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Elastic-plastic deformations

In this work, the piezoresistive properties of a two-dimensional material are studied using the example of a
fragment of graphene nanoribbons of the ,,arm-chair and ,zig-zag“ types. The dependence of the longitudinal
component of the piezoconductivity tensor of nanoribbons on the value of a relative elastic-plastic deformation is
analyzed. It has been shown that conductive ribbons exhibit stable piezoresistive properties which do not depend
on its width, but depend only on the structural modification of the zig-zag or arm-chair. Small plastic deformations
abruptly change the longitudinal component for zig-zag ribbons by an order of magnitude more than for arm-chair
ribbons. Semiconductor ribbons of relatively small width have a ,hyperpiezoresistance“effect, which disappears
with increasing the ribbon width in proportion to the decrease in the band gap.
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1. Introduction

Straintronics as one of the branches of the scientific
discipline of condensed matter physics formed at the
beginning of the 21st century [1] is aimed at studying the
effect of mechanical stresses on the electronic properties of
a substance. A change of the energy gap and conductivity
of deformed semiconductors and dielectrics results in a
piezoelectric effect. The piezoresistive effect is based on the
sensitivity of the electrical resistance (or electrical conduc-
tivity) of materials in relation to mechanical load. It is based
on the basic principles of operation of electromechanical
energy conversion devices, such as sensors, piezoresistors,
pressure sensors, etc. The discovery of this effect has
become an important prerequisite for the emergence and
development of MEMS (MicroElectroMechanicalSystem)
technologies used for the integration of mechanical elements
and sensors on a silicon substrate.

The history of the discovery of the piezoresistance effect,
or piezoresistive effect, is associated with the name of
Dr. Charles S. Smith [2]. His work presents the results of
studies of the effect of uniaxial deformations on electrical
resistance in semiconductors. Smith found that the change
of the resistance of germanium and silicon p- and n-types
when a mechanical load is applied to them can be ten times
greater than for materials with metallic conductivity (for
example, metals). The results of experimental data on the
determination of the piezoresistance tensor (one of the main
characteristics of the piezoresistive effect) are presented in
the article. Smith’s discovery served as an impetus for
the emergence of new areas of practical application of
semiconductors, for example, such as tensometry, which
studies the basics of creating semiconductor strain gages
and load cells [3,4].
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The piezoresistive effect can be characterized by the
coefficients of elastoproductivity, elastoresistance, or the so-
called calibration factor [5]. The experimental data allow
determining the coefficients of piezo resistance or elas-
toresistance and the calibration factor, and the coefficients
of elastoproductivity can be calculated using theoretical
methods.

The study of deformation effects in low-dimensional
structures, for example, the graphene family, creates the
necessary conditions for the development of ,flexible elec-
tronics® [6]. One of the attractive properties of such
materials is the ability to significant elastic deformation.
Graphene [7,8] contains a unique combination of properties
that is found nowhere else: conductivity and transparency,
mechanical strength and elasticity. It can successfully
replace many materials in a huge number of electronics,
spintronics and sensors devices. At the same time, the
main advantage of graphene complicates its use it as
a basis for the development of components of modern
electronics because of almost complete absence of a band
gap (E; < 0.05MeV), which makes it impossible to close
the channel of a field-effect transistor based on it. This
makes it difficult to use it as a basis for electromechanical
energy conversion devices such as transistors, resistors,
piezoresistive sensors, pressure transmitters.

