10

Взаимодействие морщинок и складок листа графена, лежащего на плоской подложке

© А.В. Савин^{1,2}, О.И. Савина²

¹ Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН, Москва, Россия ² Российский экономический университет им. Г.В. Плеханова, Москва, Россия E-mail: asavin00@gmail.com, asavin@chph.ras.ru

Поступила в Редакцию 9 февраля 2024 г. В окончательной редакции 9 февраля 2024 г. Принята к публикации 19 февраля 2024 г.

> Проведено моделирование взаимодействия морщинок и вертикальных складок у однослойных и многослойных листов графена, лежащих на плоской подложке. Показано, что при свободном скольжении листа по подложке взаимодействие морщинок и складок сводится к перетягиванию расположенной между ними части листа. Взаимодействие двух морщинок всегда приводит к росту более крупной за счет исчезновения более мелкой, а взаимодействие складки с морщинкой — к увеличению первой и исчезновению второй. Взаимодействие двух складок может приводить только к изменению их формы. Поэтому, при малом одноосном сжатии у листа может образовываться только одна морщинка, а при сильном — только несколько устойчивых складок. Закрепление на подложке (пиннинг) атомов листа может приводить к существованию нескольких устойчивых морщинок. Депиннинг листа при высоких температурах приводит к исчезновению морщинок и образованию из них вертикальных складок. Данный сценарий объясняет механизм действия термического отжига малых морщин графена.

Ключевые слова: графен, морщинки и складки графена, плоская подложка.

DOI: 10.61011/FTT.2024.04.57800.22

1. Введение

Атомы углерода способны создавать многочисленные структуры, из которых в последнее время большое внимание исследователей привлекает моноатомный кристаллический слой — графен [1–5]. Данный наноматериал вызывает интерес из-за своих уникальных электронных [6], механических [7] и термических свойств [8,9].

Популярным методом получения графена является метод химического осаждения из газовой фазы (CVD), при котором графен выращивается на подложке в среде богатой углеродом. Метод CVD часто приводит к появлению топологических дефектов (в процессе охлаждения лист графена подвергается внеплоскостному деформационному изгибу), таких как рябь [10] и морщины [11]. Дефекты такого типа могут образовываться из-за шероховатости подложки [12] и вследствие разного теплового расширения графена и подложки [13]. Наличие таких дефектов может менять свойства графена: электропроводность [11], теплопроводность [14,15], эластичность [16]. Возникающие на листе структуры из морщин и складок могут быть использованы в качестве каналов для введения и хранения жидкости между графеном и его подложкой [17], а также для его пространственно-селективной химической функционализации [18]. Поэтому понимание законов образования морщин и складок и объяснение механизмов их взаимодействий имеет важное значение для создания наноустройств на основе графена.

Внеплоскостные (поперечные) деформации графена можно разделить на рябь (гофры), морщины и смятия (складки) в зависимости от их физических размеров и топологии [19,20]. Для описания отдельных морщин и складок использовались квазианалитические модели на основе вариационного исчисления [11,21–26], модели на основе механики сплошной среды с использованием метода конечных элементов [27,28] и полноатомные модели с использованием молекулярной динамики [29–31].

Недавно для описания динамики морщинок и складок наноленты графена, лежащей на плоской подложке, была предложена модель двумерной цепи, описывающей продольное сечение наноленты [32]. Цель настоящей работы — объяснить, с использованием данной модели, механизмы взаимодействия морщинок и складок в однослойных и многослойных листах графена, лежащих на плоской подложке.

2. 2D-модель многослойного листа графена на плоской подложке

Для описания многослойного листа графена удобно использовать двухмерную модель молекулярной цепи, позволяющую с высокой точностью описывать одноосные деформации листа. Продольные и изгибные поперечно изотропные колебания листа можно описать, используя только динамику молекулярной цепи, явля-

Рис. 1. Схема построения двухмерной цепной модели для моделирования морщинок и складок многослойного листа графена на плоской подложке оксида кремния SiO₂: (*a*) полноатомная модель морщинки двухслойного графена, лежащего на плоской поверхности кристалла SiO₂, (*b*) двухмерная цепная модель двухслойного листа, лежащего на плоской подложке.

ющейся линейным сечением листа. Такая 2D-модель цепи, описывающая продольные и изгибные движения наноленты, представлена в работах [33,34]. Это модель была использована для описания морщинок и складок однослойного листа графена, расположенного на плоской подложке [32].

