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In this work, the piezoresistive properties of a two-dimensional material are studied using the example of a

fragment of graphene nanoribbons of the
”
arm-chair“ and

”
zig-zag“ types. The dependence of the longitudinal

component of the piezoconductivity tensor of nanoribbons on the value of a relative elastic-plastic deformation is

analyzed. It has been shown that conductive ribbons exhibit stable piezoresistive properties which do not depend

on its width, but depend only on the structural modification of the zig-zag or arm-chair. Small plastic deformations

abruptly change the longitudinal component for zig-zag ribbons by an order of magnitude more than for arm-chair

ribbons. Semiconductor ribbons of relatively small width have a
”
hyperpiezoresistance“effect, which disappears

with increasing the ribbon width in proportion to the decrease in the band gap.
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1. Introduction

Straintronics as one of the branches of the scientific

discipline of condensed matter physics formed at the

beginning of the 21st century [1] is aimed at studying the

effect of mechanical stresses on the electronic properties of

a substance. A change of the energy gap and conductivity

of deformed semiconductors and dielectrics results in a

piezoelectric effect. The piezoresistive effect is based on the

sensitivity of the electrical resistance (or electrical conduc-
tivity) of materials in relation to mechanical load. It is based

on the basic principles of operation of electromechanical

energy conversion devices, such as sensors, piezoresistors,

pressure sensors, etc. The discovery of this effect has

become an important prerequisite for the emergence and

development of MEMS (MicroElectroMechanicalSystem)
technologies used for the integration of mechanical elements

and sensors on a silicon substrate.

The history of the discovery of the piezoresistance effect,

or piezoresistive effect, is associated with the name of

Dr. Charles S. Smith [2]. His work presents the results of

studies of the effect of uniaxial deformations on electrical

resistance in semiconductors. Smith found that the change

of the resistance of germanium and silicon p- and n-types
when a mechanical load is applied to them can be ten times

greater than for materials with metallic conductivity (for
example, metals). The results of experimental data on the

determination of the piezoresistance tensor (one of the main

characteristics of the piezoresistive effect) are presented in

the article. Smith’s discovery served as an impetus for

the emergence of new areas of practical application of

semiconductors, for example, such as tensometry, which

studies the basics of creating semiconductor strain gages

and load cells [3,4].

The piezoresistive effect can be characterized by the

coefficients of elastoproductivity, elastoresistance, or the so-

called calibration factor [5]. The experimental data allow

determining the coefficients of piezo resistance or elas-

toresistance and the calibration factor, and the coefficients

of elastoproductivity can be calculated using theoretical

methods.

The study of deformation effects in low-dimensional

structures, for example, the graphene family, creates the

necessary conditions for the development of
”
flexible elec-

tronics“ [6]. One of the attractive properties of such

materials is the ability to significant elastic deformation.

Graphene [7,8] contains a unique combination of properties

that is found nowhere else: conductivity and transparency,

mechanical strength and elasticity. It can successfully

replace many materials in a huge number of electronics,

spintronics and sensors devices. At the same time, the

main advantage of graphene complicates its use it as

a basis for the development of components of modern

electronics because of almost complete absence of a band

gap (Eg < 0.05MeV), which makes it impossible to close

the channel of a field-effect transistor based on it. This

makes it difficult to use it as a basis for electromechanical

energy conversion devices such as transistors, resistors,

piezoresistive sensors, pressure transmitters.

Graphene at present stage is classified as isotropic linear

elastic materials that obey Hooke’s law at low deformations.

