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The interaction of wrinkles and vertical folds in single-layer and multilayer graphene sheets lying on a flat
substrate was simulated. It is shown that when the sheet slides freely on the substrate, the interaction of wrinkles
and folds is reduced to tugging of the part of the sheet located between them. The interaction of two wrinkles
always leads to the growth of the larger one due to the disappearance of the smaller one, and the interaction of a
fold with a wrinkle always leads to an increase in the first and the disappearance of the second. The interaction
of two folds can only lead to a change in their shape. Therefore, with low uniaxial compression, only one wrinkle
can form in the sheet, and with strong uniaxial compression, only several stable folds can form. The pinning of
sheet atoms on the substrate can lead to the existence of several stable wrinkles. Depinning the sheet at high
temperatures leads to the disappearance of wrinkles and the formation of vertical folds from them. This scenario
explains the mechanism of action of thermal annealing of small wrinkles in graphene.
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1. Introduction

Carbon atoms can create numerous structures, of which
the monatomic crystalline layer — graphene has recently
attracted much attention from researchers [1-5]. This nano-
material raises interest because of its unique electronic [6],
mechanical [7] and thermal properties [8,9].

A popular method for producing graphene is the chemical
vapor-phase deposition (CVD) method, in which graphene
is grown on a substrate in a carbon-rich environment. The
CVD method often results in the occurrence of topological
defects (during the cooling the graphene sheet undergoes
an out-of-plane deformation bending), such as ripples [10]
and wrinkles [11]. Defects of this type can be formed
because of the roughness of the substrate [12] and because
of the different thermal expansion of graphene and the
substrate [13]. The presence of such defects can change the
properties of graphene: electrical conductivity [11], thermal
conductivity [14,15], elasticity [16]. The wrinkle and fold
structures formed on the sheet can be used as channels for
the injection and storage of liquid between graphene and its
substrate [17], as well as for its spatially selective chemical
functionalization [18]. For this reason the understanding the
laws of wrinkle and crease formation and explaining the
mechanisms of their interactions is important for creating
graphene-based nanodevices.

Out-of-plane (transverse) deformations of graphene can
be divided into ripples (corrugations), wrinkles and crum-
pling (folds) depending on their physical dimensions and
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topology [19,20]. Quasi-analytical models based on vari-
ations calculus [11,21-26], models based on continuum
mechanics using the finite element method [27,28] and full-
atomic models using molecular dynamics were used for
describing individual wrinkles and folds [29-31].

A two-dimensional chain model describing the longitu-
dinal section of the nano-ribbon was recently proposed to
describe the dynamics of wrinkles and folds of graphene
nano-ribbon lying on a flat substrate [32]. The purpose of
this study is to use this model for explaining the mechanisms
of interaction of wrinkles and folds in single-layer and
multilayer graphene sheets lying on a flat substrate.

2. 2D model of a multilayer graphene
sheet on a flat substrate

It is convenient to use a two-dimensional molecular
chain model for describing a multilayer graphene sheet
which allows describing uniaxial deformations of the sheet
with high accuracy. Longitudinal and bending transversely
isotropic oscillations of a sheet can be described using only
the dynamics of a molecular chain, which constitutes a
linear section of the sheet. Such a 2D model of the chain
describing the longitudinal and bending movements of the
nano-ribbon is presented in Ref. [33,34]. This model was
used to describe the wrinkles and folds of a single-layer
graphene sheet on a flat substrate [32].



596

A.V. Savin, O.l. Savina

A scheme for construction of a chain model of a
multilayer graphene sheet lying on a flat substrate is shown
in Figure 1. The model of a single-layer graphene sheet lying
in a plane parallel to the plane xy, with a zigzag structure
along the axis x describes a cross section of the sheet in
which all atoms with the same coordinate x correspond
to one particle. All these atoms move synchronously in
case of transversely isotropic oscillations, changing only the
coordinates xz, but without changing the coordinate y. In
this case, the Hamiltonian of the sheet can be written as the
2D chain

H= Z{ M (i, w,) + V(r,) + U(6,) + Z(u,)

+3 5 Wi, o

lk—n|>5

where the two-dimensional vector u, = (x,, z,) sets the
coordinates of n-th particle of the chain with a mass of
M = 12m,, (m, = 1.66 - 102" kg — proton mass).

