13

Электрофизические свойства углеродных алмазоподобных и графитоподобных тонких пленок

© В.А. Плотников, С.В. Макаров, А.А. Грекова, А.А. Шуткин

Алтайский государственный университет, 656065 Барнаул, Россия e-mail: plotnikov@phys.asu.ru

Поступило в Редакцию 1 июня 2023 г. В окончательной редакции 22 марта 2024 г. Принято к публикации 22 марта 2024 г.

> Проведены измерения локальных вольт-амперных зависимостей в углеродных алмазоподобных и графитоподобных тонких пленках. Анализ этих зависимостей позволяет сделать вывод о наличии туннелирования носителя заряда между сопряженными графитоподобными кластерами через диэлектрическую прослойку, сформированную алмазоподобными кластерами. Структура графитоподобного кластера, представляющая собой совокупность от 1 до 3 гексагональных плоскостей, смещенных относительно друг друга в положения, отличающиеся от их положения в идеальном кристалле графита, позволяет считать их электрофизические свойства аналогичными свойствам минимальной совокупности графеновых плоскостей. Можно полагать, что выявленные особенности локальных вольт-амперных зависимостей в углеродных алмазоподобных и графитоподобных пленках связаны с этими электрофизическими свойствами.

> Ключевые слова: аламазоподобные пленки, графитоподобные пленки, алмазоподобные кластеры, графитоподобные кластеры, *sp*²-, *sp*³-связи, вольт-амперная зависимость, локальная электропроводность.

DOI: 10.61011/JTF.2024.05.57818.141-23

Введение

Согласно кластерной модели углеродных пленок [1,2], основными структурными составляющими пленок являются кластеры графита, в которых атомы углерода с *sp*²-связями организованы в пластины размером около 15 nm, состоящие из гексагональных колец, связанные *п*-связями в стопки — кластеры графита. Эти кластеры погружены в матрицу из атомов углерода, представляющую собой различные конфигурации из sp^2 - и sp^3 связей. Графитовые кластеры контролируют электрические свойства, матрица контролирует механические свойства. Из этой модели вытекает неоднородность структуры пленки — чередование областей с *sp*²- и *sp*³связями. Однако недавние исследования [3] показали, что в структуре углеродных алмазоподобных пленок, полученных лазерным методом, доминируют алмазоподобные кластеры, а графитовые кластеры (точнее графитоподобные), обнаруженные раман-спектроскопией, составляют меньшую долю и распределены случайным образом среди алмазоподобных кластеров. Существенно, что такая структура не является аналогом поликристаллического агрегата, т.е. не содержит выраженных границ раздела. Алмазоподобные и графитоподобные кластеры, размер которых лежит в интервале 0.5-1.0 nm, объединены в кластерный агрегат с помощью sp²- и sp³связей [4].

Разнообразие структур и уникальные свойства тонких углеродных алмазоподобных пленок (diamond-like carbon films) обусловлено, в первую очередь, sp^3 - и sp^2 -связями атомов углерода. Такие пленки состоят из тетраэдрического аморфного углерода, так называемого ta-C (tetrahedral amorphous carbon [5]), в котором доминируют алмазные sp^3 -связи [6,7]. Содержание sp^3 -связей в углеродных ta-C пленках может достигать 87% [8–10]. Именно высокое содержание sp^3 -связей в пленках ta-C определяет высокую твердость, химическую инертность, низкий коэффициент трения, термическую стабильность и высокое электрическое сопротивление [11–14].

В связи с доминированием в алмазоподобных пленках тетраэдрических кластеров, сформированных с помощью *sp*³-связей, электропроводность таких пленок как макрообъектов близка к нулю. Однако, как показало сканирование поверхности углеродной алмазоподобной пленки в режиме туннельного тока в зондовом микроскопе, по поверхности ее распределены локальные точечные проводящие каналы [15]. Очевидно, эти каналы связаны с графитовыми кластерами (точнее с цепочками графитоподобных кластеров, образующих токовые каналы), концентрация которых в структуре алмазоподобной пленки меньше концентрации алмазоподобных кластеров.