The deviations from linearity are observed in case of large

deformations, and the fluidity property begins to manifest

itself, which is modeled by adding a quadratic term in

deformation to the linear Hooke law [6]. Small plastic

deformations in graphene can be caused by dislocations of

various types [9], as well as defects of the
”
Stone−Wales“

type, which can be considered as dislocation dipoles [10].
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The impact of the size of loop dislocations on the elec-

tronic properties and sublattice ferrimagnetism in graphene

was studied in [11], using the density functional the-

ory methods. The authors modeled the interface of

the Co(0001) surface and a gold monolayer with trian-

gular loop dislocations, on which a graphene layer was

placed. It is shown in this paper that graphene and the

underlying gold layer with loop dislocations of various sizes

are characterized by ferrimagnetic ordering within atomic

layers. Moreover, the presence of additional gold adatoms

under graphene enhances the induced spin-orbit interaction

in graphene and opens an energy gap, but does not destroy

the ferrimagnetic order in graphene. The control of the

number and size of clusters as a result of intercalation can

be used to enhance the induced Rashba interaction and

obtain a stable topological phase in graphene.

The results of a study of the piezoconductive properties

of two-dimensional graphene family structures such as

graphene nanoribbons (GNRs) of armchair and zigzag

types taking into account small plastic deformations are

presented in this paper.

2. A model of the electronic structure
of deformed graphene

The geometric model of nanoribbons (NR) is chosen

based on a two-dimensional hexagonal layer with two atoms

in a lattice cell (LC) and vectors of the main translations

of a1 = a(1, 0) and a2 = a(−1/2,
√
3/2)(a1 = a2 = a),

a =
√
3R0 —the lattice constant, R0 = 1.42 Å — the

interatomic distance in graphene (Figure 1).

The corresponding graphene nanoribbons (GNR) will be

obtained if an incision is made on the graphene plane along

the armchair or zigzag direction. GNRs are classified using

a single index N [7]. Traditionally, zigzag nanoribbons are

denoted by N-ZGNR, where N is equal to the number of

carbon atoms that fit in the cross section of the ribbon,

a1
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y

a

A

B

a

Figure 1. An elementary cell of a hexagonal crystal lattice of

graphene with two atoms in an elementary cell and vectors of basic

translations a1 = a(1, 0) and a2 = a(−1/2,
√

3/2) (a1 = a2 = a),
a is a lattice constant [12].

and N-AGNR are armchair ribbons, for which the index N
is equal to the number of carbon dimers on the slice.

The GNR width is also expressed in terms of the index N
using the following formula [7]:

H =


















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N − 1

)
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√
3

2

(

N − 1
)

R0 ≡ Ha ,

(1)

where Hz — the width of the zigzag ribbon, Ha — the

width of the armchair ribbon.

The main features of the band structure of the GNR

are described within the framework of the strong coupling

approximation for the π-electronic system. The electronic

spectrum of graphene ε(kx , ky) is considered as a starting

point [12]:

ε(kx , ky ) = ± γ

{

1 + 4 cos

(

3kx R0

2

)
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(

√
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(
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}1/2

, (2)

where k = (kx , ky ) — the electron wave vector in the

Brillouin zone, γ = 2.7 eV — the integral of transition

(matrix element of the transition) of an electron from one

node to another. The electronic spectrum of nanoribbons is

defined as the lines of intersection of the two-dimensional

energy surface of graphene with parallel planes of the al-

lowed values of the wave vector q = 2πn/H (n = 1, 2, . . .)
directed across the ribbon.

Then the condition for quantization of the wave vector k

in the transverse direction, taking into account the closure

of the boundary carbon atoms by hydrogen atoms, is

determined from the condition that the wave function at

the boundary of the ribbon, namely, on atomic series

numbered 0 and N + 1, is equal to zero [13]. As a result,

the electronic spectrum of graphene NR of armchair and

zigzag types can be represented in the following form
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= ±γ
√
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2

)
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)

+4 cos2
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=±γ
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(

πn
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cos

(

kay

2

)

+4 cos2
(

kay

2

)

, (4)

n = 1, 2, . . . , N,

where k — the longitudinal component of the wave

vector, ax = 3R0 —the lattice constant of armchair ribbons,

ay =
√
3R0 — the lattice constant of zigzag ribbons.
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All zigzag nanoribbons are conductors within the frame-

work of the considered electronic structure model, as well

as armchair nanoribbons with the index N = 3m − 1, where

m is an integer. Accordingly, the armchair nanoribbons with

indices N = 3m and N = 3m + 1 exhibit semiconductor

properties, i.e. they have a small gap in the spectrum at

the Fermi level, which decreases with an increase of the

ribbon width [7]:

Eg =




















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









0, N = 3m − 1,

πR0

Ha +
√
3
2

R0

, N = 3m,

πR0

Ha
, N = 3m + 1.

