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The dependencies of the melting point of Au, Pt and Fe
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A method is proposed for calculating the dependence of the melting temperature on the size (number of

atoms N) and the nanocrystal surface shape at the different pressures (P). This method is based on the paired

Mie−Lennard-Jones interatomic interaction potential, and takes into account the dependence of both the state

equation and other lattice properties on the nanocrystal size and shape. For the first time, the dependences of

the melting temperature (Tm) on the pressure P, size N, and shape parameter f of the nanocrystal were obtained.

Calculations have been performed for gold, platinum and iron. It is shown that at any pressure, the Tm(P, N, f )
function decreases both with an isomorphic-isobaric ( f , P — const) decrease in the number of N atoms, and with

an isomeric-isobaric (N, P — const) deviation of the nanocrystal shape from the energy-optimal shape. It is shown

that the value of the baric derivative of the melting temperature T ′

m(P) for a nanocrystal at low pressures is larger

and at high pressures smaller than the value T ′

m(P) for a macrocrystal. Moreover, the dependence of the T ′

m(P)
function on the nanocrystal size is negligible, i. e., the functions Tm(P,∞) and Tm(P, N, f ) are almost parallel at

constant N− f -arguments. It is indicated how this method can be applied to experimentally estimate the pressure

under which a nanocrystal is confined in a refractory matrix.
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1. Introduction

In recent years, it was experimentally shown that size

effects have a significant impact on the baric dependences

of various properties of nanocrystals [1–5]. Meanwhile, the

theoretical size changes in baric dependences were studied

very little. For example, until now no one studied (neither
analytically nor by computer simulation) the change in the

baric dependence of the melting point with decrease in

nanocrystal size. This is due to the fact that the formulas for

calculating the properties of nanocrystal of N atoms include

the specific (per unit area) surface energy (σ ), which

depends on the specific (per atom) volume (v = V/N),
temperature (T ), size (or number of atoms N) and shape

of the nanocrystal surface. However, the dependence of the

function σ on the specific volume v(T ) turned out to be

very difficult for determination both analytically and using

computer simulation [6–10]. At the same time, without

the dependence σ (T, v, N) it is impossible to obtain the

equation of state of the nanocrystal P(T, v, N). That is why

it was not yet possible to theoretically study the change

in baric dependences of properties with nanocrystal size

decreasing along various isotherms.

In this regard, in this paper the equation of state

P(T, v, N) and the baric dependences of lattice properties

for nanocrystals of gold, platinum and iron were calculated

by analytical method (i. e. without computer simulation)

based on the pair potential of interatomic interaction. Based

on these dependences, the change in the baric dependence

of the melting point of gold, platinum and iron during the

transition from macro- to nanocrystal with a certain surface

shape was studied for the first time.

2. Method for calculating the properties
of macro- and nanocrystals

The equation of state, thermoelastic and surface proper-

ties of gold macrocrystal were calculated in our paper [11]

by the method, which is based on the paired 4-parameter

interatomic interaction potential of Mie−Lennard-Jones,

which has the following form:

ϕ(r) =
D

(b − a)

[

a

(

ro
r

)b

− b

(

ro
r

)a]

, (1)

where D and ro — depth and coordinate of the potential

minimum, b > a > 1 — numerical parameters.

In the paper [12], based on the method from [11]

and the delocalization criterion for the phase transition

crystal−liquid, the expression was obtained for calculating

the baric dependence of the melting point (Tm) for a single-
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component macrocrystal, which has the form

Tm(P) = Tm

(

P, Tm(0)
)

× exp

[

−
b
3
αP

(

P, Tm(0)
)[

Tm
(

P, Tm(0)
)

− Tm(0)
]

]

, (2)

where Tm(0) — melting point of macrocrystal at P = 0,

αp
(

P, Tm(0)
)

— coefficient of thermal volumetric expansion

at pressure P , calculated along the isotherm Tm(0) [11,12],

Tm
(

P, Tm(0)
)

= Tm(0)

[

co

(

P, Tm(0)
)

2o

(

P, Tm(0)
)

co

(

0, Tm(0)
)

2o

(

0, Tm(0)
)

]2

×
f y

(

yw(P, Tm(0))
)

f y
(

yw(0, Tm(0))
) . (3)

Here co = (6k pv/π)1/3 — the distance between the

centers of the nearest atoms in a vacancy-free lattice (this is
indicated by the index

”
o“), k p — structure packing factor,

2o — Debye temperature for vacancy-free lattice [11]:

2o(k
o
n, co) = Aw(ko

n, co)ξ

[

−1+

(

1+
8D

kBAw(ko
n, co)ξ2

)1/2]

,

(4)
where ko

n — the first coordination number in vacancy-free

lattice, kB — Boltzmann constant, the function Aw(ko
n, co)

arises from consideration of the energy of
”
zero vibrations“

of atoms in system

Aw(ko
n, co) = KR

5ko
nab(b + 1)

144(b − a)

(

ro
co

)b+2

, (5)

KR =
~
2

kBr2om
, ξ =

9

ko
n(N = ∞)

.

Here ~ — Planck’s constant, m — atomic mass.

Function f y (yw) is included in (3) in order to consider

quantum effects and is written as

f y (yw) =
2

yw

[1− exp(−yw)]

[1 + exp(−yw)]
, yw =

32o

4T
. (6)

Based on the potential (1), within the
”
only nearest neigh-

bors interaction“ approximation, the following expression

may be derived for the equation of state and isothermal

modulus of elasticity (BT ) [11]:

P =

[

ko
n

6
DU ′(R) +

9

4
kB2oγo Ew(yw)

]

1

v
, (7)

BT = −v

(

∂P
∂v

)

T

= P +

[

ko
n

18
DU ′′(R)

+
9

4
kB2oγo(γo − qo)Ew(yw) − 3kBγ

2
o TFE(yw)

]

1

v
.