Схема построения цепной модели многослойного листа графена, лежащего на плоской подложке, представлена на рис. 1. Для однослойного листа графена, лежащего в плоскости параллельной плоскости xy, со структурой зигзаг вдоль оси x модель описывает поперечное сечение листа, в котором одной частице соответствуют все атомы, имеющие одинаковую координату x. При поперечно изотропных колебаниях все эти атомы двигаются синхронно, меняя только координаты xz, но не меняя координату y. В этом случае гамильтониан листа можно записать как гамильтониан 2D-цепи

$$H = \sum_{n} \left[\frac{1}{2} M(\dot{\mathbf{u}}_{n}, \dot{\mathbf{u}}_{n}) + V(r_{n}) + U(\theta_{n}) + Z(\mathbf{u}_{n}) + \frac{1}{2} \sum_{|k-n| > 5} W(r_{n,k}) \right],$$
(1)

где двухмерный вектор $\mathbf{u}_n = (x_n, z_n)$ задает координаты *n*-ой частицы цепи, имеющей массу $M = 12m_p$ $(m_p = 1.66 \cdot 10^{-27} \text{ kg} - \text{масса протона}).$

Потенциал

$$V(r) = \frac{1}{2} K_x (r-a)^2$$
 (2)

описывает продольную жесткость цепи, *K_x* — жесткость взаимодействия, *а* — равновесная длина связи (шаг

цепи), $r_n = |\mathbf{u}_{n+1} - \mathbf{u}_n|$ — расстояние между соседними узлами n и n + 1.

Потенциал

$$U(\theta) = \varepsilon_1 [1 + \cos(\theta)] \tag{3}$$

описывает изгибную жесткость цепи, θ — угол между двумя соседними связями, $\cos(\theta_n) = -(v_{n-1}, v_n)/r_{n-1}r_n$, вектор $v_n = \mathbf{u}_{n+1} - \mathbf{u}_n$.

Потенциал $W(r_{n,k})$ описывает слабые невалентные взаимодействия удаленных узлов цепи *n* и *k*, $r_{n,k} = |\mathbf{u}_n - \mathbf{u}_k|$ — расстояние между узлами. С высокой точностью эти взаимодействия могут быть описаны потенциалом Леннарда—Джонса (5,11)

$$W(r) = \varepsilon_2 [5(r_0/r)^{11} - 11(r_0/r)^5]/6, \qquad (4)$$

с равновесной длиной $r_0 = 3.607$ Å и энергией взаимодействия $\varepsilon_2 = 0.00832$ eV [32].

Параметры потенциалов (2), (3) определены в [33,34] из анализа дисперсионных кривых наноленты графена: продольная жесткость $K_x = 405$ N/m, шаг цепи $a = r_{CC}\sqrt{3}/2 = 1.228$ Å ($r_{CC} = 1.418$ Å — длина валентной связи С–С в листе графена), энергия $\varepsilon_1 = 3.5$ eV.

Потенциал $Z(\mathbf{u})$ описывает взаимодействие узлов цепи (атомов листа) с плоской подложкой, на которой она лежит. Энергия взаимодействия атома с полупространством $z \leq 0$ описывается потенциалом Леннарда–Джонса (3,9) [27,28,35]:

$$Z(\mathbf{u}) = Z(z) = \varepsilon_0 [(h_0/z)^9 - 3(h_0/z)^3]/2, \qquad (5)$$

где ε_0 — энергия взаимодействия (энергия адгезии), h_0 — равновесное расстояние до поверхности полупространства. Для подложки из оксида кремния SiO₂ энергия $\varepsilon_0 = 0.074$ eV, расстояние $h_0 = 5$ Å [36].

