06.1

© А.И. Охапкин¹, С.А. Краев¹, П.А. Юнин¹, С.А. Королев¹, Д.Б. Радищев², N. Китаг³

¹ Институт физики микроструктур РАН, Нижний Новгород, Россия

² Институт прикладной физики им. А.В. Гапонова-Грехова РАН, Нижний Новгород, Россия

³ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия

E-mail: poa89@ipmras.ru Поступило в Редакцию 9 февраля 2024 г.

В окончательной редакции 12 марта 2024 г. Принято к публикации 21 марта 2024 г.

Исследовано влияние термического отжига на фазовый состав, структурные и морфологические свойства многослойных пленок алмазоподобного углерода с варьируемым соотношением sp^2/sp^3 -фаз. Оказалось, что быстрый отжиг в среде аргона приводит к потере структурной периодичности пленок и увеличению содержания графитовых кластеров наряду с уменьшением доли водорода. Наблюдалось также улучшение морфологии поверхности отожженных образцов по сравнению с исходной пленкой.

Ключевые слова: алмазоподобный углерод, многослойные пленки, плазмохимическое осаждение, термический отжиг.

DOI: 10.61011/PJTF.2024.13.58160.19884

Известно, что пленки на основе алмазоподобного углерода (diamond-like carbon, DLC) в зависимости от состава могут проявлять совершенно разные свойства: в одних случаях быть твердыми и износостойкими [1], являться диэлектриками [2], а в других — обладать проводимостью [3]. Свойствами однослойных DLC-покрытий можно управлять, изменяя в них соотношение $s p^2$ - и *s p*³-связей углерода. Это возможно как на стадии синтеза пленок путем подбора ростовых параметров [4], так и за счет внешнего воздействия, например температуры, как было показано в нашей предыдущей работе [5]. В настоящей работе исследовано влияние быстрого термического отжига на фазовый состав, структурные и морфологические свойства многослойных пленок DLC с варьируемым соотношением $s p^2 / s p^3$ -гибридизованного углерода. Есть основание полагать, что отжиг такой периодической структуры будет иметь особенности, отличающие его от отжига однослойных пленок.

Использовалось оборудование ЦКП ИФМ РАН "Физика и технология микро- и наноструктур". Исходная мультиструктура получена плазмохимическим осаждением на кремнии (100) марки КДБ в реакторе Oxford Plasmalab 80. Предварительно подложка кремния была промыта в плавиковой кислоте для снятия оксидного слоя. Пленка DLC представляла собой чередующиеся слои с бо́льшим (47%, время осаждения 45 s) и меньшим (32%, время осаждения 2 min) содержанием $s p^3$ -гибридизованного углерода [6]. Количество периодов равнялось пяти. Источником плазмы служил метан, подаваемый в реактор через газораспределительное кольцо потоком 10 cm³/min при давлении 50 mTorr. Мощность емкостного разряда составила 75 W. Слои с бо́льшим содержанием "графитовых" связей были получены в индуктивно связанной плазме при мощности генератора 250 W. Осажденный на кремнии образец DLC раскалывался на четыре части, три из которых отжигались в среде аргона на установке AcuThermo AW 410 System в течение 2 min при температурах 500, 700 и 900°C.

Пленки изучены методом малоугловой рентгеновской рефлектометрии (МУРР) на дифрактометре Bruker D8 Discover. Подгонка проводилась в программном комплексе DIFFRAC.Leptos от Bruker AXS. В качестве начальной модели для подгонки задавалась периодическая структура (пять периодов), состоящая из слоев углерода с номинально различной плотностью (р): $< 2 \, g/cm^3$ и $> 2 \, g/cm^3$. При моделировании варьировались ρ , толщины слоев, ширины интерфейсов. На кривой МУРР образца DLC на кремнии до отжига наблюдались дополнительные пики Брэгга, связанные с наличием периодичности в многослойной структуре (рис. 1, *a*) за счет модуляции плотности слоев с разным содержанием *s p*³-гибридизованного углерода (слои толщиной 7 nm с $\rho = 2.2 \text{ g/cm}^3$ и 10 nm с $\rho = 1.5 \text{ g/cm}^3$). Высокая интенсивность брэгговских пиков свидетельствует о выраженной границе раздела между слоями. Термический отжиг пленки при 900°C сопровождался исчезновением структурной периодичности (рис. 1, b) в результате выравнивания плотности слоев (1.8 g/cm³). На кривой МУРР отожженного образца присутствовали лишь осцилляции Киссига, что указывает на однородность пленки по толщине. Данная кривая хорошо описывалась моделью с одним однородным по плотности слоем углерода. Аналогичный эффект наблюдался после отжига DLC при 500 и 700°С.