(8)
Here, R = ro/co = (v0/v)1/3 is the relative linear density

of the system,

Ew(yw) = 0.5 +
1

[exp(yw) − 1]
,

FE(yw) =
y2
w exp(yw)

[exp(yw) − 1]2
,

v0 =
πr3o
6k p

, U(R) =
aRb − bRa

b − a
, (9)

U ′(R) = R

[

∂U(R)

∂R

]

=
ab(Rb − Ra)

b − a
,

U ′′(R) = R

[

∂U ′(R)

∂R

]

=
ab(bRb − aRa)

b − a
.

Expressions for the first (γo) and second (qo) Gruneisen

parameters for the vacancy-free crystal that are included

in (7) and (8) can be derived from (4). They are written as

follows

γo = −

(

∂ ln2o

∂ ln v

)

T

=
b + 2

6(1 + Xw)
, (10)

qo =

(

∂ ln γo

∂ ln v

)

T

= γo
Xw(1 + 2Xw)

(1 + Xw)
.

Here, function Xw = Awξ/2o is introduced, which de-

termines the role of quantum effects in calculating the

Gruneisen parameters.

Since, according to (4), the Debye temperature does not

change with emperature during isochoric heating of the

system, the isochoric heat capacity and isobaric coefficient

of thermal volumetric expansion for the vacancy-free crystal

can be determined as follows [11]:

Cv = 3NkB FE

(

32o

4T

)

,

αp =
1

v

(

∂v

∂T

)

P

= γo
Cv

V BT
=

γoCv

NBT [πr3o/(6k p)]

(

v0

v

)

.

(11)
Expressions (4)−(11) allowed us in [11] to determine

the equation of state and the baric dependence of the lattice

properties of gold macrocrystal, and also allowed us in [12]
to calculate with using formulas (2) and (3) the baric

dependence of the melting point of macrocrystals Au, Pt

and Nb. In this paper the change in the baric dependence

of the melting point of gold during the transition from

macro- to nanocrystal was studied on the basis of the

method from [12], which was summarized for nanocrystal

of N atoms. This summarization was made on the basis of

the RP-model, the essence of which is as follows [13,14].
Limiting the system to a surface leads to the breaking

of bonds at the boundary. Therefore, if
”
only nearest

neighbors interaction“ approximation is used, then instead

of the first coordination number ko
n(∞) it is necessary

to use ko
n(N, f ) — average (over the entire nanosystem)

value of the first coordination number, which will depend

on both the size and shape of the nanosystem. In this

case, the packing index of the system structure (k p) is

assumed to be unchanged: k p = const. Let us assume

that nanocrystal with free Gibbs surface has the form of

a rectangular parallelepiped with a square base, faceted

with (100) type faces. The value f = Nps/Npo is a shape
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parameter, which is determined by the ratio of the number

of atoms on the side edge Nps to the number of atoms on

the base edge Npo . For a rod-like shape f > 1, for a cube

f = 1, for a plate-shaped nanocrystal f < 1. The number

of atoms in nanocrystal is equal to: N = f N3
po/α, varies

within: 23/α ≤ N ≤ ∞, where α = π/(6k p) — structure

parameter. Within the RP model, the dependence of the

normalized average value of the first coordination number

on the size (N) and shape ( f ) of the nanocrystal has the

form [13,14]:

ko∗
n =

ko
n(N, f )

ko
n(∞)

= 1− Zs( f )

(

α2

N

)1/3

, (12)

where ko
n(∞) = ko

n(N = ∞) — the first coordination num-

ber for the macrocrystal,

Zs( f ) =
1 + 2 f
3 f 2/3

.

The shape function Zs( f ) reaches a minimum equal to

1 at f = 1, i. e. for the cube shape. For plate ( f < 1) or

rod-like ( f > 1) forms, the value of Zs( f ) is greater than 1.

Therefore, the function ko
n( f )∗ at any N has a maximum at

f = 1, i. e. for the most energetically optimal cubic shape of

rectangular parallelepiped. This model of nanocrystal in the

form of the rectangular parallelepiped, the shape of which

can be varied using the shape parameter f , was called the

RP-model.

The volume and surface area for the RP-model are equal

to [13,14]:
V = N3

po f c3
o = Nαc3

o,

6 = 6c2
o(Nα2)2/3 Zs ( f ),

here it can be seen that the volume of the nanocrystal V
does not depend on the shape of the system, i. e. on the

value f .
The functions from (4)−(11) are determined by the

parameters of the interatomic potential (1) and the following

arguments: T, v, ko
n, k p . Therefore, using the dependence

ko
n(N, f ) from (12) at k p = const, we can summarize

the formulas from (4)−(11) for the case of nanocrystal

of N atoms, which has the form of rectangular paral-

lelepiped, the shape of which is determined by the shape

parameter f . As was shown in [13–18], this method made

it possible to study the dependence of various properties of

nanocrystal on both the size and its shape under various

P−T -conditions.
Within RP model the baric dependence of the melting

point from (2) can be summarized for the case of nanocrys-

tal of N atoms in the form

Tm(P, N) = Tm
(

P, Tm(0), N
)

exp

[

−
b
3
αp

(

P, Tm(0), N
)

×
[

Tm
(

P, Tm(0), N
)

− Tm
(

0, Tm(0), N
)]

]

,

(13)

