14,15

О влиянии скорости деформирования на характер разрушения гетерогенных материалов

© В.Л. Гиляров, Е.Е. Дамаскинская

Физико-технический институт им. А.Ф. Иоффе, Санкт-Петербург, Россия E-mail: Vladimir.Hilarov@mail.ioffe.ru

Поступила в Редакцию 6 февраля 2024 г. В окончательной редакции 6 февраля 2024 г. Принята к публикации 7 февраля 2024 г.

> Методом дискретных элементов исследовано влияние скорости механического нагружения на характер разрушения гетерогенных материалов. При увеличении скорости воздействия обнаружены хрупко-вязкий и вязко-хрупкий переходы. Обсуждаются возможные механизмы влияния скорости нагружения на прочность и характер разрушения материалов.

> Ключевые слова: разрушение материалов, скорость механического воздействия, метод дискретных элементов.

DOI: 10.61011/FTT.2024.04.57803.18

Механические свойства материалов существенно зависят от скорости механического воздействия. Хорошо известно явление вязко-хрупкого перехода при повышенных скоростях нагружения материалов или изменении температуры, в частности хрупкое поведение жидкостей при ударном воздействии [1].

В последнее время появились данные о существовании обратного хрупко-вязкого перехода при сверхвысоких скоростях воздействия $\sim 1-10$ km/s [2–5]. Такие эффекты могут наблюдаться при столкновениях космических аппаратов с микрометеоритами, поэтому изучение подобных явлений представляется актуальным.

Механизм влияния скорости нагружения на прочность до сих пор остается не ясен.

В настоящей работе исследуется поведение модельного гетерогенного материала при его механическом деформировании с разными скоростями. Расчеты методом дискретных элементов (DEM) производились в свободно распространяемом пакете программ MUSEN [6].

Рассматриваемая в настоящей работе схема эксперимента аналогична схеме, изложенной в работе [7]. Образец представляет собой цилиндр диаметром 10 mm и высотой 20 mm. Цилиндр заполнен зернами (частицами) с диаметрами и процентным составом, указанными в табл. 1 (диаметр частиц в миллиметрах, их число 48695). Размеры представляют собой набор величин со средним значением 0.3 mm и стандартным отклонением 0.1 mm, полученный генератором случайных чисел с нормальным распределением. Частицы из одного материала соединялись связью из того же материала, а частицы из разных материалов соединялись низкомодульными связями 4–6 (табл. 2). Диаметры связей $d \leq 0.6$ mm. Таким образом, реализовывалась известная модель ВРМ — bonded particle model [8].

Образец помещался в виртуальный пресс, в котором нижняя плита была неподвижна, а верхняя перемещалась в направлении нижней со скоростями в диапазоне

v = 0.02-5000 m/s до тех пор, пока образцы не разрушались. В процессе разрушения через равные промежутки времени — интервал времени сохранения данных — записывался большой набор различных механических параметров образцов, который мог быть использован

Таблица 1. Диаметры зерен (mm) и процентный состав каждой из фракций

Материал	Ді	иаметр з фрак	Доля каждой фракции			
Кварц	0.36	0.188	0.52	0.28	0.42	0.0595745
Ортоклаз	0.27	0.28	0.4	0.36	0.26	0.0702128
Олигоклаз	0.16	0.168	0.288	0.24	0.4	0.0702127

Таблица 2. Параметры материалов, использованные при моделировании

N₂	Материал	ho,kg/m ³	E, GPa	ν	$\sigma_n,$ MPa	σ_t , MPa	η, Pa·s
1	Кварц	2650	94	0.29	600	600	5E19
2	Ортоклаз	2560	62	0.29	420	420	1E19
3	Олигоклаз	2560	70	0.29	480	480	1E19
4	Связь кварц-ортоклаз	2500	5.8	0.2	200	200	5E19
5	Связь кварц-олигоклаз	2500	5.8	0.2	300	300	5E19
6	Связь ортоклаз-олигоклаз	2500	5.8	0.2	100	100	5E19

Примечание. ρ — плотность материала, E — модуль Юнга, ν — коэффициент Пуассона, σ_n — прочность материала на разрыв, σ_t — прочность материала на сдвиг, η — динамическая вязкость.