(5)

The deformed state of the crystallite is generally

characterized by the distortion tensor uαβ = ∂β(r
′ − r)α,

(α, β = x , y, z ), where r and r′ — the radius vectors of the

initial and final positions of some point of the crystallite [14].
The diagonal elements of the tensor characterize the relative

elongation of the sample along the corresponding direction,

the non-diagonal elements set the angle of rotation of the

linear element in case of deformation.

The deformation of longitudinal tension (compression)
changes the shape of the lattice cell and the Brillouin

zone (BZ). The length of the LC increases (decreases) in

case of tension (compression), and the length of the BZ

decreases (increases) accordingly. Transformations of the

LC and BZ of low-dimensional structures, such as carbon

nanotubes and graphene nanoribbons, were described in

detail in [15–19]. We will provide only a brief description

here. Let’s denote the magnitude of the relative deformation

of GNR by δ = 1a/a0, where 1a = a − a0 — the change

of the lattice constant of a one-dimensional crystallite, a0 —
the equilibrium lattice constant of GNR. Then the current

value of the deformed lattice constant is a = a0(1 + δ).

The change of the width of the ribbon as a result

of tension (compression) deformation can be taken into

account using the Poisson’s ratio ν , which has the values

0.15−0.45 for GNR [6]:

H = H0(1− νδ), (6)

where H0 — the width of the undeformed GNR.

Deformation of the elements of a body under stress

under the action of a system of forces generally consists

of reversible δ, or elastic, and residual δp, or plastic

parts [20]. That is, the change of the lattice constant

of the crystallite is attributable to the elastic and plastic

deformation a = a0(1 + δ + δp) [14].

Therefore, taking into account the above, it is possible

to propose a phenomenological electronic spectrum of

deformed chair-type and zigzag-type GNRs in the following

form:

εa (k, n) = ±γ(δ + δp)

{
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)
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3

2
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]
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(
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)}1/2

,

−π < 3kR0(1 + δ + δp) ≤ π, n = 1, . . . , N, (7)

εz (k, n) = ±γ(δ + δp)

{

1 + 4 cos

[
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3

2
kR0(1 + δ + δp)

]

× cos

(

πn
N

)

+ 4 cos2
[

√
3

2
kR0(1 + δ + δp)

]}1/2

,

−π <
√
3kR0(1 + δ + δp) ≤ π, n = 1, . . . , N. (8)

The dependence of the hopping integral γ(δ) on rela-

tive deformation was calculated within the framework of

density functional theory using the exchange-correlation

potential B3LYP in the basis of atomic orbitals STO-3G.

A graphene surface fragment with a size of 6× 6 lattice

cells was considered to perform quantum chemical cal-

culations. The boundary unsaturated bonds were closed

by monovalent hydrogen atoms. The deformation of the

structure along the
”
arm-chair“ and

”
zig-zag“ directions

was modelled by stepwise freezing of atoms at opposite

boundaries of the fragment. The obtained numerical

values of the dependence γ(δ) were interpolated using the

following analytical expression:

γ = γ0 exp(−2.0162R), R = R0(1 + δ), γ0 = 47.42 eV.

(9)
The changes of the band structure of conductive and

semiconductor GNR in the presence of small plastic

deformations are shown in Figure 2.

The values of relative tensile (compression) deformation

δ = ±0.1, ±0.06, ±0.04, ±0.02, ±0.01 were used in the

calculations. The plastic deformation was accounted for by

the addition of δp = 0.015.