Graphene at present stage is classified as isotropic linear
elastic materials that obey Hooke’s law at low deformations.
The deviations from linearity are observed in case of large
deformations, and the fluidity property begins to manifest
itself, which is modeled by adding a quadratic term in
deformation to the linear Hooke law [6]. Small plastic
deformations in graphene can be caused by dislocations of
various types [9], as well as defects of the ,,Stone—Wales*
type, which can be considered as dislocation dipoles [10].
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The impact of the size of loop dislocations on the elec-
tronic properties and sublattice ferrimagnetism in graphene
was studied in [11], using the density functional the-
ory methods. The authors modeled the interface of
the Co(0001) surface and a gold monolayer with trian-
gular loop dislocations, on which a graphene layer was
placed. It is shown in this paper that graphene and the
underlying gold layer with loop dislocations of various sizes
are characterized by ferrimagnetic ordering within atomic
layers. Moreover, the presence of additional gold adatoms
under graphene enhances the induced spin-orbit interaction
in graphene and opens an energy gap, but does not destroy
the ferrimagnetic order in graphene. The control of the
number and size of clusters as a result of intercalation can
be used to enhance the induced Rashba interaction and
obtain a stable topological phase in graphene.

The results of a study of the piezoconductive properties
of two-dimensional graphene family structures such as
graphene nanoribbons (GNRs) of armchair and zigzag
types taking into account small plastic deformations are
presented in this paper.

2. A model of the electronic structure
of deformed graphene

The geometric model of nanoribbons (NR) is chosen
based on a two-dimensional hexagonal layer with two atoms
in a lattice cell (LC) and vectors of the main translations
of a;j =a(1,0) and a, =a(—1/2,V3/2)(a; = as = a),
a =+V3Ry —the lattice constant, Ro= 1.42A — the
interatomic distance in graphene (Figure 1).

The corresponding graphene nanoribbons (GNR) will be
obtained if an incision is made on the graphene plane along
the armchair or zigzag direction. GNRs are classified using
a single index N [7]. Traditionally, zigzag nanoribbons are
denoted by N-ZGNR, where N is equal to the number of
carbon atoms that fit in the cross section of the ribbon,

Figure 1. An clementary cell of a hexagonal crystal lattice of
graphene with two atoms in an elementary cell and vectors of basic
translations a; = a(1, 0) and a; = a(—1/2, v/3/2) (a1 = a2 = a),
a is a lattice constant [12].
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and N-AGNR are armchair ribbons, for which the index N
is equal to the number of carbon dimers on the slice.
The GNR width is also expressed in terms of the index N
using the following formula [7]:

3
(EN— 1)R0 —H.,
H= (1)
3
Y3 (N—1)Ro = H,,
2
where H, — the width of the zigzag ribbon, H, — the
width of the armchair ribbon.

The main features of the band structure of the GNR
are described within the framework of the strong coupling
approximation for the s-electronic system. The electronic
spectrum of graphene ¢(k,, ky) is considered as a starting
point [12]:

3ka0) <\/§kyR0)
3 COS

e(kx,k},)_j:y{1+4cos< 5

1/2
+ 4 cos? (7\/@;},&)) } ) (2)

where k = (k,, k,) — the electron wave vector in the
Brillouin zone, y =2.7eV — the integral of transition
(matrix element of the transition) of an electron from one
node to another. The electronic spectrum of nanoribbons is
defined as the lines of intersection of the two-dimensional
energy surface of graphene with parallel planes of the al-
lowed values of the wave vector ¢ = 2zn/H (n=1,2,...)
directed across the ribbon.

Then the condition for quantization of the wave vector k
in the transverse direction, taking into account the closure
of the boundary carbon atoms by hydrogen atoms, is
determined from the condition that the wave function at
the boundary of the ribbon, namely, on atomic series
numbered 0 and N + 1, is equal to zero [13]. As a result,
the electronic spectrum of graphene NR of armchair and
zigzag types can be represented in the following form

ek, n) =

kay
= ;ty\/1+4cos<%> COS(NJT—-fl> +4 cos? (Nﬂ——iill)’

(3)

e (k,n) =
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n=1,2,...,N,

where k — the longitudinal component of the wave
vector, a, = 3Ry —the lattice constant of armchair ribbons,
a, = V3R — the lattice constant of zigzag ribbons.
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All zigzag nanoribbons are conductors within the frame-
work of the considered electronic structure model, as well
as armchair nanoribbons with the index N = 3m — 1, where
m is an integer. Accordingly, the armchair nanoribbons with
indices N =3m and N =3m+ 1 exhibit semiconductor
properties, i.e. they have a small gap in the spectrum at
the Fermi level, which decreases with an increase of the
ribbon width [7]:

0, N=3m-1,
JTR()
———, N=13m,
Eq = H,+¥%Ry (5)
R
J;—Iao’ N=3m-+ 1.