The potential

K. (r — a)2 (2)

describes the longitudinal stiffness of the chain, K, — the
stiffness of the interaction, a — the equilibrium length of the
bond (chain pitch), r, = |u,+1—u,| — the distance between
adjacent nodes n and n + 1.

The potential

U(0) = &[1 + cos(0)] (3)
describes the bending stiffness of the chain,
60 — the angle between two adjacent bonds,
cos(6,) = —(Vu—1, V) /Fn—1Fn, VECLOT V,, = W11 —W,

The potential W(r,,) describes weak non-valent in-
teractions of remote nodes of the chain n and k,
Fox = |up—ug| — the distance between nodes. These
interactions can be described with high accuracy by the
Lennard—Jones potential (5,11)

W(r) = &[5(ro/r)"" — 11(ro/r)’]/6, )
with equilibrium length o = 3.607 A and interaction energy
& =0.00832¢eV [32].

The parameters of potentials (2), (3) are determined
in [33,34] from the analysis of dispersion curves of the
graphene nano-ribbon: longitudinal stiffness K, = 405 N/m,
chain pitch a = rccv/3/2 =1.228A (rcc = 1.418A —
valence bond length C—C in graphene sheet), energy
&1 = 3.5¢eV.

The potential Z(u) describes the interaction of the nodes
of the chain (atoms of the sheet) with the flat substrate on
which it lies. The energy of the interaction of the atom
with a half-space z < 0 is described by the Lennard—Jones

Figure 1. The scheme of construction of a two-dimensional chain
model for modeling wrinkles and folds of a multilayer graphene
sheet on a flat silicon oxide substrate SiO»: (a) a full-atomic
wrinkle model of a two-layer graphene lying on a flat crystal
surface SiO,, (b) a two-dimensional chain model of a two-layer
sheet lying on a flat substrate.

potential (3,9) [27,28,35]:
Z(w) = Z(z) = eol(ho/2)’ = 3(ho/2)’]/2, (5)

where g9 — the interaction energy (adhesion energy), hp —
the equilibrium distance to the surface of the half-space.
For a silicon oxide substrate SiO; energy ey = 0.074 ¢V,
distance hy = 5 A [36].

The Hamiltonian of the K-layer sheet will have the
following form

K N
1 .
H:ZZEM W, ), 0, ;) +E, (6)
j=1 n=1
where N — the number of nodes in each chain,

u, j = (x,j,zn;) — the vector specifying the positions of
n-th node of the j-th chain (of the j-th layer). Potential
energy of a multilayer structure

j=1 n=1 lk—n|>5
K—-1 K N N K N
IPIDMBUCTFOED BB
=1 i=j+1 n=1 I=1 =1 n=1

(7)
where the first sum describes the deformation energy
of all chains (all layers of the sheet), the second sum
describes the energy of interchain interaction (interac-
tion of layers), the third sum describes the energy
of interaction of layers of the sheet with a flat sub-
strate z =0. Here the distance r,; = |v, |, the vec-
tor v, ; = u,41 ;j—u,  , the angle 60, ; is determined us-
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ing the equation cos(6,,;) = —(Vu—1,j, Vu,j)/Tn—1,;Tn, j, dis-
tance 7, jg; = [, ;j—ug ;.

It should be noted that the Hamiltonians of the
chain (1) and (6) give the deformation energy of the nano-
ribbon, which falls on the longitudinal ban of the width
Ay = \/§r cc-

3. The stationary states of a uniaxially
compressed graphene sheet

It is necessary to solve the problem of the minimum po-
tential energy of a multilayer chain with periodic boundary
conditions for finding the stationary states of a uniaxially
compressed graphene sheet

E—min: {u,;}," (8)
at a period value of L = (1—d)Na, where N — the number
of chain links, d < 1 — the chain compression ratio (chain
compression as a percentage p = d - 100%).

The problem (8) was solved numerically by the conjugate
gradient method, using chains of N = 300, 600, 1000 links.
The solution of the problem showed that the following
three basic states of a longitudinally compressed chain are
possible: a uniformly compressed flat state, a state with a
localized convex wrinkle (with a bubble-like empty area
between the sheet and substrate) — see Figure 2,a—c
and the state with the vertical fold of the sheet —
see Figure 2, d—i.