Гамильтониан К-слойного листа будет иметь вид

$$H = \sum_{j=1}^{K} \sum_{n=1}^{N} \frac{1}{2} M(\dot{\mathbf{u}}_{n,j}, \dot{\mathbf{u}}_{n,j}) + E, \qquad (6)$$

где N — число узлов в каждой цепи, $\mathbf{u}_{n,j} = (x_{n,j}, z_{n,j})$ — вектор, задающий положения *n*-го узла *j*-ой цепи (*j*-го слоя). Потенциальная энергия многослойной структуры

$$E = \sum_{j=1}^{K} \sum_{n=1}^{N} \left[V(r_{n,j}) + U(\theta_{n,j}) + \frac{1}{2} \sum_{|k-n|>5} W(r_{n,j;k,j}) \right]$$

+
$$\sum_{j=1}^{K-1} \sum_{i=j+1}^{K} \sum_{n=1}^{N} \sum_{l=1}^{N} W(r_{n,j;l,i}) + \sum_{j=1}^{K} \sum_{n=1}^{N} Z(u_{n,j}),$$
(7)

где первая сумма описывает энергию деформации всех цепочек (всех слоев листа), вторая — энергию межцепного взаимодействия (взаимодействия слоев), третья — энергию взаимодействия слоев листа с плоской

Рис. 2. Вид морщинки для (*a*) однослойного, (*b*) двухслойного, (*c*) трехслойного листа графена, лежащего на плоской подложке оксида кремния (сжатие d = 0.05, N = 300). Вид складки для однослойного, двухслойного, трехслойного листа при d = 0.20 (*d*), (*e*), (*f*) и d = 0.30 (*g*), (*h*), (*i*).

подложкой z = 0. Здесь расстояние $r_{n,j} = |\mathbf{v}_{n,j}|$, вектор $\mathbf{v}_{n,j} = \mathbf{u}_{n+1,j} - \mathbf{u}_{n,j}$, угол $\theta_{n,j}$ определяется из уравнения $\cos(\theta_{n,j}) = -(\mathbf{v}_{n-1,j}, \mathbf{v}_{n,j})/r_{n-1,j}r_{n,j}$, расстояние $r_{n,j;l,i} = |\mathbf{u}_{n,j} - \mathbf{u}_{l,i}|$.

Отметим, что гамильтонианы цепи (1) и (6) дают энергию деформации наноленты, приходящуюся на продольную полосу ширины $\Delta y = \sqrt{3}r_{CC}$.

3. Стационарные состояния одноосно сжатого листа графена

Для нахождения стационарных состояний одноосно сжатого листа графена нужно решить задачу на минимум потенциальной энергии многослойной цепи с периодическими граничными условиями

$$E \rightarrow \min: \{\mathbf{u}_{n,j}\}_{n=1,j=1}^{N,K}$$
 (8)

при значении периода L = (1-d)Na, где N — число звеньев цепи, d < 1 — коэффициент сжатия цепи (сжатие цепи в процентах $p = d \cdot 100\%$).

Задача (8) решалась численно методом сопряженного градиента, при решении использовались цепочки из $N = 300,\ 600,\ 1000$ звеньев. Решение задачи показало, что возможны следующие три основные состояния продольно сжатой цепи: однородно сжатое плоское состояние, состояние с локализованной выпуклой морщинкой (с пузыреподобной пустой областью между листом и подложкой) — см. рис. 2, a-c и состояние с вертикальной складкой листа — см. рис. 2, d-i.

Пусть $\{\mathbf{u}_{n,k}\}_{n=1,j=1}^{N,K}$ — решение задачи на минимум энергии (8) (стационарное состояние продольно сжатого листа графена на плоской подложке). Тогда состояние будет характеризоваться энергией *E*, напряжением цепи

в слабо деформированной прямолинейной области цепи

$$F = \sum_{j=1}^{K} V'(r_{n,j}) + \frac{1}{2} \sum_{k=n+6}^{n+50} W'(r_{n,j;k,j}) + \sum_{i=1,i\neq j}^{K} \sum_{k=n}^{n+50} W'(r_{n,j;k,i})(x_{k,i} - x_{n,j})/r_{n,j;k,i}$$
(9)

и амплитудой

$$A = \max_{n}(z_{n,K}) - \sum_{n=1}^{20} (z_{n,K} + z_{N+1-n,K})/40.$$

На прямолинейном участке напряжение цепи (9) не зависит от номера узла *n*. Если деформация цепи сосредоточена в ее центре, то напряжение *F* достаточно определить для n = 1. Амплитуда *A* для морщинки или складки находится как максимальное отклонение от равновесного значения поперечной координаты верхнего листа (цепи с j = K). Для однородно сжатого линейного состояния A = 0.