3. Piezoconductivity of graphene
nanoribbons

The definition of the piezoconductivity tensor of two-

dimensional crystal structures of the graphene family can

be written as follows according to [5]

σαβ

〈σ 〉 = Mαβχη · δχη, 〈σ 〉 =
1

2
Sp[σ ] =

σxx + σyy

2
, (10)

where σαβ — the specific conductivity tensor, δχη — the

strain tensor, Mαβχη — the piezo conductivity tensor of the

4th order, α, β, χ, η = x , y .
A so-called piezoresistive constant can be introduced

for two-dimensional structures as a diagonal element

M = Mxxxx or Myyyy in the case of uniaxial stretching along

armchair or zigzag directions, respectively.
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The longitudinal component can be found using the

following expression for the case of quasi-one-dimensional

structures such as GNR:

M =
1σ

σ0

1

δ
, (11)

where 1σ = σ − σ0 — the change in the longitudinal

component of the specific conductivity tensor due to

deformation; σ0 — the longitudinal component σxx (for
armchair nanoribbons) or σyy (for zigzag nanoribbon) of

the 2nd rank specific conductivity tensor of undeformed

nanoribbons, σ — the same component σxx or σyy

deformed nanoribbons.

Accordingly, the calibration factor K [5], which deter-

mines the relative change of the resistance of a one-

dimensional material, is expressed using the following

formula:

K =
1P
P

1

δ
or P = P(1 + Kδ), (12)

where P0 — the resistance of the undeformed sample, P —
the resistance of the deformed sample. The coefficient can

be measured experimentally, and the formula (12) is used

to calibrate piezoresistors, load cells, etc.

The relationship between the values K and M can be

expressed by the following ratio

K =

( −Mδ

Mδ + 1

)

1

δ
=

−M
Mδ + 1

.

The sum δ + δp should be used for the case of elastic-

plastic deformations in formulas (11) and (12), instead of

elastic relative deformation δ .

The expression for calculating the longitudinal compo-

nent σ of the specific conductivity tensor GNR, obtained

within the framework of Kubo−Greenwood theory using

the function method and the strong coupling model Hamil-

tonian, presented in [18]:

σ =
e2

kBTV

×
∑

k,β

∑

q,λ

v(k)v(q)〈nkβ〉
[

〈nqλ〉 + δkqδβλ

(

1− 〈nkβ〉
)]

,

(13)
where V = H · L · d — the volume of the nanoribbon, H —
the width and L — the length of the GNR, d — the covalent

diameter of the carbon atom; T — the absolute temperature;

e — the elementary charge; k, q — two-component wave

vectors within the Brillouin zone; β, λ —the spin indices;

v(k) — the longitudinal component of the electron velocity

vector in the zone ZB; 〈nkβ〉 — the average number of

particles in a quantum state with a wave vector k and spin β,

expressed by the Fermi−Dirac distribution function:

〈nkβ〉 =

[

1 + exp

(

εβ(k) − µ

kBT

)]−1

,
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Figure 2. The zone structure of undeformed (solid line) and

deformed (dotted line) graphene nanoribbons 5-AGNR (a) and

6-AGNR (b) at δ = 0.1. The energy is counted from the Fermi

level.

where εβ(k) — the energy of the electron state with a wave

vector k and spin β, kB —the Boltzmann constant; µ — the

chemical potential, which is found using the self-consistency

procedure from the condition of normalization of the

distribution function to the full number of π-electrons Ne

in the system

Ne =
∑

k,β

〈nkβ〉.

The number of π-electrons is determined by the number

of atoms in the crystallite, taking into account the half-filling

of the zone. The number of electrons increases (decreases)
by the number of defects Nd in the presence of donor

(acceptor) defects.

The velocity vector v(k) is determined in a standard way

through the energy of electrons in the Brillouin zone (7)
and (8):

v(k) =
1

h

∂ε(k)

∂k
.
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4. Discussion

The results of the study of the piezoresistive properties of

armchair and zigzag-shaped GNRs of different widths and

with different types of conductivity, designated as N-AGNR

and N-ZGNR, respectively, are presented in this paper.