Let {u,;}"4 j—1 is the solution of the minimum energy
problem (8) (stationary state of a longitudinally compressed
graphene sheet on a flat substrate). The state will be
characterized by the energy E, tension of the chain in a
weakly deformed straight region of the chain

K n+50

1
F=Y V() + 3 > W (rnji)
Jj=1 k=n+6
K  n+50
Y W i) ki = Xn ) i (9)
i=1,i#j k=n

and amplitude

20
A= mr?X(Zn,K) - Z(Zn,l( + Zn11-nk)/40.

n=1

The tension of the chain (9) in a straight section does
not depend on the node number n. It is sufficient to
determine the tension F for n = 1 if the deformation of the
chain is concentrated in its center. The amplitude A for a
wrinkle or fold is found as the maximum deviation from the
equilibrium value of the transverse coordinate of the upper
sheet (chains with j = K). For a uniformly compressed
linear state A = 0.

The dependence of the energy E, tension F' and ampli-
tude of the transverse displacement A on the compression
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Figure 2. The type of wrinkle for (a) single-layer, (b) two-layer,
(c) three-layer graphene sheet lying on a flat silicon oxide substrate
(compression d = 0.05, N = 300). The type of fold for a single-
layer, double-layer, three-layer sheet with d = 0.20 (d), (e), (f)
and d = 0.30 (g), (h), (7).

ratio of the sheet d is shown in Figure 3. The numerical
solution of the problem (8) showed that the homogeneously
compressed flat state of the sheet is stable at d < dy, where
the critical value is dy > 0. Hooke’s law holds when a flat
sheet is homogeneously compressed (stretched) (A =0):
energy E oc d?, tension F o< d — see curves I.

Wrinkles with an empty inner cavity exist with com-
pression dy 1 <d <dy» where the minimum value is
dw1 € (0,dy). The energy E and the amplitude A
monotonously increase with an increase of compression and
the tension F monotonously decreases — see curves 2, 4, 6.
The decrease of F is attributable to the increase of
amplitude, the part of the surface of the ,bubble” adjacent
to the substrate monotonously decreases. The interaction
of this part of the sheet with the substrate causes tension
in the rest of the chain (this tesion prevents the chain from
lying completely on the substrate).

An increase of the chain compression results in the
collapse of wrinkles — they fold forming a fold with a
dense narrow multilayer leg with a drop-shaped head —
see Figure 2, d—i. Vertical folds exist with the compression
d > dy, where the minimum value is dy € (do, dw,2).

The critical value of compression do, dy,1, dw,2, dy, for
K-layered sheets are given in the table. The value dy does
not depend on the length of the chain. The width of the
wrinkle interval dy,2—dy,1 and the value dy monotonously
decrease with an increase of the number of chain links N.

The energy and amplitude of the fold grow as linear
functions with an increase of d: E x d, A « d; and the
residual tension in the chain monotonously tends to a
constant value: F — Fy > 0, ford — 1 — see curves 3, 3, 7.
The reason is that the growth of the fold in case of
compression of the chain is attributable to the increase of
the length of its leg, while the shape of the part of the
leg adjacent to the substrate practically does not change —
see Figure 2,d—i. It should be noted that the residual
tension in a chain with a fold is always less than the tension
in a chain with a wrinkle.



598

A.V. Savin, O.l. Savina

The critical compression values do, dw,1, dw,2, dy for K-layered chain (for K-layered sheet) of N links

300

600

1000

dw, 1

dw, 2

dy

dw, 1

dw, 2

dy

dw, 1

dw, 2

1 0.035

0.017

0.136

0.094

0.013

0.068

0.050

0.011

0.041

0.033

2 0.026

0014

0.163

0.109

0.011

0.082

0.057

0.009

0.049

0.037

3 0.021

0.013

0.191

0.125

0.010

0.096

0.065

0.008

0.068

0.039

W
T
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T

F/K, eV/nm
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T
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Figure 3. The dependence (a) of energy E, (b) of tension F,
(¢) of amplitude of transverse displacements A from compression
ratio d of a multilayer cyclic chain of N = 300 links. Curves / —
for longitudinal uniform compression; curves 2,4,6 — for a
wrinkle of K-layered sheet (K =1, 2, 3); curves 3,5, 7 — for
the fold of K-layered sheet (K = 1, 2, 3).