Зависимость энергии E, напряжения F и амплитуды поперечного смещения A от коэффициента сжатия листа d показана на рис. 3. Численное решение задачи (8)

Рис. 3. Зависимость (a) энергии E, (b) напряжения F, (c) амплитуды поперечных смещений A от коэффициента сжатия d многослойной циклической цепи из N = 300 звеньев. Кривые I — для продольного однородного сжатия; кривые 2, 4, 6 — для морщинки K-слойного листа (K = 1, 2, 3); кривые 3, 5, 7 — для складки K-слойного листа (K = 1, 2, 3).

N		300			600			1000		
K	d_0	$d_{w,1}$	$d_{w,2}$	d_f	$d_{w,1}$	$d_{w,2}$	d_f	$d_{w,1}$	$d_{w,2}$	d_f
1	0.035	0.017	0.136	0.094	0.013	0.068	0.050	0.011	0.041	0.033
2	0.026	0.014	0.163	0.109	0.011	0.082	0.057	0.009	0.049	0.037
3	0.021	0.013	0.191	0.125	0.010	0.096	0.065	0.008	0.068	0.039

Критические значения сжатия d₀, d_{w,1}, d_{w,2}, d_f для K-слойной цепи (для K-слойного листа) из N звеньев

показало, что однородно сжатое плоское состояние листа устойчиво при $d \leq d_0$, где критическое значение $d_0 > 0$. При однородном сжатии (растяжении) плоского листа ($A \equiv 0$) выполняется закон Гука: энергия $E \propto d^2$, напряжение $F \propto d$ — см. кривые I.

Морщинки с пустой внутренней полостью существуют при сжатии $d_{w,1} \leq d \leq d_{w,2}$, где минимальное значение $d_{w,1} \in (0, d_0)$. С увеличением сжатия энергия E и амплитуда A монотонно увеличиваются, а напряжение F монотонно уменьшается — см. кривые 2, 4, 6. Уменьшение F связано с тем, что с увеличением амплитуды монотонно уменьшается часть поверхности "пузыря", примыкающая к подложке. Взаимодействие этой части листа с подложкой вызывает напряжение в остальной части цепи (это напряжение не дает цепи полностью лечь на подложку).

Увеличение сжатия цепи приводит к коллапсу морщинок — они складываются, образуя складку с плотной узкой многослойной ножкой с каплеобразной головкой — см. рис. 2, d-i. Вертикальные складки существуют при сжатии $d \ge d_f$, где минимальное значение $d_f \in (d_0, d_{w,2})$.

Критические значения сжатия $d_0, d_{w,1}, d_{w,2}, d_f$, для *К*-слойных листов даны в таблице. Значение d_0 не зависит от длины цепи. Ширина интервала существования морщинок $d_{w,2}-d_{w,1}$ и значение d_f монотонно уменьшаются при увеличении числа звеньев цепи *N*.

С увеличением d энергия и амплитуда складки растут как линейные функции: $E \propto d$, $A \propto d$; а остаточное напряжение в цепи монотонно стремится к постоянному значению: $F \rightarrow F_0 > 0$, для $d \rightarrow 1$ — см. кривые 3, 5, 7. Это связано с тем, что рост складки при сжатии цепи происходит за счет увеличения длины ее ножки, при этом форма части ножки, примыкающей к подложке, практически не меняется — см. рис. 2, d-i. Отметим, что остаточное напряжение в цепи со складкой всегда меньше чем напряжение в цепи с морщинкой.

Взаимодействие морщинок и складок

Зависимость остаточного напряжения F от степени сжатия цепи d (монотонное убывание для морщинок и рост для складок при увеличении d — см. рис. 3, b) позволяет заключить, что если в сжатой циклической

цепи присутствуют две морщинки, то более крупная будет расти за счет уменьшения малой. Каждая морщинка будет оказывать давление (силу F) на примыкающую к подложке часть цепи. Если морщинка оказывает меньшее давление, то в результате сложения направленных против друг друга давлений она начнет втягивать в себя цепочку, увеличивая свою и уменьшая амплитуду другой морщинки. Складка всегда оказывает более слабое давление, чем морщинка, поэтому она всегда будет втягивать в себя цепочку, пока морщинка не исчезнет.

Взаимодействие морщинок и складок сводится к перетягиванию части цепи, расположенной между ними. Поэтому, если возможно свободное скольжение цепи по подложке, морщинки и складки могут взаимодействовать на больших расстояниях. Взаимодействие пары морщинок должно приводить к росту более крупной за счет исчезновения более мелкой, а взаимодействие складки с морщинкой всегда должно приводить к росту первой за счет исчезновения второй.

