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Removal of impurities, defects and non-equilibrium quasi-particles from
fine grains of amorphous alloy crystallites
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Thermodynamic aspects of removal of foreign components from the fine grain of the crystalline phase of an
amorphous alloy, the adsorption capacity of the crystallite boundary and the effect of the impurity type on the
formation of a new layer for fractal and topological changes in the internal energy of atoms on the interphase
surface are considered. The conditions of purification of fine grains are determined for ideal and interacting phases
of an amorphous alloy. The paper shows that the positivity of the phase-mixing energy contributes to the formation
of islands of the same type of particles. A change of the chemistry of the formed crystalline shell and the surface
activity of impurities can result in the formation of layered structures.
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1. Introduction

Amorphous, hierarchically structured and other similar
alloys belong to non-equilibrium systems where locally equi-
librium regions can be formed. Phenomena and processes
at the external and internal boundaries of regions have
a significant impact on the performance of materials and
products made from them. In particular, the accumulation
of impurities [1-5]:

— alters the mechanical and electromagnetic proper-
ties [6-9] of nanostructured [1,3] and k-component [2,4]
alloys;

— results in degradation of the properties of materials
exposed to radiation [5];

— reduces the performance of mechanisms [10,11];

— facilitates grain refining under severe plastic deforma-
tion [12,13] or the occurrence of phase instability [14].

A variety of approaches are used for analytical description
of the impurity atom surface diffusion [15-20]. For instance,
the study of bimetallic nanoparticles [20] showed the
formation of a ,,core-shell“ nanostructure when one of the
components is displaced onto the nanoparticle surface. It
should be noted that a component characterized by a lower
value of surface tension moves to the surface. The challenge
of describing the formation and stability of such structures
is related to their non-equilibrium state.

A new derivation of the Butler equation [22] was
proposed in Ref. [21] using the subregular solution model.
The segregation in polycrystalline grains with a size up to
100 nm was evaluated for the core of a nanoparticle in the
form of an unlimited impurity source. A similar problem
needs to be solved for a spherical nucleus of a crystalline
phase in an amorphous medium, but with a limited source
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of impurity atoms. It should be noted that the combination
of atomistic and thermodynamic approaches in numerical
modeling of the Au—Ag system [23] predicts the effect of
formation of a layered structure, weakly expressed inside
the core and clearly manifested on its surface. Moreover,
it is necessary to distinguish the segregation layer from
the layer of a new incipient phase at the boundary of the
nanoparticle [19]. The interlayer increases in size over the
time, and the thickness of the segregation shell reaches a
constant threshold value. It is attributable to local alterations
of the properties of the alloy at the interphase boundary.

An abnormal kinetics of the growth of the nucleus of a
new phase is observed when an impurity particle moves
along the surface of the crystallite because of the decrease
of the characteristic energy of the system (Weissmuller
effect [24]). The total energy of the grain boundaries
decreases in a pure metal because of the absorption of
smaller grains by large grains. The presence of impurities
can result in the zeroing of the boundary energy because
of the segregation of minor components, which results in
the stabilization of the grain size [13,25,26]. The impurity
concentration decreases at the interphase boundary if the
grain size decreases [17].

The diffusion coefficients and segregation energies of
impurity atoms differ in k-component alloys so the kinetics
of impurity displacement at grain boundaries can become
significantly non-monotonic. This is attributable to the
fact that the diffusion coefficient of the impurity along the
boundary significantly exceeds its value in the volume of
the phase [20]. The segregation of impurities in grains with
a size equal to at least a certain critical value in the case
of binary alloys results in an ideal purification of the grain
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volume from an impurity component, even at sufficiently
low temperatures [27].

Reduction of concentration of impurity at the fine grain
boundary is well described using the regular solution
model [20,28]. The grain refinement causes a phase
transition shift towards lower temperatures at its boundary
if the segregating atoms interact with each other [29].
Grain refinement to nanoscale sizes due to severe plastic
deformation generates a large number of non-equilibrium
boundaries, which prevents further grain refinement [20]
and increases the segregation capacity of the alloy [27]. It
should be noted that the expansion of the segregation layer
stabilizes the non-equilibrium grain boundaries [20).