Изучение электрофизических свойств природного наноструктурированного углеродного материала — шунгита — показало, что зависимость тока растекания от напряжения, приложенного между проводящим зондом и поверхностью образца, имеет нелинейный вид [16]. Нелинейность вольт-амперных зависимостей при изменении напряжения от -4 до +4 V представляет собой либо скачок тока растекания величиной около 60 пА при нулевом потенциале, либо наличие участка "нулевого" тока в некотором интервале напряжения от -1 до +1 V. Обсуждая природу этого эффекта, автор публикации [16] утверждает, что в шунгите присутствуют наноразмерные агрегаты первичных углеродных частиц, образующих контактные электропроводящие пути. Диэлектрические примеси, распределенные в углеродной матрице в количестве 2–4 at.%, блокируют часть проводящих путей, т.е. перенос заряда осуществляется туннелированием электронов при отсутствии контакта между графитоподобными частицами. Таким образом, можно констатировать, что проводимость шунгита обусловлена как контактными электропроводящими каналами, так и туннелированием электронов через зазоры между частицами графита.

Эффект туннелирования электронов через диэлектрическую прослойку в углеродных пленках, модифицированных медью, является основной причиной нелинейности вольт-амперных зависимостей [17]. Нелинейный вид вольт-амперных зависимостей заключается в наличие ступеньки тока (в терминах публикации) или участка с "нулевым"током (в наших терминах) в некотором интервале напряжений. Толщина диэлектрического слоя, через который осуществляется туннелирование электрона, составляет 2–4 nm.

В углеродных пленках графитовые кластеры, сформированные за счет *sp*²-связей, определяют также оптические свойства, обусловленные шириной оптической запрещенной зоны. Измерениями величины оптической запрещенной зоны в углеродных пленках было установлено, что ее величина изменяется примерно обратно пропорционально размеру графитового кластера [1,18]. Учитывая это соотношение, было найдено, что углеродные алмазоподобные пленки преимущественно состоят из неупорядоченных графитовых кластеров с размерами до 1.5 nm, а алмазная фаза играет второстепенную роль в оптических свойствах.

Насыщение алмазоподобной пленки ионами углерода приводит к увеличению концентрации графитовых π -кластеров, а алмазная фаза образует туннельный барьер между ними [18]. Эти структурные особенности существенно сказываются на электрофизических свойствах — плотности состояний π -электронов и величины параметра туннелирования (радиус локализации электрона). Для углеродных пленок ширина оптической запрещенной зоны в исходном состоянии равна 1.2 eV и быстро снижается при увеличении концентрации графитоподобных кластеров до 0.42 eV, параметр туннелирования равен $\alpha^{-1} = 1.2$ nm [18].

Таким образом, можно заключить, что электрофизические свойства углеродных пленок могут существенно варьироваться от характерных для широкозонных полупроводников до типичных для совокупности графитоподобных кластеров с близкой к металлической величиной электропроводности, а проводящие каналы представляют собой цепочки углеродных кластеров с анизотропией проводимости 10⁴ [19]. Характерно, что проводимость углеродных пленок может быть обусловлена туннелированием электронов между графитоподобными π -кластерами, ширина барьерного слоя между которыми может составлять около 1.5—2.0 nm [18–20].

Следует заметить, что в цитируемых работах рассмотрены и обсуждены не все варианты вольт-амперных зависимостей, наблюдаемые в углеродных алмазоподобных и графитоподобных пленках. В этой связи в настоящей работе приведены экспериментальные результаты по связи вольт-амперных зависимостей углеродных алмазоподобных и графитоподобных тонких пленок с их структурным состоянием. Обсуждается природа нелинейности локальных вольт-амперных зависимостей.