Проведем численное моделирование взаимодействия морщинок и складок. Для этого возьмем два стационарных состояния циклической цепи из N = 300 звеньев при разных значениях сжатия d_1 и d_2 . Объединим эти две цепи в одну циклическую цепь из 2N звеньев с периодом (длиной) $L = (2-d_1-d_2)aN$. Первая половина цепи будет соответствовать деформациям цепи со сжатием d_1 , вторая — деформациям цепи со сжатием d_2 . Сжатие объединенной цепи $d = (d_1 + d_2)/2$.

Промоделируем динамику объединенной цепи. Для этого численно проинтегрируем систему уравнений движения, соответствующую гамильтониану (6):

$$M\ddot{\mathbf{u}}_{n,j} = -\frac{\partial H}{\partial \mathbf{u}_{n,j}}, \quad n = 1, \dots, 2N, \quad j = 1, \dots, K,$$
(10)

с начальным условием

$$\{x_{n,j}(0) = x_{n,j,1}, z_{n,j}(0) = z_{n,j,1}\}_{n=1,j=1}^{N,K}, \{x_{n,j}(0) = N(1-d_1)a + x_{n-N,j,2}, z_{n,j}(0) = z_{n-N,j,2}\}_{n=N+1,j=1}^{2N,K}, \{\dot{x}_{n,j}(0) = 0, \ \dot{z}_{n,j}(0) = 0\}_{n=1,j=1}^{2N,K},$$
(11)

где $\{x_{n,j,i}, z_{n,j,i}\}_{n=1,j=1}^{N,K}$ — решение задачи (8) при сжатии $d = d_i, i = 1, 2$.

Численное интегрирование системы уравнений движения (10) с начальным условием (11) показало, что взаимодействие двух морщинок всегда приводит к росту морщинки с наибольшей амплитудой за счет исчезновения морщинки с меньшей амплитудой — см. рис. 4, *a* и 5, *a*. Так для однослойного листа при $d_1 = 0.06$, $d_2 = 0.05$ в результате взаимодействия в цепи остается только одна морщинка, соответствующая сжатию объединенной цепи d = 0.055. Для трехслойного листа при $d_1 = 0.20$, $d_2 = 0.10$ взаимодействие морщинок тоже приводит к исчезновению второй морщинки — в цепи остается только одна морщинка, рост которой приводит к ее переходу в складку.

Взаимодействие складки с морщинкой всегда приводит к увеличению складки за счет исчезновения морщинки — см. рис. 4, *b* и 5, *b*. Взаимодействие двух складок

Рис. 4. Взаимодействие: (*a*) морщинок, соответствующих сжатию $d_1 = 0.06$, $d_2 = 0.05$; (*b*) складки и морщинки с $d_1 = 0.08$ и $d_2 = 0.06$; (*c*) двух складок со сжатием $d_1 = 0.10$ и $d_2 = 0.08$ цепи из N = 300 звењев. Число слоев листа K = 1. По-казана зависимость от времени t формы первого слоя $\{u_n = x_{n,1}, h_n = z_{n,1} - h_0\}_{n=1}^{600}$.

Рис. 5. Взаимодействие: (*a*) морщинок, соответствующих сжатию $d_1 = 0.15$, $d_2 = 0.10$; (*b*) складки и морщинки с $d_1 = 0.50$ и $d_2 = 0.15$; (*c*) двух складок со сжатием $d_1 = 0.50$ и $d_2 = 0.20$ цепи из N = 300 звеньев. Число слоев листа K = 3. Показана зависимость от времени t формы первого слоя $\{u_n = x_{n,1}, h_n = z_{n,1} - h_0\}_{n=1}^{600}$.

приводит только к периодическому изменению их форму за счет перетягивания цепочек. Поэтому можно заключить, что при $d < d_f$ сжатие однослойного и многослойного листа может приводить только к появлению одной морщинки, а при $d > d_f$ — к появлению нескольких складок. Для проверки этого проведем моделирование динамики однородно сжатой цепи при разных значениях сжатия.

