numerical integration of the Langevin equation

system (12) showed that the system of non-interacting

wrinkles is present at low temperatures. Thermally activated

chain depinning begins with an increase of the temperature

as a result of which it becomes possible for the chain

to temporarily slide along the substrate. Therefore, the

wrinkles begin to interact over greater distances. The

dynamics of the chain at different temperatures is shown

in Figure 7. For instance, all wrinkles remain in the chain

at T = 100K. Two wrinkles disappear at T = 200 they are

absorbed by their larger neighbors and 6 wrinkles remain in

the chain. 5 wrinkles remain in the chain at T = 300K.
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Figure 7. Dynamics of wrinkles and folds in a compressed

single-layer graphene sheet (compression d = 0.1) in the presence

of attachment to the substrate (pinning energy εp = 0.003 eV) at

temperature (a) T = 300, (b) T = 400 and (c) T = 500K. The

number of links N = 1000, the number of layers K = 1. The

dependence of the shape of the first layer on time t is shown:

{un = xn,1, hn = z n,1−h0}
N
n=1 .

Two stable wrinkles and one fold remain in the chain

at T = 400K. The chain is completely depinned at high

temperature T = 500K, it begins to slide almost freely on

the substrate. All wrinkles disappear as a result, and a

stable system of two folds remains in the sheet. Wrinkles

have similar dynamics in case of two and three-layer sheets.

The simulation explains the mechanism of elimination of

small wrinkles in case of thermal annealing [37]. Annealing
at a temperature of T = 200◦C (473K) of a graphene sheet

lying on a substrate SiO2 result in the disappearance of

wrinkles with an amplitude of A = 1.5 nm, and wrinkles

with A ≥ 1.5 nm remain stable. Our simulation shows

that annealing here results in thermally activated depinning

of the graphene sheet from the substrate. As a result,

all wrinkles with small amplitudes disappear, and large

wrinkles grow and turn into vertically standing stable folds.

7. Conclusion

The interaction of wrinkles and vertical folds in single-

layer and multilayer graphene sheets lying on a flat substrate

(on the flat surface of a silicon oxide crystal SiO2) was

simulated using a two-dimensional chain model describing

the longitudinal section of a graphene nano-ribbon. Uniaxial

compression of such a sheet results in the formation of a

localized convex wrinkle with an empty bubble-like area

between the sheet and the substrate. The wrinkles fold

(collapse) when the amplitude of A ≈ 2 nm is reached and

form vertically standing folds with dense multilayer legs and

drop-shaped heads.

It was shown that the interaction of wrinkles and folds is

reduced to pulling of the part of the sheet located between

them when the sheet slides freely over the substrate. Such

interaction can occur over long distances. The interaction of

two wrinkles always results in the growth of the larger one

because of the disappearance of the smaller one, and the

interaction of the fold with the wrinkle results in the growth

of the former one because of the disappearance of the

latter one. The interaction of the two folds only results

in a change of their shape. Therefore, only one wrinkle

can be formed in a uniaxially compressed graphene sheet

with low compression d < d f (initially, several wrinkles are

formed, but then the largest wrinkle grows because of the

disappearance of the other wrinkles). Either one fold or

several stable folds can be formed in the sheet in case of

strong compression d > d f . A system of multiple wrinkles

is formed at first here, too, the largest of which grow as

the result of the reduction of the neighboring ones and then

collapse into vertical folds. The scenario for the formation

of wrinkles and folds is the same for single-layer, double-

and three-layer sheets.

The wrinkles and folds will interact only over short

distances if the interaction with the substrate prevents

the sheet from sliding (with the pinning of the sheet

on the substrate). In this case, several wrinkles can

exist simultaneously in a compressed sheet, forming stable

structures in this sheet. The sheet begins to slide along

the substrate at high temperatures because of thermally

activated depinning and wrinkles begin to interact over long

distances. As a result, all wrinkles disappear, and only

vertical folds remain in the sheet. This scenario explains the

mechanism of action of thermal annealing of small wrinkles

of graphene [37].
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