Here we introduce functions that summarize (3) for the

case of nanocrystal

Tm
(
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)
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)

×
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(
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)
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)

]2

×
f y

(

yw(P, Tm(0), N)
)

f y
(

yw(0, Tm(0), N)
) . (14)
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)

= Tm(0)

×

[

co

(

0, Tm(0), N
)

2o

(

0, Tm(0), N
)

co
(

0, Tm(0),∞
)

2o
(

0, Tm(0),∞
)

]2

×
f y

(

yw(0, Tm(0), N)
)

f y
(

yw(0, Tm(0),∞)
) . (15)

In
”
thermodynamic limit“ (i. e. when N → ∞

and V → ∞ at v = V/N = const) from (12) we

obtain ko∗
n (N → ∞) = 1, from (15) we obtain

Tm(0, Tm(0), N → ∞) = Tm(0), and (14) goes into

function (3).
For almost all metals the energy of a pair interatomic

bond is much greater than the energy of
”
zero vibrations“

of atoms, i. e., the condition is satisfied

8D
kBAw(ko

n, c0)ξ2
≫ 1.

Then formula (4) can be simplified to form

2o(k
o
n, co) ∼=

[

8DAw(ko
n, co)

kB

]1/2

=

[

5~
2Dko

nab(b + 1)

18k2
Bmr2o(b − a)

(

ro
co

)b+2]1/2

. (16)

Using (16) the ratio can be easily obtained

[co(P, T, N)2o(P, T, N)]2 ∼=
5~

2Dko
n(N)ab(b + 1)

18k2
B m(b − a)

×

(

ro
co(P, T, N)

)b

. (17)

At high temperatures (i. e. at T ≫ 2o) the function

f y (yw) is close to 1: f y (yw ≪ 1) ∼= 1. Therefore, the ratio

of these functions in (14) and (15) may be assumed equal

to 1. Then formula (14) and (15) can be simplified to form

Tm
(

P, Tm(0), N
)

∼= Tm(0)ko∗
n (N)

[

co

(

0, Tm(0),∞
)

co

(

P, Tm(0), N
)

]b

,

(18)

Tm
(

0, Tm(0), N
)

∼= Tm(0)ko∗
n (N)

[

co
(

0, Tm(0),∞
)

co
(

0, Tm(0), N
)

]b

.

(19)
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From (13), (18) and (19) it is clear that the change in the

baric dependence of the melting point with nanocrystal size

decreasing is determined by three functions

ko
n(N, f ), co(P, T, N, f ), αp(P, T, N, f ).

3. Calculation results for gold

Gold (Au, atomic mass m(Au) = 196.967 a.m.u.) is a

poorly oxidized, inert and ductile metal. Gold has a face-

centered cubic (FCC) structure (ko
n(∞) = 12, k p = 0.7405,

α = π/(6k p) = 0.70709) and does not undergo any poly-

morphic phase transitions up to 220GPa [19]. That is

why the equation of state and baric dependences of the

properties of FCC-Au macrocrystal are well studied and it

is used as a pressure standard [20]. It is also often used to

study the size dependences of various properties [6,21].
For FCC-Au the parameters of the pair interatomic

potential (1) were determined by us by the self-consistency

method in [22], and they have the following values:

ro = 2.87 · 10−10m, D/kB = 7446.04K,

b = 15.75, a = 2.79. (20)

FCC-Au macrocrystal has a melting point equal to:

Tm(P = 0, N = ∞) = 1337K [23]. For the macrocrystal

the equation of state and baric dependences of the lat-

tice properties pg FCC-Au with the parameters of the

interatomic potential (20) were calculated by us using the

method from (2)−(11) in [11,12]. The baric dependences

obtained in [11,12] for FCC-Au macrocrystal showed good

agreement with the experimental and theoretical results of

other authors. Therefore, in this paper we used the potential

parameters from (20).
In this paper we studied the change in baric dependences

during the transition from macrocrystal to nanocrystal

of N = 306 atoms. The value of N = 306 atoms was

chosen for the following reasons. On the one hand, we

wanted to illustrate most vividly the difference in baric

dependences for macro- and nanosized systems. However,

on the other hand, as was shown experimentally in [24–28],
and also by computer simulation in [29,30], and by the

analytical method in [31–34], with the decrease in size

of nanoparticle (nanocrystal or nanodroplet) with free sur-

face, the parameters of the phase transition crystal−liquid

(PT C−L) in it change. Moreover, at a certain number of

atoms (N0) the specific (per atom) latent heat of PT C−L

disappears: 1h(N0) = 0, and jump in specific volume

of FP C−L: 1v(N0) = 0. Thus, at N ≤ N0 the phase

difference disappears, and PT C−L is no longer possible

here, since for such a cluster the thermodynamic concept

of the solid or liquid phase is no longer applicable. For

P = 0 the following estimates were theoretically obtained:

for metals N0 = 300 [29], and 50−300 [32]; for silicon:

N0 = 23−400 [33]. For FCC-argon it was shown by the

analytical method in [34] that S-loop of PT C−L on the

isotherm of the equation of state disappears at the fol-

lowing cluster sizes: N0(T = 150K) = 485 (i. e. Npo = 7)
and N0(T = 60K) = 38 (i. e. Npo = 3).
Besides, we took the value N = 306 to study the

influence of the nanocrystal shape on both the equation

of state and the baric dependences of the lattice proper-

ties. The main calculations were made for nanocrystal of

N = f N3
po/α = 306 atoms with the energetically optimal

shape of rectangular parallelepiped, i. e., with the shape

of cube: f = 1, Npo = 6, k∗

n = 0.882152, kn = 10.5858.