Рис. 1. Картины разрушения образца при разных скоростях смещения плиты: *a*) v = 0.02 m/s; *b*) v = 10 m/s; *c*) v = 500 m/s; *d*) v = 1000 m/s. Цветом обозначены нормальные напряжения на связях.

для дальнейшего анализа. В настоящей работе такими параметрами были сила, с которой образец действует на верхнюю плиту, и число разорванных связей каждого типа, а также полное число разорванных связей.

На рис. 1 приведены картины разрушения исследуемого образца при разных скоростях смещения плиты.

Видно, что при низких и высоких скоростях нагружения картины разрушения существенно отличаются. При скорости нагружения 0.02 m/s (рис. 1, *a*) рождается одна трещина, а при более высокой скорости нагружения (10 m/s - рис. 1, b) образец разбивается на несколько осколков рис. 1, *c* (v = 500 m/s) демонстрирует смешанный характер разрушения: возникает трещина, аналогичная изображенной на рис. 1, *a*, а также происходит интенсивное разрушение (разрываются связи) вблизи движущейся плиты. При скорости нагружения 1000 m/s (рис. 1, *d*) материал рассыпается перед движущейся плитой.

На рис. 2 представлены зависимости от времени силы, действующей со стороны материала на верхнюю плиту. Эта характеристика является аналогом диаграммы нагружения материала. Рис. 2, *а* соответствует разрушению материала с предшествующей пластической деформацией (плато на зависимости). На рис. 2, *b* временная область пластической деформации гораздо меньше как в абсолютном, так и в относительном масштабе. Таким образом, в этом диапазоне скоростей происходит охрупчивание материала. На рис. 2, *c* на диаграмме силы вновь появляется нелинейная область (аналог пластичности), а также зуб текучести. Его появление можно объяснить тем, что при столь высоких скоростях материал релаксирует с некоторым запаздыванием относительно нагрузки. Рис. 2, *d* иллюстрирует тот случай, когда прочность связей уже не играет роли, а сопротивление материала нагрузке определяется инерционной составляющей [5].

Действительно, согласно [5] сопротивление преграды внедрению P можно представить в виде суммы прочностной (R) и инерционной ($1/2\rho v^2$) составляющих (1):

$$P = \frac{1}{2}\rho v^2 + R,\tag{1}$$

где ρ — плотность материала, v — скорость внедрения. Инерционная составляющая это не что иное, как сопротивление вязкой среды движению нагружающей плиты. При высоких скоростях v, выше скорости фронта разрушения, плита взаимодействует с практически

Puc. 2. Зависимость от времени полной силы, действующей со стороны образца на движущуюся с разными скоростями верхнюю плиту: *a*) v = 0.02 m/s; *b*) v = 1 m/s; *c*) v = 100 m/s; *d*) v = 5000 m/s.

Рис. 3. Зависимость максимальной силы, действующей на плиту, от ее скорости.

неповрежденным материалом, который рассыпается под ней как сыпучая среда. Рост силы в конце диаграммы рис. 2, *d* связан с ударом верхней плиты о нижнюю.

Таким образом, при увеличении скорости нагружения мы сначала наблюдаем хорошо известный вязко-хрупкий

переход, а при более высоких скоростях, наоборот переход хрупко-вязкий.

Сравнение значений максимальной силы, действующей на плиту (аналог предельной прочности материала) показывает, что эта величина увеличивается при увеличении скорости плиты. На рис. 3 представлена зависимость максимальной силы от скорости.

Отметим, что аналогичная зависимость прочности от скорости была получена модельным расчетом в приближении "инкубационного времени" в работе [9]. Там же приведены экспериментальные данные по прочности для конструкционной стали А и показано хорошее совпадение модельных и экспериментальных результатов.

Чтобы понять причины увеличения прочности материала при увеличении скорости воздействия в DEM можно проследить за разрушением отдельных элементов структуры. В модели BPM такими элементами являются связи между частицами. На рис. 4, *а* приведено общее число разорванных к моменту разрушения образца связей. Моментом разрушения считается момент времени, когда сила на верхней панели уменьшается практически до нуля (рис. 2, *a*–*c*). При этом образуется ярко выраженная трещина (рис. 1, *a*–*c*). При более высоких скоростях образец, как уже было отмечено, рассыпается под плитой (рис. 1, *d*), а его диаграмма нагружения (си-

Рис. 4. a — общее число разорванных связей к моменту разрушения образца; b — кинетика разрыва связей из каждого материала при скорости v = 0.02 m/s; c — кинетика разрыва связей из каждого материала при скорости v = 100 m/s.