The deformed state of the crystallite is generally
characterized by the distortion tensor us = dg(r' —r)q,
(a,B =x,y,z), where r and r' — the radius vectors of the
initial and final positions of some point of the crystallite [14].
The diagonal elements of the tensor characterize the relative
elongation of the sample along the corresponding direction,
the non-diagonal elements set the angle of rotation of the
linear element in case of deformation.

The deformation of longitudinal tension (compression)
changes the shape of the lattice cell and the Brillouin
zone (BZ). The length of the LC increases (decreases) in
case of tension (compression), and the length of the BZ
decreases (increases) accordingly. Transformations of the
LC and BZ of low-dimensional structures, such as carbon
nanotubes and graphene nanoribbons, were described in
detail in [15-19]. We will provide only a brief description
here. Let’s denote the magnitude of the relative deformation
of GNR by § = Aa/ao, where Aa = a — ag — the change
of the lattice constant of a one-dimensional crystallite, ag —
the equilibrium lattice constant of GNR. Then the current
value of the deformed lattice constant is a = ao(1 + §).

The change of the width of the ribbon as a result
of tension (compression) deformation can be taken into
account using the Poisson’s ratio v, which has the values
0.15—-0.45 for GNR [6]:

H:Ho(l —U(S), (6)

where Hy — the width of the undeformed GNR.

Deformation of the elements of a body under stress
under the action of a system of forces generally consists
of reversible §, or elastic, and residual 6,, or plastic
parts [20]. That is, the change of the lattice constant
of the crystallite is attributable to the elastic and plastic
deformation a = ao(1 + 6 +6,) [14].

Therefore, taking into account the above, it is possible
to propose a phenomenological electronic spectrum of
deformed chair-type and zigzag-type GNRs in the following

form:

ea(k,n) = 2p(8 + 6,,){1 + 4cos<Nﬂ—:1)

1/2

3 an
X cos[i kRo(1 + 6 + 51,)_ + 4 cos? (N——l-l)} ,
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n=1,...,N, (7)

1/2
X cos(%) + 4 cos? [? kRo(1 +6 + 51,)] } ,

- < \/gkRo(l +6+6,) <wm,

The dependence of the hopping integral p(§) on rela-
tive deformation was calculated within the framework of
density functional theory using the exchange-correlation
potential B3LYP in the basis of atomic orbitals STO-3G.
A graphene surface fragment with a size of 6 x 6 lattice
cells was considered to perform quantum chemical cal-
culations. The boundary unsaturated bonds were closed
by monovalent hydrogen atoms. The deformation of the
structure along the ,arm-chair“ and ,zig-zag“ directions
was modelled by stepwise freezing of atoms at opposite
boundaries of the fragment. The obtained numerical
values of the dependence y(§) were interpolated using the
following analytical expression:

n=1,...,N. (8)

¥ = poexp(—2.0162R), R = Ro(1 +§), yo = 47.42¢V.
©)

The changes of the band structure of conductive and
semiconductor GNR in the presence of small plastic
deformations are shown in Figure 2.

The values of relative tensile (compression) deformation
6 = +£0.1, £0.06, £0.04, £0.02, £0.01 were used in the
calculations. The plastic deformation was accounted for by
the addition of 5, = 0.015.