1. Методика экспериментов

Для получения углеродных алмазоподобных пленок применялся способ прямого испарения графитовой мишени при воздействии лазерного излучения неодимового лазера NTS-300 с последующей конденсацией атомов углерода на аморфную подложку из силикатного стекла. Прямое испарение графитовой мишени возможно, если расфокусировать лазерный пучок. Лазерное излучение вводилось в вакуумную камеру установки (остаточное давление не хуже 10^{-5} Torr), где располагались графитовые мишени и подложки из силикатного стекла с предварительно нанесенным слоем алюминия или меди для создания проводящего электрода. Начальная температура подложек и мишеней была около 300 К. На графитовой мишени диаметром 5 mm и толщиной около 2 mm расфокусированный лазерный пучок, энергия которого составляла около 4-6 J, создавал пятно диаметром около 3 mm. Время экспозиции — около 5 min. Полученный поток испаряемого углерода осаждался на подложки, которые располагались по окружности диаметром около 20 cm на расстоянии примерно 10 cm от мишени и под углом около 30° к оси парогазового факела, формируя углеродную пленку.

Графитоподобные пленки получены путем осаждения графитовых наночастиц из двухфазного факела, полученного диспергированием углеродной мишени сфокусированным лазерным излучением (метод абляции). Часть углерода мишени в ходе ее диспергирования образовывал парогазовую фазу, т.е. одновременно на подложке осуществлялась и конденсация углерода. Энергия лазерного излучения в экспериментах изменялась в интервале 4—6 J как в случае диспергирования, так и в случае испарения углеродной мишени, Толщина пленок в экспериментах составляла 200—300 nm.

Структура поверхности и проводимость пленок была изучена с помощью сканирующего зондового микроскопа Solver Next в режиме туннельного тока с последующим фурье-анализом структуры, проведенным инструментами программы обработки изображений "Image Analysis 9.0". Локальные электрофизические свойства измеряли методами отображения сопротивления растекания и электросиловой спектроскопии. Измерения проводились на участках поверхности с глобулярным строением, имеющей высокую проводимость. Для более контрастного выявления участков с неоднородной проводимостью напряжение смещения, прикладываемое при сканировании между проводящим зондом и поверхностью образца, изменялось от 0.1 до 10 V. Достаточным для регистрации проводящих свойств поверхности на фоне шума считался уровень тока 0.3 nA.

2. Экспериментальные результаты

На рис. 1 приведены вольт-амперные зависимости тока растекания локального участка углеродных алмазоподобных пленок. Аналогичные вольт-амперные зависимости получены и для графитоподобных пленок. Изображение структуры поверхности, полученное сканированием проводящего зонда в силовом режиме, приведено справа и представляет собой совокупность островков. Здесь же указана точка локализации измерения вольтамперных зависимостей, связанная с отдельным островком. Такая же структура поверхности характерна и для графитоподобных пленок. Отличие лишь в концентрации графитоподобных кластеров: в углеродных графитоподобных пленках их концентрация значительно выше, чем в алмазоподобных.

Как следует из приведенных на рис. 1 данных, наблюдается два вида вольт-амперных зависимостей тока растекания: монотонное изменение тока от -15 до +15 пА в интервале напряжений от -10 до +10 V, особенно заметное в интервале напряжений от -3 до +3 V, и вольт-амперная зависимость с участком "нулевого" тока в интервале напряжений от -3 до +3 V. Отметим также, что возврат напряжения до исходного значения не приводит к гистерезису на зависимости тока растекания от напряжения на рис. 1, *a*, в то время как на зависимости с участком "нулевого" тока (рис. 1, *b*) небольшой гистерезис наблюдается. Отметим, что, как и в цитируемой публикации [17], наблюдаются заметные флуктуации тока на краях нелинейных участков (рис. 1, *b*).

При измерении в режиме туннельного тока (проводящий зонд находился на некотором расстоянии от поверхности углеродной пленки) наблюдается вольт-амперная зависимость с участком "нулевого" тока (рис. 2) с хорошо выраженными гистерезисом и флуктуациями тока.

3. Обсуждение

Семейство вольт-амперных зависимостей, приведенных на рис. 1, совпадает с такими же зависимостями природного наноструктурированного углеродного материала — шунгита [16], локальная электропроводимость которого существенно связана с агрегатами графитоподобных кластеров, формирующих токовые каналы, а тип вольт-амперных зависимостей определяют интеркалированные примесные элементы по границам графеновых слоев шунгита, блокирующих часть токовых каналов растекания. Блокировку токовых каналов осуществляют фактически диэлектрические кластеры, сформированные примесными элементами. Сопоставляя вольт-амперные зависимости шунгита и наших углеродных пленок, отметим, что зависимость, приведенная на рис. 1, *a*, совпадает с вольт-амперной зависимостью наиболее очищенного от примесных атомов шунгита, которые сконцентрированы по границам в самостоятельные кластеры.