Figures 3−5 shows the calculated functional dependences

of the longitudinal component of the piezoconductivity

tensor M(δ) on tensile and compression deformations δ

of conductive and semiconductor nanoribbons. The lines

on the graphs connect the calculated points to identify

the nature of the change in the function M(δ). The

calculations were performed at a temperature of T = 300K.

The minimum nanoribbon length of L = 106a was set

in calculations. The calculation results did not change with

a further increase of the length of the GNR.

Figure 3 clearly demonstrates that the component M
takes negative values over the entire range of magnitude δ

in the case of conductive chair-type nanoribbons 8-AGNR.

A monotonous decrease of the function M(δ) is observed

with compression (δ < 0) and tensile (δ > 0) deformations.

Its behavior is fully explained by the changes of the nanorib-

bon band structure caused by deformation. A negative value

of M in the compression region means that the specific

conductivity increases. In addition, the function M(δ)
increases in the direction of compression. This effect is

a consequence of the competition of several processes:

an increase of the hopping integral and a decrease of the

density of states near the Fermi level because of an increase

of the width of the conduction band and the slope of the

dispersion lines in the vicinity of the Dirac point (Figure 2).

The increase of δ in the tensile range reduces the hopping

integral, the width of the conduction band, and the slope

of the dispersion lines near the point K and increases

the density of states in the near-Fermi region. But at the
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d

0–0.08 –0.04 0.080.04

Figure 3. Dependence of the longitudinal component M(δ)
of conductive graphene nanoribbons of 8-AGNR, 50-AGNR,

8-ZGNR, 9-ZGNR, 10-ZGNR and 50-ZGNR type on the

magnitude of relative deformation δ in case of elastic tensile-

compression deformations (1) and elastoplastic deformations with

δp = 0.015 (2).
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Figure 4. Dependence of the longitudinal component M(δ)
of semiconductor graphene nanoribbons 9-AGNR and 10-AGNR

on the magnitude of relative deformation δ : 9-AGNR, elastic

strain of tension-compression (1), 9-AGNR, elastoplastic deforma-

tions with δpl = 0.015 (2), 10-AGNR, elastic tensile-compression

deformations (3), 10-AGNR, elastoplastic deformations with

δpl = 0.015 (4).
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M 1
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d

0–0.08 –0.04 0.080.04
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6

Figure 5. Dependence of the longitudinal component M(δ) of

conductive graphene nanoribbons of 51-AGNR, 52-AGNR type

(the dependencies are almost the same) on the magnitude of the

relative deformation δ with elastic tensile-compression deforma-

tions (1) and elastoplastic deformations with δp = 0.015 (2).

same time, the energy of the electrons and their velocity in

the Brillouin zone decrease. And the specific conductivity

of GNR and the piezoresistive characteristic of M decreases

as a result.

The addition of a small plastic deformation δpl = 0.015

does not change the main trend of the behavior of

the function M(δ) (Figure 3). Differences between the

two curves are observed in the vicinity of δpl , the curves

shift relative to the point δ = 0. Therefore, a sharp jump

of M component is observed even in the compression

area. These results indicate a high sensitivity of low-width

conductive GNR to plastic deformations.

The described behavior of the specific conductivity

of GNR as a result of tensile (compression) deformation
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is qualitatively consistent with the literature data presented

in the review [6].
The piezoresistivity of semiconductor nanoribbons

of structural modification of the
”
arm-chair“ small-

width9-AGNR and 10-AGNR types is demonstrated in Figu-

re 4. The values of the longitudinal component of the

elastoconductivity tensor M are positive over the entire

range δ . In general, the figure shows a monotonous growth

of the function M(δ). The positive value of M in the

area of compression deformations (δ < 0) means that the

conductivity of the nanoribbons decreases with deformation.

The width of the conduction band and the magnitude of

the band gap increase in semiconductor GNRs in case of

compression Eg . These effects result in a decrease of the

specific conductivity and, accordingly, the function M(δ).
The value of M is also positive in the region of expansion

deformations (δ > 0) and increases strongly towards the

point δ = 0.1. The so-called
”
hyperpresistivity“ is observed

when the values of M increase by several orders of

magnitude with small deformations.