However, some of the calculations were made for nanocrys-

tal of N = f N3
po/α = 306 atoms, but in the form of rod,

i. e. at f = 8, Npo = 3, Nps = Npo f = 24, k∗

n = 0.833048,

kn = 9.99658. This provided an opportunity to examine the

variation of properties with an isothermal-isobaric change in

the nanocrystal shape.

3.1. Equation of state

The change in the function co(P, T, N, f ) is determined

by change in the equation of state P(v, T, N, f ). Figure 1, a

shows the behavior of the equation of state of FCC-Au,

i. e. the isothermal dependences of the pressure (P , in GPa)
on normalized volume (v/v0 = (co/ro)3 = R−3) along

three isotherms (bottom-up): 100, 300, 1337 K. Figure 1,B

shows the baric dependence for the isochoric deriva-

tive (∂P/∂T )v (in 10−3 GPa/K), which was calculated

by formula [35]:
(

∂P
∂T

)

v

= αpBT .

Solid thick curves show the results for macrocrystal,

i. e. for N = ∞. The dotted lines show the results for cubic

nanocrystal of N = 306 atoms at f = 1. The thin solid

line for 1337K shows the result for rod-shaped nanocrystal

of N = 306 atoms at f = 8. The asterisk in Figure 1,B

shows the result of calculating the value of αpBT for the

FCC-Au macrocrystal at P = 0 and T = 300K [36].
From Figure 1,A it is clear that upon transition from

macro- to nanocrystal, the pressure rise decreases with

decrease in the specific volume. This indicates decrease

in the modulus of elasticity: BT = −v(∂P/∂v)T , with

decrease in nanocrystal size. The function BT decreas-

ing with decrease in the nanocrystal size was obtained

both theoretically and experimentally in papers of other

authors [5,37–41]. Calculations showed that at isomer-

isothermal (N, T — const) deviation of the nanocrystal

shape from the energy-optimal shape (for RP-model this

is cube) the slope of the function P(v/vo) decreases. This

means that at isomerically–isotherm–isochoric deformation

of the cubic nanocrystal its modulus of elasticity decreases.

It is evident from Figure 1,A that isothermal dependences

P(v/v0) for nano- and macrocrystals intersect at a certain

value of relative volume (v/v0)0. Thus, at a point with

coordinates: (v/v0)0, P0, surface pressure becomes zero:

PS f (T, N)0 = P(T,∞)0−P(T, N)0 = 0. At P > P0 the

surface pressure compresses the nanocrystal (PS f > 0); and

Physics of the Solid State, 2024, Vol. 66, No. 2
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Figure 1. Isotherms of the equation of state (A) and baric dependence for the isochoric derivative (∂P/∂T )v (B). Solid curves —
calculations for the macrocrystal. Dashed lines — results for cubic nanocrystal. The thin solid line for 1337K represents the result for a

rod-shaped nanocrystal. The asterisk in Figure 1,B shows the result from [36] for macro-Au at P = 0 and T = 300K.

at P < P0 the surface pressure stretches the nanocrystal:

PS f < 0. The value (v/v0)0 decreases (i. e. P0 increases)
both at isomorphic-isomeric ( f , N — const) increase

in temperature, and at isomorphic−isothermal ( f , T —
const) N decreasing.

Note that in addition to our papers [13,14,22], a negative

value of surface pressure in nanocrystal was also obtained

in the papers of other authors who used the analytical

calculation method: for FCC-Au in [15], for BCC-Nb in [16],
for BCC-W in [17], for BCC of substitutional alloy Mo−W

in [18]. In the paper [42] the surface pressure for spherical

FCC-Ag nanocrystal was studied using molecular dynamics

simulations. In [42] the transition of nanocrystal surface

pressure to the negative region was also indicated. The

stretching of Sr nanocrystal was also obtained in [43]. In

the paper [37] it was experimentally shown that as the

size of diamond nanocrystal decreases at P = 0 its density

decreases. In the paper [44] it was experimentally shown

that as the size of FCC ruthenium (FCC-Ru) nanocrystal

decreases at P = 0, the average interatomic distance in it

increases. These results also indicate that the nanocrystal is

stretched by surface pressure.

As can be seen from Figure 1,B at low tempera-

tures T < 100K the function (∂P/∂T )v increases both with

isomorphic-isobaric decrease in the number of atoms N, and

with isomeric−isobaric deviation of the nanocrystal shape

from the energy-optimal shape (for RP-model this is cube).
However, for T > 300K, the function (∂P/∂T )v depends

weakly on the size and shape of the nanocrystal. In [11]
it was shown that there is a certain temperature TB , in

the region of which the Birch approximation is satisfied,

which assumes that at high temperatures the product

αpBT does not depend on pressure. In [11] for FCC-Au

macrocrystal it was obtained: TB(N = ∞) = 137 ± 15K.

In this paper, for FCC-Au nanocrystal of cubic form

consisting of N = 306 atoms, the following was obtained:

TB(N = 306) = 131± 15K.

3.2. Thermal expansion coefficient

The thermal expansion coefficient — is parameter that at

P = 0 is measured with very high accuracy [45]. However,
the baric dependence of the function αp is very difficult

to measure. Figure 2 shows the baric (A) and tempera-

ture (B) dependences of the thermal expansion coefficient

(αp, 10−6 1/K) for FCC-Au. Baric dependences were

calculated along three isotherms (from bottom to top): 100,
300, 1337K. Temperature dependences are calculated along

three isobars (from top to bottom): 0, 24, 60GPa. Solid

thick curves show the results for macrocrystal, dotted lines

show the results for cubic nanocrystal of N = 306 atoms.