The following processes occur at the interphase boundary
of a growing grain:

— formation of a new layer of the nucleus through the
diffusion supply of atoms from an unlimited amorphous
matrix;

— adsorption-desorption of particles;

— displacement of impurity atoms and quasi-particles from
the grain volume to the boundary;

— diffusion wandering of adatoms;

— fractality of the energy landscape of the boundary, etc.

In view of the above problems, the purpose of this work
is to determine the thermodynamic properties of a spherical
crystal phase nucleus and its boundary in an amorphous
alloy, to clarify the role of adsorption and the type of system
components for the formation of an interfacial area.

2. Non-equilibrium states
and purification of fine grains

Binary amorphous alloys are the most suitable objects
for studying the patterns of phenomena and processes in
a disordered environment because of their low impurity
content. External impacts (isothermal annealing [30], severe
plastic deformation [31], etc.) on such an alloy result in its
crystallization with the formation of stable spherical nuclei
when their radius exceeds a certain threshold value. How-
ever, the interphase surface of the crystallites is unstable and
non-equilibrium, since various kinds of inhomogeneities,
defects, and impurity atoms are displaced onto it from the
nucleus volume.

Let’s distinguish three non-equilibrium states of a grain:

1) weakly non-equilibrium (linear relationships between
thermodynamic quantities) — the system can be approxima-
ted by a set of locally equilibrium regions according to
Prigozhin [32]. Thermodynamic characteristics in them
depend on the space-time arguments, and the potentials
of thermodynamic fields smoothly change in case of the
transition from region to region;

2) strongly non-equilibrium (nonlinear relationships be-
tween thermodynamic quantities) — even the local ergodi-
city is interrupted [33], the state can be described only using
nonlinear kinetic equations;
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3) states far from thermodynamic equilibrium — currents
are produced both along the boundary and across it with
the formation of dissipative structures in addition to various
streams [34]. It is necessary to use a kinetic-dynamic
approach for modeling the phenomena and processes.

Fine grains of the crystalline phase occupy small areas
that quickly reach local equilibrium. Since Prigozhin’s
principle is applicable to the weakly non-equilibrium state
of a spherical nucleus of a crystalline phase in an infinite
amorphous medium, we consider a quasi-system of 4
ideal phases with volume fractions x; (i = 1—4): ordered
(phase 1), impurity (phase 2), ,,void phase” [33] (phase 3)
consisting of cavitons [34] (from Italian ,cavitd“ — cavity,
void) and amorphous parent phase (phase 4). Subelements
components are the components of phases, for example,
grains of crystallites are taken as such for the crystalline
phase.

Phase 1 is formed by atoms of the crystallizing com-
ponent and contains a small amount of impurities, point
defects, non-equilibrium inhomogeneities and cavitons dis-
placed onto the interphase surface. Phase 2 is formed by
a combination of impurity atoms and imperfections of the
crystal lattice. Phase 3 mainly consists of cavitons, the
volume fraction and quantity of which significantly exceed
the volume fraction and quantity of atoms. Phase 4 is
an equivalent of ,a frozen“ liquid in which the number of
cavitons is comparable to the number of atoms, so the region
is in a disordered state. The volume fractions of the phases
x; (i = 1-4) are related by an obvious ratio

4

> oxi=1, (1)

i=1

We will use a cell-based approach like in Ref [35]
to describe the thermodynamic properties of grain. The
volume of the crystallite is divided into cells of varying
sizes, each of which contains one of the subelements of
a particular phase. This approach results in the close
packing of the with atoms, quasi-particles and cavitons. The
chemical potentials of u; of subelements of ideal phases
(phases that do not interact with each other) are determined
by the formulas

wi(P, T, 1) = pio(P, T, 0) + B~ Inx;(T, 1),  (2)
uio(P, T,t) — standard values of chemical potentials for
each phase, P — pressure, T — temperature, kg —

Boltzmann constant, 8 = (kgT)~!. The independence of
the values (2) from the spatial variable means that the
phases are considered isotropic and homogeneous.