3. Piezoconductivity of graphene
nanoribbons

The definition of the piezoconductivity tensor of two-
dimensional crystal structures of the graphene family can
be written as follows according to [5]

Ogp 1 Oxx + Oyy
=M Sy =_S == 2 (10
(@) aprn * Opn> (0) ) plo] 3 (10)
where o,3 — the specific conductivity tensor, &, — the

strain tensor, Mgy, — the piezo conductivity tensor of the
4th order, o, B, x, n = x, y.

A so-called piezoresistive constant can be introduced
for two-dimensional structures as a diagonal element
M = M., or M,,,, in the case of uniaxial stretching along
armchair or zigzag directions, respectively.
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The longitudinal component can be found using the
following expression for the case of quasi-one-dimensional
structures such as GNR:

Ao 1
M=—_ 11
o 8 (11)
where Ao =0 —o0p — the change in the longitudinal
component of the specific conductivity tensor due to
deformation; oy — the longitudinal component oy, (for

armchair nanoribbons) or oy, (for zigzag nanoribbon) of
the 2nd rank specific conductivity tensor of undeformed
nanoribbons, o — the same component oy, or oy,
deformed nanoribbons.

Accordingly, the calibration factor K [5], which deter-
mines the relative change of the resistance of a one-
dimensional material, is expressed using the following
formula:

AP 1

K =
P §

or P=P(l+KSd), (12)
where Py — the resistance of the undeformed sample, P —
the resistance of the deformed sample. The coefficient can
be measured experimentally, and the formula (12) is used
to calibrate piezoresistors, load cells, etc.

The relationship between the values K and M can be
expressed by the following ratio

K= -M§ \1 = -M
N (M6+1) 5§ Ms+1°

The sum § + 6, should be used for the case of elastic-
plastic deformations in formulas (11) and (12), instead of
elastic relative deformation 6.

The expression for calculating the longitudinal compo-
nent o of the specific conductivity tensor GNR, obtained
within the framework of Kubo—Greenwood theory using

the function method and the strong coupling model Hamil-
tonian, presented in [18]:

€2
O T kR TV
x> " v(k)v(q)ng) [<"qﬂ> + Skadp2 (1 - <”kﬁ>)} :

kB q.1

(13)
where V = H - L - d — the volume of the nanoribbon, H —
the width and L — the length of the GNR, 4 — the covalent
diameter of the carbon atom; T — the absolute temperature;
e — the elementary charge; k, ¢ — two-component wave
vectors within the Brillouin zone; 8, A —the spin indices;
v (k) — the longitudinal component of the electron velocity
vector in the zone ZB; (mp) — the average number of
particles in a quantum state with a wave vector k and spin j,
expressed by the Fermi—Dirac distribution function:

(nkg) = {1 —|—exp<8ﬁ(kl;#)]_l,
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Figure 2. The zone structure of undeformed (solid line) and
deformed (dotted line) graphene nanoribbons 5-AGNR (a) and
6-AGNR (b) at § = 0.1. The energy is counted from the Fermi
level.

where e5(k) — the energy of the electron state with a wave
vector k and spin 8, kg —the Boltzmann constant; ¢ — the
chemical potential, which is found using the self-consistency
procedure from the condition of normalization of the
distribution function to the full number of s-electrons N,

in the system
Ne = (ng).
k.p

The number of sz-electrons is determined by the number
of atoms in the crystallite, taking into account the half-filling
of the zone. The number of electrons increases (decreases)
by the number of defects N, in the presence of donor
(acceptor) defects.

The velocity vector v(k) is determined in a standard way
through the energy of electrons in the Brillouin zone (7)
and (8):
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4. Discussion

The results of the study of the piezoresistive properties of
armchair and zigzag-shaped GNRs of different widths and
with different types of conductivity, designated as N-AGNR
and N-ZGNR, respectively, are presented in this paper.