The thin solid line for 1337K shows the result for rod-

shaped nanocrystal of N = 306 atoms. The asterisks in Figu-

re 2 show the results of calculations at P = 0 from [36]. In
Figure 2,B solid circles show experimental data for FCC-Au

macrocrystal from the paper [45]. The dashed line, which

merges with our solid line, shows the theoretical isobaric

(P = 24GPa) dependence αp(T ) for FCC-Au from [46].

From Figure 2 it is clear that the value αp increases during

the transition from macro- to nanocrystal under any P−T -
conditions, and the size increase in the function αp is greater

the greater the shape of the nanocrystal deviates from the

energy-optimal shape (for RP-model this is cube). However,
the difference αp(N)−αp(∞) decreases with isomorphic–
isomeric–isothermal increase in pressure. This is due to

the fact that at high pressure the difference between the

vibration amplitudes for atom on the surface and for atom in

the bulk of nanocrystal decreases. Therefore, with pressure

increasing the role of surface atoms in the size increase in

the function αp(T ) decreases.
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Note that increase in the function αp upon transition

from macro- to nanocrystal at P = 0 was obtained in

many papers (see, for example, [39,47]). As for the size

change in the baric dependence of the function αp, then

existing experimental or theoretical methods yet did not

made it possible to obtain such estimates even at T = 300K.

However, the dependence of functions αp and α′

p(P) on

the size of the nanocrystal under various P−T -conditions
was studied within the RP-model by the analytical method

for Si in [13], for substitution alloy Au−Fe in [14], for

BCC-Nb in [16], for BCC-W in [17], for BCC substitution

alloy Mo−W in [18].

3.3. Melting point

When using potential parameters (20), using formu-

las (5)−(11) for included in equations (14) and (15)
parameters along isotherm Tm(0) = 1337K at P = 0

co
(

0, Tm(0),∞
)

= 2.93432 · 10−10 m,

2o
(

0, Tm(0),∞
)

= 168.280K,

co
(

0, Tm(0), 306, 1
)

= 2.94560 · 10−10 m,

2o
(

0, Tm(0), 306, 1
)

= 152.793K,

co
(

0, Tm(0), 306, 8
)

= 2.95162 · 10−10 m,

2o
(

0, Tm(0), 306, 8
)

= 145.823K.

were obtained.

Using these values and formulas (2)−(15), the baric

dependences of the melting point were calculated for both

macro- and nanocrystals of 306 atoms with cubic and rod-

shaped surfaces. Figure 3 shows baric dependences for the

melting point Tm(P) (left graph A), and for the melting point

derivative with respect to pressure: T ′

m(P) = dTm/dP(right

graph B). Function T ′

m(P) was calculated by means of nu-

merical differentiation of isothermal dependences from (13)
with respect to pressure. In Figure 3 the solid and

dashed lines show the experimental dependences for the

FCC-Au macrocrystal from papers [48] and [23], respec-

tively. These experimental data were approximated by the

three-parameter Simon−Glatzel equation of the following

form:

Tm(P) = Tm0

[

1 +
P
P0

]cs

, (21)

T ′

m(P) =
dTm(P)

dP
= Tm0

cs

P0

[

1 +
P
P0

]cs−1

. (22)

In the paper [48] for FCC-Au for the pressure range

up to 6GPa we obtained Tm0 = 1339K, P0 = 16.1GPa,

cs = 0.57 — solid line in Figure 3.

In the paper [23] for FCC-Au for the pres-

sure range up to 106GPa we obtained Tm0 = 1337K,

P0 = 22.265 ± 1.83GPa, cs = 0.662 ± 0.03 — dashed line

in Figure 3.

Also in the paper [23] the dependence Tm(P,∞) for

FCC-Au was calculated using the molecular dynamics

simulations method. For the pressure range up to 107GPa

we obtained

Tm0 = 1181K, P0 = 17.94GPa, cs = 0.709.

This calculated dependence is shown in Figure 3 by a dash-

dotted line. Our calculation for macrocrystal is shown

by solid thick line, which practically merges with the

experimental dependence Tm(P) from [23]. The dotted line

shows our calculations for cubic nanocrystal of 306 atoms.

The thin solid line shows our calculations for rod-shaped

nanocrystal of 306 atoms.

As can be seen from Figure 3,A the dependence

Tm(P) for a nanocrystal lays below the dependence for

macrocrystal. Moreover, the difference Tm(P,∞)−Tm(P, N)
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is greater, the greater the nanocrystal shape deviates

from the energetically optimal shape (for the RP-model

this is cube). This is consistent with the experimental

and theoretical results obtained for FCC-Au at P = 0

in [15,21,29,32,41,49–53]. From Figure 3,B it also follows

that during isobaric heating of an array of isomeric (i. e. with

the same number of atoms N) nanocrystals the nanocrystals
whose shape deviates most from the energetically optimal

shape will melt first. Nanocrystals with energetically optimal

shape have maximum melting point for a given number of

atoms. This was first stated in the paper [54]. In this case,

the shape relaxation can occur, i. e., nanocrystal with
”
non-

optimal“ shape, having melted, can immediately crystallize

into a more
”
heat-resistant“ energy-optimal shape.

As can be seen from Figure 3,B the baric dependences of

the functions T ′

m(P) for cubic macro- and nanocrystal inter-

sect at the point: Px = 13.63GPa, T ′

m(P)x = 34.75K/GPa.