The expression for the Gibbs energy density is obtained
by excluding the volume fraction of phase 1 from conside-
ration using (1) and using (2)

4

g:Zyix,-:h—sT, (3)
i1
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where A
h=g+ Zgixi
i=1

— Helmbholtz energy density,

4
gi1=Ho1, gi=Moi —Ho1 (i=2...4), s=—kp inlnxi
i—1

— entropy density. Fine grains of the crystalline phase
are purified when the characteristic function reaches a
minimum of (3) according to the arguments i =2...4.
In other words, the reaction of displacement of phases
i=2...4 from a fine crystallite take place when the
following equalities are reached

xr/x1 = exp(—pgi) = K(P,T). (4)

(4) shows that an increase of the values of g; results in a
decrease of the volume fractions of phases i = 2—4 in the
fine grain. From a chemical point of view, the equality (4)
describes the reaction of displacement of the subelements of
the phase i (i = 2...4) from the fine grain of the crystalline
phase. The value K(P, T) determines the reaction constant
at given pressure P and temperature 7.

3. Phase interaction and transition
of inhomogeneities to the boundary

A significant number of random variables are known
to be subject to the normal distribution (Gauss-Laplace
law [36]), the discrete equivalent of which is the Bernoulli
distribution. Let us assume that the probability p; that
the phase subelement i has energy ¢; is described by the
Boltzmann formula

pi = exp(—Pei). (5)

Then the probability W of placement of phase subelements
in cells taking into account permutations N; (i =1...4)
of identical subelements of the same grade is calculated
according to the Bernoulli’s theorem [36]

W= (N!f[p?") /f[N,-!, (6)

here N = Z?:lNi. The grain free energy density f per
subelement is equal to

f=-(0InW)/(VN)

4 4
:Zeix[+62xilnx[:u—sT, (7)
i=1 i=1
where V. — system volume, x;=N;/N, 0 =kgT,
u= 21.3:1 &ix; — internal energy. Depending on the
type of functions ¢;, the obtained relations can describe:

a regular solution (only pair-phase interactions are taken into
account), a subregular system (functions ¢; depend not only
on pair interactions, but also on triple interactions) [37-39],
etc. In the case of a regular solution, the chemical potentials
of the subelements of the phases (2) are equal to

4
H,:(af/ax,-)vj’xj#:u,.wZQ,-,-xj +kpTInx;, (8)

Jj=1

where Q;; —parts of the long-range order phase interaction
potentials averaged over the system volume. The Gibbs
energy density (3) reaches an extreme in the variable xy
(k =2...4) taking into account the equalities (1) and (8)
when the following ratio is fulfilled

1+ Q1x1 = U + Qixp, 9)

where Q1 = Q11 — Qu, Ok = Qi — Qx1. The ratio (9)
implicitly defines he dependence of the volume fraction xj
(k=2...4) on the pressure P, temperature 7 and the
volume fraction x; of the crystalline phase 1. We obtain the
following by differentiating (9) by x; (k =2...4) taking
into account the symmetric ratio Q1 = Qx1

8(/,;1 —,uk)/axk :2E1k, (10)

where 2Ej; = Q1 + Oy is the mixing energy of phases 1
and k.

It is shown in Ref [40] that an upward diffusion is
observed when the displacement energy of two coexisting
phases is positive. This means that the mutual diffusion
coefficient has negative values, and particles of the same
type tend to gather in one place. Therefore, if an impurity,
defect, or non-equilibrium quasi-particle is displaced from
the fine grain to its boundary, then they are surrounded by
similar subelements, so the fine grain is purified.

4. Boundary adsorption capacity

Let’s consider one nanosphere of a growing nucleus of
the crystalline phase. Since its volume is divided into
cells, the boundary surface also comprises L seats with
areas a; (i =1...4). It should be noted that the caviton
adsorption onto the nanosphere surface is equivalent to the
desorption of any other subelement from the boundary, the
total number of which is denoted by L, and the number of
subelements of one or another type of system is denoted by
L, (i =1...4). Then the following equalities are valid

IMe
o)
Il
h

: (11)

T
&
o)

Il
Q
h
Il
hSS

where A = 4mr2 — the area of the spherical surface, r —
the nu radius, the values a;L; = A; set the boundary areas
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occupied by the component i. It can be easily deduced
from (11) that
L4:A_apr, L:A—(ap—a4)L,,’ (12)

ag ay

where

3 3 3
Lp = E Li, Clpr = E Cl,'L,', ap = E a,-C,-,
i=1 i=1 i=1

the concentrations C; = L;/L, of subelements of the
phases 1...3 are related to the effective concentrations
of components by the equalities C; = c¢;/c, (i =1...3),
cp=1L,/L.