Вольт-амперные зависимости на рис. 1, b и 2 с участками "нулевого" тока аналогичны таким же зависимостям в шунгите. В цитируемой работе [16] отмеченные особенности вольт-амперных зависимостей обусловлены как формированием контактных проводящих каналов, так и туннелированием электронов при отсутствии омического контакта между частицами, т.е. при существовании межчастичных зазоров, ширина которых удовлетворяет условию туннелирования. Таким образом, наши углеродные алмазоподобные и графитоподобные пленки, как и шунгит, представляют собой композит из проводящих графитоподобных кластеров и диэлектрических прослоек (в нашем случае роль диэлектрических прослоек выполняют алмазоподобные кластеры, размер которых лежит в интервале от 0.5 до 1.0 nm [3,4]). Однако в любом варианте, как и в публикации [17], алмазоподобная фаза образует туннельный барьер между графитоподобными *л*-кластерами.

Гистерезис, наблюдаемый на вольт-амперных зависимостях (рис. 1, b, 2), возможно, связан с процессами поляризации диэлектрической составляющей нанокомпозита проводник-диэлектрик [16]. С другой стороны, гистерезис может быть обусловлен наличием локализованных состояний (ловушек) в запрещенной зоне диэлектрика композита проводник-диэлектрик и проводимости, обусловленной носителями заряда из разных ловушек [21]. Действительно, в структуре алмазоподобного — графитоподобного композита кластеры объединены в кластерный агрегат с помощью sp²- и sp³-связей [4], т.е. наличие sp²-связи между атомами углерода в тетрагональной группе и атомами углерода гексагональной группы, по-видимому, эквивалентно появлению локализованных электронных состояний в запрещенной зоне алмазоподобного кластера и особенностей на вольтамперных зависимостях. Более подробные данные о локализации *л*-электронов в ta-С пленках приведены в публикации [22].

Для реализации эффекта туннелирования электронов через диэлектрический слой необходимо выполнение некоторого предельного условия: параметр туннелирования и толщина диэлектрического слоя равны соответственно 0.45 nm и 1.5–2.0 nm [17,18]. Согласно данным публикации [4], алмазоподобный кластер, состоящий из атомов первой и второй координационных сфер, содержит не менее 17 атомов и имеет размер 0.35 nm. Если в формировании кластера участвует хотя бы половина атомов третьей координационной сферы, то размер кла-

Рис. 1. Локальные нелинейные вольт-амперные зависимости в углеродной пленке: *а* — линейный участок в интервале напряжения от –3 до +3 V; *b* — зависимость с участком "нулевого" тока в интервале напряжения от –3 примерно до +3 V. Справа приведена островковая структура углеродной пленки с локализацией точки измерения вольт-амперной зависимости.

стера будет около 0.5 nm. Оцененный размер алмазного кластера составил около 0.5–1.0 nm [4].

Для оценки толщины диэлектрического слоя между графитоподобными кластерами проанализируем распределение токовых каналов в структуре углеродных пленок [15]. Фурье-анализ структурных данных поверхностей, приведенных на рис. 1, 2, включающий анализ максимального и минимального значения параметра периодичности функции радиального распределения спектральной мощности (фактически расстояние между двумя соседними токовыми каналами), свидетельствует (см. таблицу), что при изменении энергии лазерного излучения от 4.0 до 6.0 J минимальное значение параметра меняется от 4.7 до 2.8 nm для алмазоподобных пленок. Таким образом, минимальное значение параметра периодичности в распределении токовых каналов в углеродных тонких пленках и наличие "нулевого" тока в некотором интервале напряжений (рис. 1, *b* и 2) свидетельствуют о выполнении условия туннелирования электронов между графитоподобными кластерами через изолирующий слой алмазоподобных кластеров в пленках при формировании токового канала [20].