Figures 3—5 shows the calculated functional dependences
of the longitudinal component of the piezoconductivity
tensor M(§) on tensile and compression deformations §
of conductive and semiconductor nanoribbons. The lines
on the graphs connect the calculated points to identify
the nature of the change in the function M(S). The
calculations were performed at a temperature of 7 = 300 K.
The minimum nanoribbon length of L = 10°% was set
in calculations. The calculation results did not change with
a further increase of the length of the GNR.

Figure 3 clearly demonstrates that the component M
takes negative values over the entire range of magnitude §
in the case of conductive chair-type nanoribbons 8-AGNR.
A monotonous decrease of the function M(§) is observed
with compression (6 < 0) and tensile (§ > 0) deformations.
Its behavior is fully explained by the changes of the nanorib-
bon band structure caused by deformation. A negative value
of M in the compression region means that the specific
conductivity increases. In addition, the function M(S)
increases in the direction of compression. This effect is
a consequence of the competition of several processes:
an increase of the hopping integral and a decrease of the
density of states near the Fermi level because of an increase
of the width of the conduction band and the slope of the
dispersion lines in the vicinity of the Dirac point (Figure 2).

The increase of § in the tensile range reduces the hopping
integral, the width of the conduction band, and the slope
of the dispersion lines near the point K and increases
the density of states in the near-Fermi region. But at the

o7
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Figure 3. Dependence of the longitudinal component M (5)
of conductive graphene nanoribbons of 8-AGNR, 50-AGNR,
8-ZGNR, 9-ZGNR, 10-ZGNR and 50-ZGNR type on the
magnitude of relative deformation § in case of elastic tensile-
compression deformations (/) and elastoplastic deformations with
5, =0.015 (2).
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Figure 4. Dependence of the longitudinal component M (5)
of semiconductor graphene nanoribbons 9-AGNR and 10-AGNR
on the magnitude of relative deformation §: 9-AGNR, elastic
strain of tension-compression (/), 9-AGNR, elastoplastic deforma-
tions with §,; = 0.015 (2), 10-AGNR, elastic tensile-compression
deformations (3), 10-AGNR, elastoplastic deformations with
8, =0.015 (4).

l L l L l L l L l L L l L l L l L l L l

-0.08  -0.04 0 0.04 0.08
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Figure 5. Dependence of the longitudinal component M(5) of
conductive graphene nanoribbons of 51-AGNR, 52-AGNR type
(the dependencies are almost the same) on the magnitude of the
relative deformation § with elastic tensile-compression deforma-
tions (/) and elastoplastic deformations with &, = 0.015 (2).

same time, the energy of the electrons and their velocity in
the Brillouin zone decrease. And the specific conductivity
of GNR and the piezoresistive characteristic of M decreases
as a result.

The addition of a small plastic deformation §,; = 0.015
does not change the main trend of the behavior of
the function M(5) (Figure 3). Differences between the
two curves are observed in the vicinity of §,;, the curves
shift relative to the point § = 0. Therefore, a sharp jump
of M component is observed even in the compression
area. These results indicate a high sensitivity of low-width
conductive GNR to plastic deformations.

The described behavior of the specific conductivity
of GNR as a result of tensile (compression) deformation
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is qualitatively consistent with the literature data presented
in the review [6).

The piezoresistivity of semiconductor nanoribbons
of structural modification of the ,arm-chair® small-
width9-AGNR and 10-AGNR types is demonstrated in Figu-
re 4. The values of the longitudinal component of the
elastoconductivity tensor M are positive over the entire
range 6. In general, the figure shows a monotonous growth
of the function M(58). The positive value of M in the
area of compression deformations (§ < 0) means that the
conductivity of the nanoribbons decreases with deformation.
The width of the conduction band and the magnitude of
the band gap increase in semiconductor GNRs in case of
compression E,. These effects result in a decrease of the
specific conductivity and, accordingly, the function M (§).

The value of M is also positive in the region of expansion
deformations (§ > 0) and increases strongly towards the
point § = 0.1. The so-called ,hyperpresistivity” is observed
when the values of M increase by several orders of
magnitude with small deformations.