This means that at low pressures the value T ′

m(P) increases,

and at P > Px the value T ′

m(P) decreases upon isomorphic-

isobaric decrease in the size of the nanocrystal. However, as

can be seen from Figure 3,B, the dependence of the func-

tion T ′

m(P) on size and shape is insignificant. This indicates

that with constant N− f arguments the baric dependences

Tm(P,∞) and Tm(P, N, f ) are practically parallel.

Note that the dependences of the melting point on size

and shape at various pressures were also studied by the

analytical method from (5)−(11) for Si in [13,33], for

FCC-Au in [15], for BCC-Nb in [16], and for BCC-Mo

in [49]. However, in these papers a simplified formula

was used to calculate the dependence Tm(P, N), which we

described in detail in [12]. Therefore, the agreement with

the experimental data for macrocrystal in these papers was

worse than that obtained by us in Figure 3.

Today, experimental and theoretical determination of

the dependence Tm(N) even at P = 0 is a very difficult

task [52,53]. Therefore, in the literature there are many

different dependencies Tm(P = 0, N), which lie in a wide

range [15,52,53]. For example, according to estimates

from [52, Figure 2], for a spherical Au nanoparticle with a

radius of 1.1 nm (i. e. of N = 309 atoms)
”
surface melting

temperature“ lies in the range:

Tm(P = 0, N = 309)surf = 200−600◦C = 473−873K,

a
”
melting temperature of the core“ of nanoparticles is

by 200−250K higher. Thus, the entire Au nanocrystal

of 309 atoms will melt after 1073−1123K. In our calcu-

lations for homogeneous nanocrystal with geometric Gibbs

surface, we obtained (Figure 3,B):
for cubic shape:

Tm(P = 0, N = 306, f = 1) = 1111.34K,

for rod shape:

Tm(P = 0, N = 306, f = 8) = 1004.58K.

When the method of calculating the dependence

Tm(P, N, f ) was tested using gold, we decided to apply it to

other metals. The dependences Tm(P, N, f ) were calculated

for platinum and two polymorphs of iron similarly to gold.

4. Results of melting point calculation
for platinum

Platinum (Pt, m(Pt) = 195.084 a.m.u.) has FCC structure

(i. e. ko
n(∞) = 12, k p = 0.7405, α = π/(6k p) = 0.70709)

and does not experience polymorphic phase transitions

up to 200GPa [55–58]. Therefore, platinum, similarly to

gold, is used as pressure standard [20]. However, the

experimental data for dependence Tm(P,∞) from [55–58] is
very inconsistent which is caused by the refractory property

of this metal. At P = 0 the melting point of platinum

macrocrystal is Tm(0,∞) = 2041.7K [57].
Pair interatomic potential parameters (1) for FCC-Pt

were calculated by the self-consistency method in [22]
according to the calculations using the equation of state,
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thermal expansion coefficient, modulus of elasticity and

other properties of FCC-Pt macrocrystal. They are as

follows:

ro = 2.766 · 10−10 m, D/kB = 11400.7K,

b = 11.65, a = 3.05. (23)

For the FCC-Pt macrocrystal, we calculated the baric

dependence of the melting point using the method

from (2)−(11) with the interatomic potential parame-

ters from (23) in [12]. Tm(P,∞) dependence obtained

in [12] for FCC-Pt macrocrystal showed good agree-

ment with the experimental results. Therefore, in this

paper we used the potential parameters from (23) to

study the properties of FCC-Pt nanocrystal consisting

of N = f N3
po/α = 306 atoms with energetically optimal

shape of rectangular parallelepiped, i. e., with cube shape:

f = 1, Npo = 6, k∗

n = 0.882152, kn = 10.5858.

When using potential parameters (23) using formu-

las (5)−(11) on the isotherm Tm(0,∞) = 2041.7K at

P = 0 for parameters included in formulas (14) and (15)
we obtained

co
(

0, Tm(0),∞
)

= 2.82146 · 10−10 m,

2o
(

0, Tm(0),∞
)

= 221.477K,

co
(

0, Tm(0), 306, 1
)

= 2.83042 · 10−10 m,

2o
(

0, Tm(0), 306, 1
)

= 203.58K.

Using these values and formulas (2)−(15), the baric

dependences of the melting point were calculated for both

macro- and nanocrystal of 306 atoms with cubic shape of

surface. Figure 4 shows baric dependences for the melting

point Tm(P) (left graph), and for the melting point derivative

with respect to pressure: T ′

m(P) = dTm/dP (right graph).
In Figure 4 various lines show the experimental

dependences obtained in [55–58] for the FCC-Pt

macrocrystal, and approximated by the three-parameter

Simon−Glatzel equation (21) with parameters:

Tm0=2042K, P0=21.5GPa, cs =0.5 — dashed line [55],
Tm0 = 2041K, P0 = 15.1GPa, cs = 1/2.6 = 0.3846 —
dashed-dotted line [58], Tm0 = 2046K, P0 = 23GPa,

cs = 0.28 — bottom solid line [56],

The upper solid line in Figure 4 shows the calculated

dependences (21) and (22), obtained in the paper [57]
using the ab initio Z-method calculations, which were

approximated by the dependence (21) with parameters:

Tm0 = 2041.7K, P0 = 44GPa, cs = 0.85 — upper solid

line [57].

Solid circles show experimental data for Tm(P) from [58].

Our calculations for macrocrystal are shown by the cen-

tral solid thick line. The dotted line shows our calculations

for cubic nanocrystal of 306 atoms.

As can be seen from Figure 4 the dependence Tm(P)
for nanocrystal lays below the dependence for macrocrystal.

A decrease in the melting point with size decreasing of

FCC-Pt nanocrystal at P = 0 was also obtained using the

classical molecular dynamics computer simulations method

for spherical nanocrystal of 1953 < N < 13500 in [59],
and of 1435 < N < 18140 in [60].