It should be noted that the graph of the function M(δ)
for the semiconductor GNR of 10-AGNR type for each

fixed deformation δ lies lower than for 9-AGNR. This is

attributable to the fact that all nanoribbons of the 3m + 1

type have a smaller band gap than those of the GNR of 3m
type, according to the formula (5). For this reason more

charge carriers enter the conduction band as a result of

thermal fluctuations due to the Fermi−Dirac distribution.

Plastic deformation δpl does not change the main ten-

dency of the function behavior M(δ), as well as in the

case of conductive GNR. A slight change of the behavior

of the magnitude of M is observed in the vicinity of

the point δpl because of the
”
hyperpresistivity“ of small

width GNR. The curves do not differ quantitatively in

the compression deformation region, and the differences of

the graphs M(δ) become significant in the tensile region.

This is a consequence of the effects of reduction of the

width of the conduction band and the band gap.

An increase of the width of the conductive armchair rib-

bon does not affect the behavior of the value M (Figure 3).
Qualitatively and quantitatively, the dependencies M(δ) are

similar for all conductors. A similar effect was observed for

another one-dimensional carbon structures — nanotubes,

and is described in detail in Ref. [15–17].
The piezoresistive properties of semiconductor arm-

chair GNR depend on their width, as can be seen in the

example of the ribbon 51-AGNR (Figure 5). The effect

of
”
hyperpiezoresistivity“ disappears as can be clearly seen

from the figure. The change of the magnitude of M
in the considered range of relative deformation δ occurs

within 10. The very tendency of the behavior of M(δ)
remains qualitatively the same as for narrow nanoribbons.

Moreover, the changes of the longitudinal component M
are more noticeable, and amount to several units in the

vicinity of the point δp = 0.015. Thus, the presence of

small elastoplastic deformations contributes to a change of

the specific conductivity for wide semiconductor GNRs.

Such an effect is attributable, in our opinion, to the

inversely proportional dependence of the magnitude of the

band gap Eg on the width of the ribbon. The same effect

erases the quantitative differences between M(δ) of wide

ribbons of 3m + 1 and 3m type, due to the small band gap.

All zigzag ribbons are conductors according to the

electronic structure of GNR within the framework of the

strong coupling method, described, for example, in [7],
therefore the behavior of the function M(δ) (Figure 3)
is similar to the behavior of conductive armchair ribbons

(Figure 3) and it does not depend on the width of the

ribbon. The differences are only in the quantitative value

of the longitudinal component M within the limits of

calculation accuracy.

5. Conclusion

The work shows that the presence of small plastic

deformations in the structure of graphene nanoribbons

affects their piezoresistive properties. The qualitative and

quantitative behavior of the longitudinal component of the

elastoconductivity tensor M of conductive GNRs of both

armchair and zigzag type, does not depend on the width

of the ribbon, due to the peculiarities of the band structure

of the conductors. Thus, conductive ribbons exhibit stable

piezoresistive properties.

Quantitatively, the dependence M(δ) of armchair ribbons

is higher than this dependence of zigzag ribbons. That is,

the specific conductivity changes more strongly during de-

formation in ZGNR-type nanoribbons. In addition, a small

plastic deformation results in the hop in the components M
in zigzag-shaped GNR by an order of magnitude greater

than the hop in armchair GNR.

The piezoresistive properties of semiconductor armchair

GNR depend on their width, showing the effect of
”
hyper-

piezoresistivity“ for narrow ribbons. The dependence of the

properties on the width decreases with the increase of the

width in proportion to how the band gap decreases. There-

fore, the wide armchair GNR can, as well as conductive

ones, exhibit stable piezoresistive properties.

The presented results can be useful for the development

and calibration of electronic elements that use the piezo-

electric resistance effect, such as transistors (the model [21]
was recently proposed), piezoresistors [22], piezosensors,

pressure sensors, optical gates and others.
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