5. Образование морщинок и складок при сжатии цепи

Для моделирования образования морщинок и складок возъмем однородно сжатую циклическую цепочку из N = 1000 звеньев. Поместим ее в термостат

Рис. 6. Образование в равномерно сжатом двухслойном листе графена (*a*) одной морщинки при сжатии d = 0.025, (*b*) одной складки при d = 0.05 и (*c*) двух складок при d = 0.25. Число звеньев N = 1000, число слоев K = 2, температура T = 300 К. Показана зависимость от времени *t* формы первого слоя: $\{u_n = x_{n,1}, h_n = z_{n,1} - h_0\}_{n=1}^N$.

Ланжевена и рассмотрим ее дальнейшую динамику. Для этого численно проинтегрируем систему уравнений Ланжевена

$$\left\{ M \ddot{\mathbf{u}}_{n,j} = -\frac{\partial H}{\partial \mathbf{u}_{n,j}} - \Gamma M \dot{\mathbf{u}}_{n,j} - \Xi_{n,j} \right\}_{n=1,j=1}^{N,K}, \qquad (12)$$

где $\Gamma = 1/t_r$ — коэффициент трения (время релаксации термостата $t_r = 2 \text{ ps}$), $\Xi_{n,j} = (\xi_{n,j;1}, \xi_{n,j;2})$ — двумерный вектор нормально распределенных случайных сил Ланжевена с функциями корреляции

$$\langle \xi_{n,j_1;i_1}(t_1)\xi_{k,j_2;i_2}(t_2)\rangle = 2Mk_{\rm B}T\Gamma\delta_{nk}\delta_{j_1j_2}\delta_{i_1i_2}\delta(t_1-t_2)$$

($k_{\rm B}$ — постоянная Больцмана, T — температура термостата).

В качестве начального условия системы уравнений (12) возьмем однородно сжатое стационарное состояние цепи

$$\{x_{n,j}(0) = (n-1)(1-d)a + b_j, z_{n,j}(0) = h_0 + (j-1)h_1, \dot{x}_{n,j}(0) = 0, \ \dot{z}_{n,j}(0) = 0\}_{n=1, j+1}^{N,K},$$
(13)

где $b_j = 0$ для нечетного j, $b_j = a/2$ для четного j, $h_1 = 3.33$ Å [длина цепи L = (1-d)Na]. Наличие термостата позволяет убрать из цепи лишнюю энергию начального однородного сжатия. Возьмем температуру термостата T = 300 K.

Численное интегрирование системы уравнений Ланжевена (12) с начальным условием (13) показало, что при сжатии $d < d_f$ в листе может образовываться только одна морщинка — см. рис. 6, *a*. При сжатии $d = 0.05 > d_f$ в системе сначала образуется несколько морщинок, одна из которых поглощает все остальные и затем образует вертикальную складку — см. рис. 6, *b*. При более сильном сжатии d = 0.15 сначала образуется несколько растущих морщинок, две из которых образуют вертикальные складки, а остальные исчезают. Складки образуют устойчивые состояния — см. рис. 6, *a*. Сценарий образования морщинок и складок остается одинаковым для однослойных, двухслойных, трехслойных листов и полностью согласуется с результатами моделирования их взаимодействия.

6. Термический отжиг морщинок

Полученные выше результаты справедливы только при возможности свободного скольжения цепи (листа) по подложке. Если взаимодействие с подложкой препятствует такому скольжению, если происходит закрепление (пиннинг) узлов цепи на решетке подложки, то взаимодействие морщинок и складок листа будет происходить только на малых расстояниях. В этом случае в цепи может одновременно существовать несколько морщинок, образующих в ней устойчивые структуры.

Для описания эффекта пиннинга опишем взаимодействие узлов цепи с подложкой периодическим по *х* потенциалом

$$Z(u) = \left[\frac{1}{2}\varepsilon_0 - \frac{1}{4}\varepsilon_p \left(1 - \cos\frac{2\pi x}{a}\right)\right] \left\{ \left(\frac{h_0}{z}\right)^9 - 3\left(\frac{h_0}{z}\right)^3 \right\},$$
(14)

где $\varepsilon_p \ge 0$ — высота энергетического периодического рельефа вдоль подложки (энергия пиннинга). При отсутствии пиннинга, при $\varepsilon_p = 0$, потенциал (14) совпадает с потенциалом (5).

Возьмем характерное значение энергии пиннинга $\varepsilon_p = 0.003 \,\text{eV}$. При использовании потенциала взаимодействия с подложкой (14) решение задачи (8) показывает, что в сжатой цепи уже может существовать устойчивая система невзаимодействующих морщинок.