4. Interaction of wrinkles and folds

The dependence of the residual tension F' on the degree
of compression of the chain d (monotonous decrease for
wrinkles and growth for folds with increase of d —
see Figure 3,5) allows making a conclusion that if two
wrinkles are present in a compressed cyclic chain, then the
larger one will grow because of the decrease of the small
one. Each wrinkle will exert pressure (force F) on the part
of the chain adjacent to the substrate. If a wrinkle exerts
less pressure, then as a result of the addition of pressures
directed against each other, it will begin to draw in a chain,

increasing its own amplitude and reducing the amplitude of
the other wrinkle. The fold always exerts a weaker pressure
than the wrinkle, so it will always pull the chain into itself
until the wrinkle disappears.

The interaction of wrinkles and folds is reduced to the
pulling of a part of the chain located between them. There-
fore, wrinkles and folds can interact over long distances if
the chain can freely slide over the substrate. The interaction
of a pair of wrinkles should result in the growth of a larger
wrinkle due to the disappearance of a smaller one, and the
interaction of a fold with a wrinkle should always result in
the growth of the former one due to the disappearance of
the latter one.

Let’s conduct a numerical simulation of the interaction
of wrinkles and folds. Let’s take two stationary states of
a cyclic chain of N = 300 links with different compression
values d; and d, for this purpose. Let’s combine these
two chains into one cyclic chain of 2N links with a
period (length) of L = (2—d—d;)aN. The first half of the
chain will correspond to deformations of the chain with
compression dj, the second half of the chain will corre-
spond to deformations of the chain with compression d».
Compression of the combined chain d = (d; + d3)/2.

Let’s simulate the dynamics of the combined chain. Let’s
numerically integrate the system of equations of motion
corresponding to the Hamiltonian (6) for this purpose:

o0H
8lln,j ’

Mit, ; = n=1,...,2N, j=1,....K, (10)

with the initial condition

N.K
{20, (0) = Xn 10 20 (0) = znjia b2t oy
{x0,j(0)=N(1=d\)a+xn-n,j.2, 20 j(0)=2n-n,j 2} N1 1>

{2,,5(0) = 0, 2,,;(0) = O},

(11)
where {x, i, zn, j,[};\’j, j—1 is the solution of the prob-
lem (8) with compression d =d;, i =1, 2.

Numerical integration of the system of equations of
motion (10) with the initial condition (11) showed that the
interaction of two wrinkles always results in the growth
of a wrinkle with the largest amplitude because of the
disappearance of a wrinkle with a smaller amplitude —
see Figure 4,a and 5,a. For instance, only one wrinkle
corresponding to the compression of the combined chain

Physics of the Solid State, 2024, Vol. 66, No. 4
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d = 0.055 remains in the chain for a single-layer sheet
at d; = 0.06, d, = 0.05, as a result of interaction. The
interaction of wrinkles also results in the disappearance of
the second wrinkle for a three-layer sheet at d; = 0.20,
dy =0.10 — only one wrinkle remains in the chain, the
growth of which results in its transition to a fold.

The interaction of the fold with the wrinkle always results
in an increase of the fold because of the disappearance of
the wrinkle — see Figure 4,5 and 5,b. The interaction of
the two folds results only in a periodic change in their shape
due to the pulling of chains. Therefore, it can be concluded
that the compression of a single-layer and multi-layer sheet
can only result in the formation of one wrinkle at d < dy
and in the formation of several folds at d > dy. We will
simulate the dynamics of a uniformly compressed chain at
different compression values to verify this.

h,,, nm

h,,, nm

h,,, nm
SHSIEN

Z{Izs Hm

60

Figure 4. Interaction: (a) wrinkles corresponding to compression
dy =0.06, d» =0.05; (b) folds and wrinkles with d; = 0.08
and d, =0.06; (c¢) two folds with compression d; =0.10
and d, = 0.08 chains of N =300 links. The number of sheet
layers is K = 1. The dependence on time ¢ of the shape of the first
layer {un = xn1, hy = z,,_l—ho}gozol is shown.
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Figure 5. Interaction: (a) wrinkles corresponding to compression
dy =0.15, d» =0.10; (b) folds and wrinkles with d; = 0.50
and d, =0.15; (c¢) two folds with compression d; =0.50
and d> = 0.20 chains of N =300 links. The number of sheet
layers is K = 3. The dependence on time ¢ of the shape of the first
layer {u, = Xn1, hn = Z01—ho }5% is shown.