Фазовый состав образцов исследован методом рамановской спектроскопии. Спектры комбинационного

Рис. 1. Кривые МУРР пленок DLC. *а* — до отжига, *b* — после отжига при 900°С. *1* — экспериментальная кривая, *2* — рассчитанная модель. Стрелками показаны дополнительные пики Брэгга.

Основные характеристики рамановских спектров многослойных пленок DLC

Температура отжига, °С	$D_{pos},$ cm ⁻¹	$FWHM_D, cm^{-1}$	$G_{pos},$ cm ⁻¹	$FWHM_G, cm^{-1}$	I_D/I_G
Без отжига	1372	166	1552	162	0.32
500	1381	252	1600	89	0.65
700	1365	267	1598	92	0.83
900	1367	242	1593	110	1.01

рассеяния света пленок получены на длине волны светодиодного лазера 515 nm (конфокальный рамановский микроскоп Renishaw inVia). Деконволюцию осуществляли путем аппроксимации сглаженной по пяти точкам линии спектра функциями Гаусса. В диапазоне 1050–2000 сm⁻¹ регистрировались два характерных пика: D и G [7]. Данные об их положении (D_{pos} и G_{pos}), значениях ширины на середине высоты (full width at half maximum — FWHM_D, FWHM_G) и отношении интенсивностей (I_D/I_G) представлены в таблице. Оказалось,

более узким (величина FWHM_G уменьшилась в 1.5–1.8 раза). Также по мере отжига с повышением температуры увеличивается отношение интенсивностей *D*- и *G*-пиков. В совокупности это указывает на рост степени упорядоченности пленок за счет формирования более крупных кластеров, что, согласно модели Феррари–Робертсона, в конечном итоге должно привести к образованию нанокристаллического графита [7].
 3.0
 b другим существенным отличием рамановских спектров пленок алмазоподобного углерода после отжига является меньший наклон их базовых линий, чем в случае спектра исходной пленки (рис. 2). Наклон спектра вызван фотолюминесценцией связей С–Н и может

является меньший наклон их базовых линий, чем в случае спектра исходной пленки (рис. 2). Наклон спектра вызван фотолюминесценцией связей С–Н и может служить критерием для определения содержания водорода в DLC [9]. Согласно рассчитанным по методике [9] данным, в процессе отжига пленок происходит снижение доли водорода с 30 до 20%. Начиная с температуры отжига 700°С и выше в спектрах пленок появляется дополнительный широкий пик при 800 сm⁻¹, который отвечает ТО-моде колебаний связей Si–C аморфного карбида кремния [10]. Также после отжига в спектрах присутствует узкий пик с низкой интенсивностью при 2330 сm⁻¹, соответствующий молекулярному азоту [11], попавшему в пленку путем диффузии из воздуха.

что при быстром термическом отжиге происходит сдвиг

положения *G*-пика относительно наблюдаемого для исходной структуры в сторону больших волновых чисел.

Такой сдвиг соответствует увеличению доли $s p^2$ -связей в пленках [8]. Изменилась и форма *G*-пика, он стал

Морфологические свойства пленок были изучены с применением комбинации методов атомносиловой микроскопии (сканирующий зондовый микроскоп СММ-2000) и интерферометрии белого света (оптическая измерительная система Talysurf CCI 2000). В результате термического отжига многослойной пленки DLC происходит очистка поверхности от крупных дефектов, полученных в процессе роста. До отжи-

Рис. 2. Спектр комбинационного рассеяния света пленок DLC в диапазоне рамановского сдвига $640-2400 \text{ cm}^{-1}$. Кривая 1 -исходная многослойная пленка до отжига, кривые 2-4 -пленки после отжига при 500 (2), 700 (3) и 900°С (4).

Рис. 3. Изображения поверхности пленок DLC на кремнии, зарегистрированные с помощью интерферометра белого света (*a*) и атомно-силового микроскопа (*b*). Слева — до отжига, справа — после отжига при 900°С.