It should be noted that the graph of the function M(§)
for the semiconductor GNR of 10-AGNR type for each
fixed deformation § lies lower than for 9-AGNR. This is
attributable to the fact that all nanoribbons of the 3m + 1
type have a smaller band gap than those of the GNR of 3m
type, according to the formula (5). For this reason more
charge carriers enter the conduction band as a result of
thermal fluctuations due to the Fermi—Dirac distribution.

Plastic deformation §,; does not change the main ten-
dency of the function behavior M(§), as well as in the
case of conductive GNR. A slight change of the behavior
of the magnitude of M is observed in the vicinity of
the point 6, because of the ,hyperpresistivity of small
width GNR. The curves do not differ quantitatively in
the compression deformation region, and the differences of
the graphs M(8) become significant in the tensile region.
This is a consequence of the effects of reduction of the
width of the conduction band and the band gap.

An increase of the width of the conductive armchair rib-
bon does not affect the behavior of the value M (Figure 3).
Qualitatively and quantitatively, the dependencies M (§) are
similar for all conductors. A similar effect was observed for
another one-dimensional carbon structures — nanotubes,
and is described in detail in Ref. [15-17).

The piezoresistive properties of semiconductor arm-
chair GNR depend on their width, as can be seen in the
example of the ribbon 51-AGNR (Figure 5). The effect
of ,hyperpiezoresistivity” disappears as can be clearly seen
from the figure. The change of the magnitude of M
in the considered range of relative deformation & occurs
within 10. The very tendency of the behavior of M(§)
remains qualitatively the same as for narrow nanoribbons.
Moreover, the changes of the longitudinal component M
are more noticeable, and amount to several units in the
vicinity of the point §, = 0.015. Thus, the presence of
small elastoplastic deformations contributes to a change of
the specific conductivity for wide semiconductor GNRs.
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Such an effect is attributable, in our opinion, to the
inversely proportional dependence of the magnitude of the
band gap E, on the width of the ribbon. The same effect
erases the quantitative differences between M (§) of wide
ribbons of 3m + 1 and 3m type, due to the small band gap.

All zigzag ribbons are conductors according to the
electronic structure of GNR within the framework of the
strong coupling method, described, for example, in [7],
therefore the behavior of the function M(§) (Figure 3)
is similar to the behavior of conductive armchair ribbons
(Figure 3) and it does not depend on the width of the
ribbon. The differences are only in the quantitative value
of the longitudinal component M within the limits of
calculation accuracy.

5. Conclusion

The work shows that the presence of small plastic
deformations in the structure of graphene nanoribbons
affects their piezoresistive properties. The qualitative and
quantitative behavior of the longitudinal component of the
elastoconductivity tensor M of conductive GNRs of both
armchair and zigzag type, does not depend on the width
of the ribbon, due to the peculiarities of the band structure
of the conductors. Thus, conductive ribbons exhibit stable
piezoresistive properties.

Quantitatively, the dependence M (§) of armchair ribbons
is higher than this dependence of zigzag ribbons. That is,
the specific conductivity changes more strongly during de-
formation in ZGNR-type nanoribbons. In addition, a small
plastic deformation results in the hop in the components M
in zigzag-shaped GNR by an order of magnitude greater
than the hop in armchair GNR.

The piezoresistive properties of semiconductor armchair
GNR depend on their width, showing the effect of ,hyper-
piezoresistivity” for narrow ribbons. The dependence of the
properties on the width decreases with the increase of the
width in proportion to how the band gap decreases. There-
fore, the wide armchair GNR can, as well as conductive
ones, exhibit stable piezoresistive properties.

The presented results can be useful for the development
and calibration of electronic elements that use the piezo-
electric resistance effect, such as transistors (the model [21]
was recently proposed), piezoresistors [22], piezosensors,
pressure sensors, optical gates and others.
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