The calculations showed that nanocrystals with energy-

optimal shape have maximum melting point for a given

number of atoms. The baric dependences of the functions

T ′

m(P) for cubic macro- and nanocrystals have no maximum

as in case of gold. The dependences T ′

m(P) for cubic

macro- and nanocrystals intersect in point: Px = 8.87GPa,

T ′

m(P)x = 31.00K/GPa. This means that at low pressures

the value T ′

m(P) increases, and at P > Px the value T ′

m(P)
decreases upon isomorphic-isobaric decrease in the size

of the nanocrystal. However, as in the case of gold,

the dependence of the function T ′

m(P) on size and shape

for FCC-Pt is insignificant. This indicates that with

constant N− f arguments the baric dependences Tm(P,∞)
and Tm(P, N, f ) are practically parallel.
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Parameters of the interatomic potential Mie−Lennard-Jones (1) for the BCC and FCC structures of iron from [22,70] and

value V0 = [πNA/(6k p)]r3
o. (The right columns show the calculated at P = 0 and Tm(0,∞) = 1811K values of molar volume

(V = [πNA/(6k p)]c3
o), Debye temperature, Gruneisen first parameter, thermal expansion coefficient and modulus of elasticity. For each

structure, the first line presents calculations for macrocrystal, and the second line shows calculations for cubic nanocrystal of N = 281 (for
BCC) and 306 (for FCC) atoms)

Phase ro, 10
−10 m D/kB, K b a V0, cm

3/mol V , cm3/mol 2, K γ αp, 10
−6 K−1 BT , GPa

BCC-Fe 2.4775 12561.53 8.37 3.09 7.0494 7.5968 372.61 1.7211 47.91 117.71

7.6977 340.17 1.7217 58.06 95.93

FCC-Fe 2.5404 8374.353 8.37 3.09 6.9812 7.5233 363.42 1.7213 47.92 118.86

7.6139 334.45 1.7218 57.10 98.64

5. Results of melting point calculation
for iron

The dependence Tm(P,∞) for iron is studied for a long

time [61–64], but this dependence still causes a lot of

disputes [65–67]. Iron (Fe,m(Fe) = 55.847 a.m.u.) has

several crystal modifications, as a result there are two triple

points on the dependence Tm(P,∞) of iron. At low pres-

sures, the paramagnetic phase δ-Fe with a body-centered

cubic (BCC) structure is stable: ko
n(∞) = 8, k p = 0.6802,

α = π/(6k p) = 0.769774. At P = 0 the melting point of

BCC-Fe macrocrystal is Tm(0,∞) = 1811K [61,62]. With

pressure increasing in the dependence Tm(P,∞) of iron a

triple point δ−γ-liquid is observed with coordinates [61,62]:

Pδ−γ-liquid = 5.2GPa, Tδ−γ-liquid = 1991K. (24)

At this point, BCC-δ-Fe, FCC-γ-Fe and the liquid phase

of iron coexist.

Upon further increase in pressure, the triple point γ−ε-

liquid is observed with coordinates [65,66]:

Pγ−ε-liquid = 98.5GPa, Tγ−ε-liquid = 3712K. (25)

At this point FCC-γ-Fe, the liquid phase and phase

ε-Fe with hexagonal structure coexist. Note that other

coordinate values for these triple points are presented in

the literature (see review in [65–67]), however, when

calculating the dependence Tm(P, N)of iron we used data

from (24) and (25).
The parameters of the pair interatomic potential

Mie−Lennard-Jones (1) for BCC-Fe were determined by us

by the self-consistency method in [22] based on calculations

of the equation of state, the thermal expansion coefficient,

the modulus of elasticity and other properties of the

macrocrystal BCC-Fe. Potential parameters (1) for FCC-Fe

were determined by us in [68] based on studying the phase

transition BCC-FCC in iron. We tested these parameters

when studying the substitution alloy Au−Fe in [14,69,70],
as well as when studying the parameters of vacancy and

self-diffusion formation in the BCC and FCC phases of

iron in [71]. The values of the potential parameters (1)
for the BCC and FCC phases of iron from [22,70], as well

as the value of the molar volume V0 = [πNA/(6k p)]r3o are

presented in the Table.

Here NA — Avogadro’s number. The right columns of

Table show the calculated at P = 0 and Tm(0,∞) = 1811K

values of molar volume (V = [πNA/(6k p)]c3
o), Debye tem-

perature, Gruneisen first parameter, thermal expansion

coefficient and modulus of elasticity. The right columns

for each structure in the first line present calculations

for macrocrystal, and the second line shows calculations

for cubic nanocrystal of N = f N3
po/α atoms at f = 1

and Npo = 6. Thus, for nanocrystals with BCC and FCC

structures, we obtained

N(bcc) = 281, k∗

n = 0.871704, kn = 6.97364,

N(fcc) = 306, k∗

n = 0.882152, kn = 10.5858.

Figure 5 shows the experimental and theoretical baric

dependences of the melting point Tm(P) (graphs A and C)
and its derivative with respect to pressure T ′

m(P) = dTm/dP
(B and D) for BCC and FCC-Fe in the pressure range

0−20GPa (A and B) and 0−100GPa (C and D). The

triple points δ−γ-liquid and γ−ε-liquid with coordinates

from (24) and (25) are shown as solid dots. The

experimental dependence from [65] was approximated by

the four-parameter Simon−Glatzel equation of the following

form:

Tm(P) = T∗

m

[

1 +
P − P∗

P0

]cs

, (26)

T ′

m(P) = T∗

m
cs

P0

[

1 +
P − P∗

P0

]cs−1

. (27)

For FCC-Fe the following parameters were ob-

tained in the article [65]: T ∗

m = 1991K, P∗ = 5.2GPa,

P0 = 27.39GPa, cs = 1/2.38 = 0.42 — dashed line in

Figure 5.