5. The formation of wrinkles and folds
in case of compression of the chain

Let’s take a homogeneously compressed cyclic chain
of N = 1000 links to simulate the formation of wrinkles and
folds. Let’s put it in a Langevin thermostat and consider its
further dynamics. Let’s numerically integrate the system of
Langevin equations for this purpose

OH MK
{Miin,j =- —I'Mu, ; — En,]} , (12)
duy, j n=1,j=1
where I'=1/t, — the coefficient of friction (thermo-
stat relaxation time t, =2ps), E,; = (& j1.4nj2) — a

two-dimensional vector of normally distributed random
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h,,, nm

Figure 6. The formation of one wrinkle with compression
d =0.025, (b) one fold at d = 0.05 and (c) of two folds at
d = 0.25 in a uniformly compressed two-layer graphene sheet (a).
Number of links N = 1000, number of layers K = 2, temperature
T =300K. The dependence of the shape of the first layer
on time ¢ is shown: {u, = X, 1, by = zn1—ho })_,.

Langevin forces with correlation functions
(Gnjir (11)&k joiin (12)) = 2MkpTT 8,48, j,81,1,6 (11 — 12)

(kg — Boltzmann constant, 7 — thermostat temperature).

Let’s take a homogeneously compressed stationary state
of the chain as the initial condition of the system of
equations (12)

{x,,;(0) = (n—1)(1 —d)a + b,
23,j(0) = ho + (j — Dh,

%n;(0) =0, 7,;(0)=0}"5 (13)

n=1,j+1°

where b; = 0 for odd j, b; = a/2 for even j, hy = 3.33A
[chain length L = (1-d)Na]. The presence of a ther-
mostat allows removing the excess energy of the initial

homogeneous compression from the chain. Let’s take the
temperature of the thermostat of 7 = 300 K.

Numerical integration of the Langevin equation sys-
tem (12) with the initial condition (13) showed that only
one wrinkle can form in the sheet with the compression
d < dy— see Figure 6,a. Several wrinkles are first formed
in the system in case of compression d = 0.05 > d; , one
of which absorbs all the others and then it forms a vertical
fold — see Figure 6, b. Several growing wrinkles are formed
first in case of a stronger compression d = 0.15, two of
which form vertical folds, and the rest disappear. The folds
form stable states — see Figure 6,a. The scenario of the
formation of wrinkles and folds remains the same for single-
layer, double-layer, three-layer sheets and is fully consistent
with the results of modeling of their interaction.

6. Thermal annealing of wrinkles

The above results are valid only if the chain (sheet) can
slide freely over the substrate. The wrinkles and folds
of the sheet will interact only over short distances if the
interaction with the substrate prevents such sliding, if the
chain nodes are pinned on the substrate grid. In this case,
several wrinkles may exist in the chain at the same time,
forming stable structures in this chain.

Let’s describe the interaction of the chain nodes with the
substrate with a periodic potential of x for describing the
pinning effect

9 3
o= [pege(-e () (2) )

(14)
where ¢, > 0 — the height of the energy periodic relief
along the substrate (pinning energy). The potential (14)
coincides with potential (5) in the absence of pinning, at
g, = 0.

Let’s take the characteristic value of the pinning energy
e, = 0.003 eV. The solution of the problem (8) in case of
use of the potential of interaction with the substrate (14)
shows that a stable system of non-interacting wrinkles can
already exist in the compressed chain. For instance, there is
a stable system of 8 wrinkles in a single-layer chain (K = 1)
of N = 1000 links with compression d = 0.1. Let’s consider
the behavior of this system at different temperatures.