The following equalities are obtained by dividing all
equations (11) by L

teg=1
{CP s ’ (13)

apCp+ascy = r-!

here I' = L/A — the boundary adsorption capacity. The
system (11) will take on the following form if all the
equalities (11) are divided by the area of the boundary A

I,+Ty=T
3 , (14)
Ea[l“i +asy =1
i=1
where Iy =L;/A (i=1...3) — adsorption of phase
subelements, I'p = Zle I';. From (13) and (14) we find
L= [apc, +as(l—c,)] ™"

Ii=cT(i=1...3); T, =c,I5 Tu=(1—-cp)I. (15
It is apparent from (15) that the adsorption capacity of
the boundary I' determines the Langmuir adsorption of all
components of the quasi-system of phases. For instance,
the adsorption of atoms, point defects, and nonequilibrium
quasi-particles (except cavitons) is determined by the
Langmuir isotherm formula (Figure 1)

T,/Tp = Kcp[l+ (K — 1)c,] 7!, (16)

where I'y)g = a;l, K=a,/as.

The growing crystalline layer have the form of agglo-
merates (islands) with a low concentration of adsorbed
atoms and quasi-particles (¢, < 1) and a positive mixing
energy of adatoms, when each of them tends to surround
itself with similar neighbors. The particles with a negative
mixing energy are randomly arranged around the sphere.
The layer practically covers the entire sphere of the nucleus
if the concentration of atoms and quasi-particles is close
to one and the growth of a new layer begins after filling
this sphere. The surface diffusion in the considered cases
forces the adsorbed particles to join the island or occupy
more energetically advantageous positions. Therefore, the
nucleating seed increases in size by the mechanism of
layered growth despite the sign of the adatom mixing energy.
The chemical and phase compositions of the crystallizing
layers can change if the fine grain size exceeds a certain
threshold value, i.e. a layered structure can form.
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Figure 1. Langmuir adsorption isotherms with different values of
the parameter K: 1 — 0.1; 2 —05; 3 — 1.0; 4 — 5.0.

5. The impact of particles on surface
tension

Its formation can be also caused by the impact of
impurities and non-equilibrium quasi-particles on the sur-
face tension of the layer. Impurity atoms can belong
to the class of surface-active substances (SAS), surface-
neutral substances (SNS) or surface-inactive substances
(SIS). Particles of the first class reduce the fine grain
boundary surface tension, particles of the second class do
not change the fine grain boundary surface tension, particles
of the third class increase it.

The growth of a spherical crystallite can be accompanied
by the formation of a new monoatomic layer with fractal
or topological dimensionality. Phases 1 and 2 can be
considered as a combined source of atoms of crystallizing
substance, impurities, defects and nonequilibrium quasi-
particles since elements of phase 2 are displaced from
the fine grain core to the boundary surface, and elements
of phases 1 and 2 are adsorbed from phase 4. Let’s
apply a cell-based approach (see clause 3) to a system
with the interaction of N; subelements of the combined
phases 1 and 2, significantly exceeding the interactions of N,
subelements of the other two combined phases 3 and 4.
Additionally, we take into account the energy fractality of
the boundary, i.e. the internal energy of the subelements of
the combined phase is written as

e = 0n(Th)"1/2, (17)

where Q11 — the energy parameter of the interaction
of the subelements of the combined phase deposited on
the boundary, I'y — total adsorption of atoms, impurities,
defects and non-equilibrium quasi-particles at the boundary,
d — fractal similarity coefficient. The incremental free
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Figure 2. The dependence of the surface tension of the
boundary y on the adsorption of particles It at W = —30,
d1—11,2—15W=165,d: 3 — 005, 4—03.