га на поверхности исходного образца присутствовало множество углеродных "игл" с латеральными размерами в несколько микрометров и высотой до 170 nm (рис. 3, *a*). Быстрый отжиг DLC способствует существенному уменьшению количества таких неоднородностей по причине их слабой адгезии к поверхности пленки. В частности, на участке размером $4.5 \times 4.5 \,\mu$ m (рис. 3, *b*) среднеквадратичная шероховатость (S_q) поверхности после отжига снизилась почти в 9 раз (с 56 до 6.4 nm), а среднеарифметическая (S_a) — более чем в 7 раз (с 31 до 4.0 nm). Значения S_q в целом согласуются с результатами, полученными другими авторами при синтезе пленок DLC плазмохимическим методом [12].

Таким образом, показано, что термический отжиг многослойной пленки DLC наряду с уменьшением доли водорода приводит к исчезновению дополнительных пиков Брэгга на кривой МУРР и сдвигу положения G-пика в спектре комбинационного рассеяния в сторону больших волновых чисел. Это свидетельствует об увеличении содержания графитовой фазы в пленке и потере ее многослойности. Полученные результаты могут быть использованы в технологии создания углеродных мемристоров, а также в процессе изготовления невплавных омических контактов к монокристаллическому алмазу.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 22-79-00021 (https://rscf.ru/project/22-79-00021/).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- N. Yamauchi, A. Okamoto, H. Tukahara, K. Demizu, N. Ueda, T. Sone, Y. Hirose, Surf. Coat. Technol., **174-175**, 465 (2003). DOI: 10.1016/S0257-8972(03)00406-7
- M. Massi, H.S. Maciel, C. Otani, R.D. Mansano, P. Verdonck, J. Mater.: Sci. Mater. Electron., 12 (4-6), 343 (2001). DOI: 10.1023/A:1011252629646
- [3] H. Kinoshita, T. Hando, M. Yoshida, J. Appl. Phys., 89 (5), 2737 (2001). DOI: 10.1063/1.1344586

- [4] C. Li, L. Huang, J. Yuan, Materials, 13 (8), 1911 (2020). DOI: 10.3390/ma13081911
- [5] П.А. Юнин, А.И. Охапкин, М.Н. Дроздов, С.А. Королев, Е.А. Архипова, С.А. Краев, Ю.Н. Дроздов, В.И. Шашкин, Д.Б. Радищев, ФТП, 54 (9), 855 (2020). DOI: 10.21883/FTP.2020.09.49820.12 [P.A. Yunin, A.I. Okhapkin, M.N. Drozdov, S.A. Korolev, E.A. Arkhipova, S.A. Kraev, Yu.N. Drozdov, VI. Shashkin, D.B. Radishev, Semiconductors, 54 (9), 1047 (2020). DOI: 10.1134/S1063782620090316].
- [6] А.И. Охапкин, М.Н. Дроздов, П.А. Юнин, С.А. Краев, Д.Б. Радищев, ФТП, 57 (5), 309 (2023).
 DOI: 10.21883/FTP.2023.05.56195.09k [A.I. Okhapkin, M.N. Drozdov, P.A. Yunin, S.A. Kraev, D.B. Radishev, Semiconductors, 57 (5), 303 (2023).].
- [7] A.C. Ferrari, J. Robertson, Phys. Rev. B, 61 (20), 14095 (2000). DOI: 10.1103/PhysRevB.61.14095
- [8] A. Singha, A. Ghosh, N.R. Ray, A. Roy, J. Appl. Phys., 100 (4), 044910 (2006). DOI: 10.1063/1.2219983
- [9] C. Casiraghi, F. Piazza, A.C. Ferrari, D. Grambol, J. Robertson, Diam. Relat. Mater., 14 (3-7), 1098 (2005).
 DOI: 10.1016/j.diamond.2004.10.030
- [10] A. El Khalfi, E.M. Ech-chamikh, Y. Ijdiyao, M. Azizan,
 A. Essafti, L. Nkhaili, A. Outzourhit, Spectrosc. Lett., 47 (5),
 392 (2014). DOI: 10.1080/00387010.2013.840849
- [11] R.I. Mashkovtsev, V.G. Thomas, Appl. Magn. Reson., 28 (3-4), 401 (2005). DOI: 10.1007/BF03166771
- M.C. Salvadori, D.R. Martins, M. Cattani, Surf. Coat. Technol., 200 (16-17), 5119 (2006).
 DOI: 10.1016/j.surfcoat.2005.05.030