Следует отметить, что, согласно кластерной модели, в углеродных тонких пленках графитоподобные кластеры представляют собой набор гексагональных пластин, связанных π -связями в стопки — кластеры графита [1], однако в графитоподобном кластере эти пластины занимают положения, не соответствующие их положению в кристалле графита [4,23]. Рентгеновские

Рис. 2. Локальная вольт-амперная зависимость с участком "нулевого тока", полученная в режиме туннельного тока; справа приведена структура токовых каналов с локализацией точки измерения вольт-амперной зависимости.

Энергия лазерного излучения, J	Углеродные пленки	Значение параметра периодичности	
		Минимальное, nm	Максимальное, nm
4.4	Алмазоподобные	4.7	430
	Графитоподобные	4.9	427
5.0	Алмазоподобные	4.8	284
	Графитоподобные	4.9	427
6.0	Алмазоподобные	2.8	433
	Графитоподобные	2.4	428

Минимальное и максимальное значение параметра периодичности

исследования [24] свидетельствуют, что в графитоподобных кластерах отсутствует трехмерная периодичность, характерная для графитового кристалла в расположении графеновых слоев, графеновые слои смещены и развернуты друг относительно друга. В силу малости кластеров, размер которых не превышает 1 nm [4], и с учетом межплоскостного расстояния, равного 3.36 Å, в наших графитоподобных кластерах укладывается от 1 до 3 разориентированных гексагональных пластин, что сопряжено с появлением больших механических напряжений [25].

О сильном искажении и дефектности структуры графитоподобного кластера свидетельствуют спектры комбинационного рассеяния света (рис. 3).

Наличие широкой *D*-полосы с максимумом около $1393 \,\mathrm{cm}^{-1}$, наряду со спектральной *G*-линией около $1610 \,\mathrm{cm}^{-1}$, характерной для идеального кристалла графита, свидетельствует о наличии графитоподобных кластеров с сильно искаженной структурой. Сдвиг *G*-линии в высокочастотную область (обычное ее положение для графита — $1580 \,\mathrm{cm}^{-1}$) обусловлен малыми размерами пачек графеновых слоев. В этой связи можно предположить, что проводимость токовых каналов в

Рис. 3. Спектры комбинационного рассеяния света, полученные возбуждением лазерным излучением с длиной волны 325 nm в 14 точках вдоль углеродной алмазоподобной пленки.

углеродных алмазоподобных и графитоподбных пленках обусловлена состоянием подсистемы π -электронов, характерным для индивидуальной графеновой плоскости, или их минимальной совокупности, находящейся в на-

пряженном и сильно искаженном состоянии и развернутых друг относительно друга.

Заключение

Анализ вольт-амперных зависимостей в углеродных алмазоподобных и графитоподобных тонких пленках позволяет заключить, что представленные особенности обусловлены туннелированием носителей заряда между графитоподобными кластерами через изолирующий слой, сформированный алмазоподобными кластерами. Локальная проводимость в углеродных пленках, очевидно, обусловлена особенностями структурного состояния графитоподобных кластеров, и связанного с этими особенностями состоянием л-электронов. Во-первых, эти особенности обусловлены малым размером кластера (менее 1 nm), в связи с чем графитоподобные кластеры сформированы ограниченным числом графеновых плоскостей от 1 до 3. Во-вторых, положение гексагональных графеновых пластин кластера характеризуется сильно разупорядоченной укладкой гексагональных плоскостей по сравнению с их положением в кристалле графита. В этой связи графитоподобные кластеры, размер которых около 1 nm, представляют собой структуры, электрофизические свойства которых соответствуют свойствам минимальной совокупности графеновых плоскостей.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- J. Robertson, E.P. O'Reilly. Phys. Rev., 35 (66), 2946 (1987). DOI: 10.1103/PhysRevB.35.2946
- [2] J. Robertson. Mater. Sci. Eng. R, 37, 129 (2002).
- [3] V.A. Plotnikov, B.F. Dem'yanov, A.P. Yeliseey, S.V. Makarov, A.I. Zyiryanova. Diamond Relat. Mater., 91, 225 (2019). DOI: 10.1016/j.diamond.2018.11.022
- [4] V.A. Plotnikov, B.F. Dem'yanov, S.V. Makarov.
 Diamond Relat. Mater., 114, 108334 (2021).
 DOI: 10.1016/j.diamond.2021.108334
- [5] M.G. Beghi, A.C. Ferrari, K.B.K. Teo, J. Robertson, C.E. Bottani, A. Libassi, B.K. Tanner. Appl. Phys. Lett., 81 (20), 3804 (2002). DOI: 10.1063/1.1510179
- [6] K.W.R. Gilkes, P.H. Gaskell, J. Robertson. Phys. Rev. B, 51 (18), 12303 (1995). DOI: 10.1103/PhysRevB.51.12303
- [7] B.K. Tay, D. Sheeja, S.P. Lau, X. Shi, B.C. Seet, Y.C. Yeo. Surf. Coatings Technol., 130, 248 (2000).
- [8] X. Shi, D. Flynn, B.K. Tay, S. Prawer, K.W. Nugent, S.R.P. Silva, Y. Lifshitz, W.I. Milne. Philos. Mag. B, 76, 351 (1997). DOI: 10.1080/01418639708241099
- [9] S.D. Berger, D.R. McKenzie, P.J. Martin. Philos. Mag. Lett., 57, 285 (1988).
- [10] P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. Milne, J. Koskinen. Phys. Rev. B, 48, 4777 (1993). DOI: 10.1103/PhysRevB.48.4777