energy of the new layer of the crystalline phase is written as

N N
Fy = pooA + 1Ny + A [Nl ln(ﬁl> +N21n<_2)}’

N
(18)
Yoo — surface tension in case of creation of a geometric
surface at infinity, A0 = kgAT = kg(T — T..), T. — crys-
tallization temperature. The surface tension is equal to
(Figure 2)

Y = (0F4/0A)N,.1 = Yoo —0.5Q11(d — 1)(I'1)*
+ (AG/(lz) ln[(l — alFl)/(l + (612 — al)Fl)], (19)

Figure 2 shows that the curves describe SAS with
W =0.5011(d — 1) > 0 and exponent d < 1 and the curves
describe SIS with W = 0.5Q;1(d — 1) <0 and d > 1 (pa-
rameters Yo, = 250 and Z = AB/a, = —0.1).

The principle of local equilibrium can be applied to a
spherical grain if its surface is topological and has a weakly
non-equilibrium state. Let’s write the internal energy U of
the boundary as [41]

U =pA+SuT + ul,, (20)

where y —surface tension, S4 — entropy of the interphase
boundary, L, — the number of particles and quasi-particles
placed at the boundary. The internal energy per unit area is
equal to

u(s,Ip) =y —iT +ul'}, (21)

here i = —S4/A is the thermodynamic information. The
following expression is obtained according to the Gibbs—
Duhem ratio for the surface tension differential by calcu-
lating the infinitesimal change of the free energy (21) and
taking into account its additivity

dy = idT —T,du. (22)

On the other hand, an infinitesimal change of surface
tension according to the Laplace formula (for example, [42,
p- 32]; [43, p. 13]) is equal to

dy = (Pdr + rdP)/2, (23)

wherein the differential of the radius of the nanosphere is
set by the equality

dr = (3r/dT),dT + (3r/dP)rdP. (24)

The expression for the differential of the chemical potential
of particles at the phase boundary is found from (22—24)

du = (—=dy +idT)/T,

= —(20,) 7 '[r — roldP + (i —io)dT = wdP — sdT,
(25)
where rg = —P(3r/dP)r, io= (2T},) " 'P(8r/dT),, ® =
= —(2I,)"![r —ro] is the average volume per particle,
and —s =i —ip is its contribution to the entropy of the
boundary. This implies that the characteristic

i+s =io. (26)

When the sum (26) is vanished (ip = 0), the boundary
is in dynamic equilibrium and it reaches a stationary state
when the right side is equal to the constant (ip = const).
The particles are chaotized at the boundary when the right
side is negative for the SIS and the particles are ordered
when it is positive for the SAS. Because of the positivity
of the value w > 0, the partial derivative dr/9dP will have
different values for SAS r < ro (I', > 0 [42]) and for SIS
r > ro (I, < 0 [42]). The independence of the radius of the
growing nucleus from pressure according to the definition
of volume w is possible only for SIS that increase surface
tension.

6. Conclusion

One of the priorities of modern materials science is the
creation of new alloys based on disordered media. Such
alloys include, in particular, amorphous alloys with fine
grains of the crystalline phase. Their amorphous matrix is
reinforced with small crystallites, which makes it possible
to classify such a material as composite. Experimental
studies of alloys with purified grains and their boundaries
demonstrate an improvement of the physical and chemical
characteristics, increased thermal stability and service life of
products made of such a material. Therefore, the determi-
nation of the thermodynamic conditions for purification of
fine grains, the properties of their boundary surface, and the
impact of particles on surface tension are urgent tasks. The
use of various models is attributable both to the variety of
mechanisms of growth of new layers on a spherical grain
and their composition, and to the geometry of the formed
boundary. The displacement of impurities, defects and non-
equilibrium quasi-particles from the core of a fine grain
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to its boundary is described by a displacement reaction
in the ideal phase model. Factoring of the interaction of
subelements of phases within the framework of the cell-
based model determines the role of mixing energy in the
formation of islands of particles at the boundary or their
chaotic distribution over the grain surface. The Langmuir
isotherm defines the boundary adsorption capacity. The
boundary surface tension depends on both its geometric
nature and the chemical composition of the newly formed
layers of the crystalline phase.
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