Рис. 7. Динамика морщинок и складок в сжатом однослойном листе графена (сжатие d = 0.1) при наличии прикрепления к подложке (энергия пиннинга $\varepsilon_p = 0.003 \text{ eV}$) при температуре (a) T = 300, (b) T = 400 и (c) T = 500 К. Число звеньев N = 1000, число слоев K = 1. Показана зависимость от времени t формы первого слоя: $\{u_n = x_{n,1}, h_n = z_{n,1} - h_0\}_{n=1}^{N}$.

Так в однослойной цепи (K = 1) из N = 1000 звеньев при сжатии d = 0.1 существует устойчивая система из 8 морщинок. Рассмотрим поведение этой системы при разных температурах.

Численное интегрирование системы уравнений Ланжевена (12) показало, что при низких температурах система невзаимодействующих морщинок сохраняется. С ростом температуры начинает происходить термически активированный депиннинг цепи, в результате которого становится возможно временное скольжение цепи по подложке. Поэтому морщинки начинают взаимодействовать на более больших расстояниях. Динамика цепи при разных температурах показана на рис. 7. Так при T = 100 К все морщинки в цепи сохраняются. При T = 200 К исчезают две морщинки, они поглощаются своими более крупными соседями и в цепи остается 6 морщинок. При T = 300 К в цепи остается 5 морщинок. При T = 400 К в цепи остаются две устойчивые морщинки и одна складка. При высокой температуре T = 500 К происходит полный депиннинг цепи, она начинает почти свободно скользить по подложке. В результате все морщинки исчезают, а в листе остается устойчивая система из двух складок. Аналогичная динамика морщинок происходит и для двух и трехслойных листов.

Проведенное моделирование объясняет механизм устранения малых морщин при термическом отжиге [37]. Отжиг при температуре $T = 200^{\circ}$ C (473 K) листа графена, лежащего на подложке SiO₂, приводит к исчезновению морщинок с амплитудой A = 1.5 nm, а морщинки с $A \ge 1.5$ nm остаются стабильными. Проведенное нами моделирование показывает, что здесь отжиг приводит к термически активированному депиннингу листа графена от подложки. В результате этого все морщинки с малыми амплитудами исчезают, а большие морщинки увеличиваются и превращаются в вертикально стоящие стабильные складки.

7. Заключение

С использованием модели двухмерной цепи, описывающей продольное сечение наноленты графена, проведено моделирование взаимодействия морщинок и вертикальных складок у однослойных и многослойных листов графена, лежащих на плоской подложке (на плоской поверхности кристалла оксида кремния SiO₂). Одноосное сжатие такого листа приводит к образованию локализованной выпуклой морщинки с пустой пузыреподобной областью между листом и подложкой. При достижении амплитуды $A \approx 2$ nm морщинки складываются (коллапсируют) и образуют вертикально стоящие складки с плотными многослойными ножками и каплеобразными головками.

Показано, что при свободном скольжении листа по подложке взаимодействие морщинок и складок сводится к перетягиванию расположенной между ними части листа. Такое взаимодействие может происходить на больших расстояниях. Взаимодействие двух морщинок всегда приводит к росту более крупной за счет исчезновения более мелкой, а взаимодействие складки с морщинкой к увеличению первой за счет исчезновения последней. Взаимодействие двух складок приводит только к изменению их формы. Поэтому в одноосно сжатом листе графена при малом сжатии $d < d_f$ может образовываться только одна морщинка (в начальный момент образуется несколько морщинок, но затем происходит рост самой большой за счет исчезновения остальных). При сильном сжатии $d > d_f$ в листе может образовываться либо одна складка, либо несколько устойчивых складок. Здесь тоже вначале образуется система из многих морщинок, самые крупные из которых растут за счет уменьшения соседних и затем коллапсируют в вертикальные складки. Сценарий образования морщинок и складок одинаков для однослойных, дву- и трехслойных листов.

Если взаимодействие с подложкой препятствует скольжению листа (при пиннинге листа на подложке), то взаимодействие морщинок и складок будет происходить только на малых расстояниях. В этом случае в сжатом листе могут одновременно существовать несколько морщинок, образуя в нем устойчивые структуры. При высоких температурах, за счет термически активированного депиннинга, лист начинает скользить по подложке, и морщинки начинают взаимодействовать на больших расстояниях. В результате все морщинки исчезают, и в листе остаются только вертикальные складки. Данный сценарий объясняет механизм действия термического отжига малых морщин графена [37].