The numerical integration of the Langevin equation
system (12) showed that the system of non-interacting
wrinkles is present at low temperatures. Thermally activated
chain depinning begins with an increase of the temperature
as a result of which it becomes possible for the chain
to temporarily slide along the substrate. Therefore, the
wrinkles begin to interact over greater distances. The
dynamics of the chain at different temperatures is shown
in Figure 7. For instance, all wrinkles remain in the chain
at 7 = 100 K. Two wrinkles disappear at 7 = 200 they are
absorbed by their larger neighbors and 6 wrinkles remain in
the chain. 5 wrinkles remain in the chain at 7 = 300 K.

Physics of the Solid State, 2024, Vol. 66, No. 4
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Figure 7. Dynamics of wrinkles and folds in a compressed
single-layer graphene sheet (compression d = 0.1) in the presence
of attachment to the substrate (pinning energy €, = 0.003eV) at
temperature (a) T = 300, (b) T =400 and (c¢) T = 500K. The
number of links N = 1000, the number of layers K = 1. The
dependence of the shape of the first layer on time ¢ is shown:
{ttn = X1, I = Zu1—ho }0_;.

Two stable wrinkles and one fold remain in the chain
at T =400K. The chain is completely depinned at high
temperature 7 = 500K, it begins to slide almost freely on
the substrate. All wrinkles disappear as a result, and a
stable system of two folds remains in the sheet. Wrinkles
have similar dynamics in case of two and three-layer sheets.

The simulation explains the mechanism of elimination of
small wrinkles in case of thermal annealing [37]. Annealing
at a temperature of T = 200°C (473 K) of a graphene sheet
lying on a substrate SiO, result in the disappearance of
wrinkles with an amplitude of A = 1.5nm, and wrinkles
with A > 1.5nm remain stable. Our simulation shows
that annealing here results in thermally activated depinning
of the graphene sheet from the substrate. As a result,

Physics of the Solid State, 2024, Vol. 66, No. 4

all wrinkles with small amplitudes disappear, and large
wrinkles grow and turn into vertically standing stable folds.

7. Conclusion

The interaction of wrinkles and vertical folds in single-
layer and multilayer graphene sheets lying on a flat substrate
(on the flat surface of a silicon oxide crystal SiO,) was
simulated using a two-dimensional chain model describing
the longitudinal section of a graphene nano-ribbon. Uniaxial
compression of such a sheet results in the formation of a
localized convex wrinkle with an empty bubble-like area
between the sheet and the substrate. The wrinkles fold
(collapse) when the amplitude of A =~ 2nm is reached and
form vertically standing folds with dense multilayer legs and
drop-shaped heads.

It was shown that the interaction of wrinkles and folds is
reduced to pulling of the part of the sheet located between
them when the sheet slides freely over the substrate. Such
interaction can occur over long distances. The interaction of
two wrinkles always results in the growth of the larger one
because of the disappearance of the smaller one, and the
interaction of the fold with the wrinkle results in the growth
of the former one because of the disappearance of the
latter one. The interaction of the two folds only results
in a change of their shape. Therefore, only one wrinkle
can be formed in a uniaxially compressed graphene sheet
with low compression d < d (initially, several wrinkles are
formed, but then the largest wrinkle grows because of the
disappearance of the other wrinkles). Either one fold or
several stable folds can be formed in the sheet in case of
strong compression d > dy. A system of multiple wrinkles
is formed at first here, too, the largest of which grow as
the result of the reduction of the neighboring ones and then
collapse into vertical folds. The scenario for the formation
of wrinkles and folds is the same for single-layer, double-
and three-layer sheets.

The wrinkles and folds will interact only over short
distances if the interaction with the substrate prevents
the sheet from sliding (with the pinning of the sheet
on the substrate). In this case, several wrinkles can
exist simultaneously in a compressed sheet, forming stable
structures in this sheet. The sheet begins to slide along
the substrate at high temperatures because of thermally
activated depinning and wrinkles begin to interact over long
distances. As a result, all wrinkles disappear, and only
vertical folds remain in the sheet. This scenario explains the
mechanism of action of thermal annealing of small wrinkles
of graphene [37].
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