ла, действующая на верхнюю плиту) остается примерно постоянной во времени (рис. 2, *d*).

При не очень высоких скоростях нагружения общее число разорванных к моменту разрушения связей уменьшается (рис. 4, *a*). Из рис. 4, *b* следует, что при этом сначала разрываются в основном связи, состоящие из того же материала, что и соединяемые ими частицы из этого же материала, что можно трактовать как внутризеренное разрушение. "Межзеренные" связи остаются в основном целыми, поскольку за счет низкого модуля упругости они способны к деформированию. Разрыв "внутризеренных" связей обеспечивает квазипластичность рассматриваемого материала, проявляющуюся в "диаграмме нагружения" (рис. 2, a). При увеличении скорости нагружения" (рис. 2, a). При увеличении скорости нагружения запаздывание в разрыве "межзеренных" и "внутризеренных" связей уменьшается (рис. 4, c). Это приводит к охрупчиванию материала — происходит вязко-хрупкий переход. В то же время общее число разорванных связей (рис. 4, a) уменьшается, что и приводит, по нашему мнению, к увеличению прочности материала в этом диапазоне скоростей.

При дальнейшем увеличении скорости нагружения увеличивается вклад инерционной составляющей в сопротивление образца разрушению. Как уже отмечалось, материал начинает сыпаться под нагружающей плитой. Число разорванных к моменту разрушения связей увеличивается (рис. 4, a). На "диаграмме нагружения" (рис. 2, c) образуется характерная для пластичности полочка. Происходит обратный хрупко-вязкий переход. Увеличение прочности материала в этом диапазоне скоростей можно объяснить увеличением инерционного вклада в выражении (1).

Таким образом, методом дискретных элементов рассмотрено разрушение гетерогенного образца при различных скоростях механического воздействия. Использование компьютерного моделирования позволило выявить основные закономерности разрушения на одном и том же образце, т.е. заведомо исключить влияние изменения структуры материала. Показано, что при увеличении скорости воздействия в материале сначала реализуется вязко-хрупкий переход, обусловленный тем, что при этих скоростях начинают разрушаться одновременно все имеющиеся в системе связи. При более высоких скоростях в системе наблюдается хрупко-вязкий переход, связанный с увеличением вклада в прочность инерционной составляющей.

Следует заметить, что полученные в настоящей работе для модельного материала численные значения величин нельзя напрямую сравнивать с результатами натурного эксперимента, поскольку не проводилась необходимая для такого сравнения калибровка физических параметров, применяемых в DEM.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- М. Корнфельд. Упругость и прочность жидкостей. Гос. издво техн.-теор. лит., М.-Л. (1951). 109 с.
- [2] А.А. Кожушко, И.И. Рыкова, А.Б. Синани. Физика горения и взрыва 1, 89, (1992).
- [3] В.Б. Лазарев, А.С. Баланкин, А.Д. Изотов, А.А. Кожушко. Структурная устойчивость и динамическая прочность неорганических материалов. Наука, М. (1993). С. 175.

- [4] E.I. Zilberbrand, A.S. Vlasov, J.U. Cazamias, S.J. Bless, A.A. Kozhushko. Int. J. Impact Eng. 23, 1, 995 (1999).
- [5] А.А. Кожушко, А.Б. Синани. ФТТ 47, 5, 812 (2005).
- [6] M. Dosta, V. Skorych. Software X 12, 100618 (2020).
- [7] В.Л. Гиляров, Е.Е. Дамаскинская. ФТТ 64, 676 (2022).
- [8] D.O. Potyondy, P.A. Cundall. Int. J. Rock Mech. Min. Sci. 41, 1329 (2004).
- [9] А.Д. Евстифеев, А.А. Груздков, Ю.В. Петров. ЖТФ 83, 7, 59 (2013).

Редактор Д.В. Жуманов