Recently, analytical methods for calculating the depen-

dence Tm(P,∞) for an iron macrocrystal were proposed

in papers [72,73]. In these papers the statistical moment

method (SMM) was used, and the three-parameter Morse

function was used as the pair interatomic potential [72,73].
In [72] the dependence Tm(P,∞) was calculated by the

SMM method using the Lindemann criterion for macro-

crystal of the hexagonal phase ε-Fe. By approximating the
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Figure 5. Baric dependences of the melting point (A and C) and its derivative with respect to pressure T ′

m(P) (B and D) for BCC

and FCC-Fe in the pressure region 0−20GPa (A and B), and 0−100GPa (C and D). The triple points δ−γ-liquid and γ−ε-liquid with

coordinates from (24) and (25) are shown as solid dots. Our calculations for macro-Fe are shown as central solid lines, and for nano-Fe

as dotted lines.

calculated results with the three-parameter Simon−Glatzel

equation (21) in [72], the following parameters were ob-

tained: Tm0 = 1822.88K, P0 = 32.51GPa, cs = 0.4644 —
lower dash-dotted line in Figure 5.

In [73] the dependence Tm(P,∞) for iron macrocrystal

was also calculated by the analytical SMM method, but us-

ing the work-heat equivalence principle, i. e. SMM-WHEP.

In [73] the dependence Tm(P,∞) was calculated for

both BCC-Fe macrocrystal and the hexagonal phase ε-Fe.

By approximating the calculated results with the three-

parameter the Simon−Glatzel equation (21), the fol-

lowing parameters were obtained in [73]: for BCC-Fe:

Tm0 = 1811K, P0 = 16.86GPa, cs = 1/2.38 = 0.42 —
solid upper line in Figure 5, for ε-Fe: Tm0 = 1811K,

P0 = 16.88GPa, cs = 1/2.44 = 0.41 — upper dashed-

dotted line in Figure 5.

When using potential parameters (1) from the Table,

using formulas (5)−(11) for BCC-Fe on the isotherm

Tm(0,∞) = 1811K at P = 0 for the parameters included

in formulas (14) and (15) we obtained

co
(

0, Tm(0),∞
)

= 2.54003 · 10−10 m,

2o
(

0, Tm(0),∞
)

= 372.609K,

co
(

0, Tm(0), 281, 1
)

= 2.55123 · 10−10 m,

2o
(

0, Tm(0), 281, 1
)

= 340.166K.

For FCC-Fe on the isotherm Tm(5.2GPa,∞) = 1991K at

P = 5.2GPa for the parameters included in formulas (14)
and (15) we obtained

co
(

0, Tm(5.2GPa),∞
)

= 2.57718 · 10−10 m,

2o
(

0, Tm(5.2GPa),∞
)

= 383.767K,

co
(

0, Tm(5.2GPa), 306, 1
)

= 2.58242 · 10−10m,

2o
(

0, Tm(5.2GPa), 306, 1
)

= 356.783K.
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Our calculations for macrocrystal are shown by the

central solid lines. The dotted lines show our calculations

for cubic nanocrystal. In this scale our dependences

Tm(P,∞) practically merge both with each other and with

the experimental dependence from [65].
As can be seen from Figure 5, the dependence Tm(P, N)

for a nanocrystal lays lower than for macrocrystal, and the

baric dependences of the functions T ′

m(P) for cubic macro-

and nanocrystals do not have maximum as in the case of

gold. However, as in the case of gold and platinum, the

dependence of the function T ′

m(P) on size and shape for

BCC and FCC-Fe is insignificant. This indicates that, with

constant N− f -arguments the baric dependences Tm(P,∞)
and Tm(P, N, f ) are practically parallel.

6. Conclusion

Within the RP-model the method is proposed for cal-

culating the baric dependence of the melting point for

nanocrystal consisting of N atoms, and which has the

shape of rectangular parallelepiped with variable surface

shape. It is shown that this method takes into account

the dependence of the equation of state and other lattice

properties on the size and shape of the nanocrystal.

Calculations of the dependence of the melting point on

pressure P, size N and shape f of nanocrystal were carried

out for FCC-Au, FCC-Pt, BCC and FCC-Fe. It is shown that

at any pressure the melting point Tm(P, N, f ) decreases both
with isomorphic-isobaric decrease in the number of atoms N
and with isomer-isobaric deviation of the nanocrystal shape

from the energy-optimal shape (for RP-models it is cube).
It is shown that the value of the baric derivative of the

melting point T ′

m(P) for nanocrystal at low pressures is

greater, and at high pressures it is less than the value T ′

m(P)
for a macrocrystal. In this case, the dependence of the

function T ′

m(P) on the size of the nanocrystal is insignificant,

i. e., for constant N− f -arguments the baric dependences

Tm(P,∞) and Tm(P, N, f ) are practically parallel.

It is known [74,75] that a nanocrystal embedded into

a matrix of more refractory substance can be overheated

above the melting point of the massive substance from

which the nanocrystal consists, i. e., the following is ob-

served: Tm(P, N)∗ = Tm(P, N, f )/Tm(P,∞) > 1. By mea-

suring the value Tm(P, N)∗ and the number of atoms in the

embedded nanocrystal, using our calculation method we can

estimate the pressure under which the nanocrystal is located

in the matrix.
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