- S.V. Hainsworth, N.J. Uhure. Int. Mater. Rev., 52, 153 (2007). DOI: 10.1179/174328007X160272
- [12] J. Takadoum, H. Houmid Bennani, M. Allouard. Surf. Coat. Technol., 88, 232 (1996).
- [13] J. Robertson. Diamond Relat. Mater., 1, 397 (1992).
- [14] S.J. Bull, D.S. Rickerby, T. Robertson, A. Henry. Surf. Coat. Technol., 26, 743 (1988).
- [15] В.А. Плотников, С.В. Макаров, О.О. Еремеенкова,
 А.А. Шуткин. ЖТФ, 91 (4), 615 (2021). [V.A. Plotnikov,
 S.V. Makarov, O.O. Yeremeenkova, A.A. Shutkin. Tech. Phys.,
 66 (4), 598 (2021). DOI: 10.1134/S1063784221040149]
- [16] Е.А. Голубев. ФТТ, **55** (5), 995 (2013). [Е.А. Golubev. Physics Solid State, **55** (5), 1078 (2013).]
- [17] А.О. Голубок, О.М. Горбенко, Т.К. Звонарева, С.А. Масалов, В.В. Розанов, С.Г. Ястребов, В.И. Иванов-Омский. ФТП, 34 (2), 223 (2000).
- [18] И.А. Файзрахманов, В.В. Базаров, В.А. Жихарев, И.Б. Хайбуллин. ФТП, **35** (5), 612 (2001).
- [19] В.В. Хвостов, О.А. Стрелецкий, В.В. Якунин, И.П. Иваненко, Е.А. Кралькина, В.Б. Павлов. ВМУ, Серия 3, Физика. Астрономия, 1, 78 (2012).
- [20] И.А. Файзрахманов, В.В. Базаров, А.Л. Степанов, И.Б. Хайбуллин. ФТП, 40 (4), 419 (2006).
- [21] С.А. Гриднев, А.Г. Горшков, М.Н. Копытин, А.В. Ситников, О.В. Стогней. РАН, Сер. физ., 70, 1130 (2006).
- [22] J. Robertson. Philosophical Magazine Part B, 76 (3), 335 (1997). DOI: 10.1080/01418639708241098
- [23] D. Reznik, C.H. Olk, D.A. Neumann, R.D. Copley. Phys. Rev. B, 52 (1), 116 (1995). DOI: 10.1103/PhysRevB.52.116
- [24] B.E. Warren. Phys. Rev., 59, 693 (1941).DOI: 10.1103/PhysRev.59.693
- [25] В.А. Плотников, С.В. Макаров, Д.Ф. Демьянов, В.И. Ярцев, К.В. Соломатин. ФПСМ, 4, 476 (2015).