Финансирование работы

Научно-исследовательская работа выполнена за счет субсидии, выделенной ФИЦ ХФ РАН на выполнение государственного задания № FFZE-2022-0009.

Вычислительные ресурсы предоставлены Межведомственным суперкомпьютерным центром РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Science **306**, *5696*, 666 (2004).
- [2] A.K. Geim, K.S. Novoselov. Nature Mater. 6, 3, 183 (2007).
- [3] C. Soldano, A. Mahmood, E. Dujardin. Carbon 48, 8, 2127 (2010).
- [4] J.A. Baimova, B. Liu, S.V. Dmitriev, K. Zhou. Phys. Status Solidi RRL 8, 4, 336 (2014).
- [5] J.A. Baimova, E.A. Korznikova, S.V. Dmitriev, B. Liu, K. Zhou. Rev. Adv. Mater. Sci. 39, 69 (2014).
- [6] A.K. Geim. Science **324**, *5934*, 1530 (2009).
- [7] C. Lee, X. Wei, J.W. Kysar, J. Hone. Science **321**, 5887, 385 (2008).
- [8] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan,
 F. Miao, C.N. Lau. Nano Lett. 8, 3, 902 (2008).
- [9] Y. Liu, C. Hu, J. Huang, B.G. Sumpter, R. Qiao. J. Chem. Phys. 142, 24, 244703 (2015).
- [10] L. Tapasztó, T. Dumitric, S.J. Kim, P. Nemes-Incze, C. Hwang, L.P. Biró. Nature Phys. 8, 10, 739 (2012).
- [11] W. Zhu, T. Low, V. Perebeinos, A.A. Bol, Y. Zhu, H. Yan, J. Tersoff, P. Avouris. Nano Lett. **12**, *7*, 3431 (2012).
- [12] C.H. Lui, L. Liu, K.F. Mak, G.W. Flynn, T.F. Heinz. Nature 462, 7271, 339 (2009).
- [13] A.N. Obraztsov, E.A. Obraztsova, A.V. Tyurnina, A.A. Zolotukhin. Carbon 45, 10, 2017 (2007).
- [14] S. Chen, Q. Li, Q. Zhang, Y. Qu, H. Ji, R.S. Ruoff, W. Cai. Nanotechnology 23, 36, 365701 (2012).
- [15] C. Wang, Y. Liu, L. Li, H. Tan. Nanoscale 6, 11, 5703 (2014).

- [16] Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, G. Zhang. ACS Nano 5, 5, 3645 (2011).
- [17] M.G. Pastore Carbone, A.C. Manikas, I. Souli, C. Pavlou, C. Galiotis. Nature Commun. 10, 1572 (2019).
- [18] S. Deng, D. Rhee, W.-K. Lee, S. Che, B. Keisham, V. Berry, T.W. Odom. Nano Lett. 19, 8, 5640 (2019).
- [19] S. Deng, V. Berry. Mater. Today 19, 4, 197 (2016).
- [20] B. Deng, J. Wu, S. Zhang, Y. Qi, L. Zheng, H. Yang, J. Tang, L. Tong, J. Zhang, Z. Liu, H. Peng. Small 14, 22, 1800725 (2018).
- [21] Y. Zhang, N. Wei, J. Zhao, Y. Gong, T. Rabczuk. J. Appl. Phys. 114, 6, 063511 (2013).
- [22] B.J. Cox, D. Baowan, W. Bacsa, J.M. Hill. RSC Adv. 5, 71, 57515 (2015).
- [23] J. Aljedani, M.J. Chen, B.J. Cox. Mater. Res. Express 8, 1, 015002 (2020).
- [24] J. Aljedani, M.J. Chen, B.J. Cox. RSC Adv. 10, 27, 16016 (2020).
- [25] B.J. Cox, T. Dyer, N. Thamwattana. Mater. Res. Express 7, 8, 085001 (2020).
- [26] J. Aljedani, M.J. Chen, B.J Cox. Appl. Phys. A 127, 886 (2021).
- [27] K. Zhang, M. Arroyo. J. Appl. Phys. 113, 193501 (2013).
- [28] K. Zhang, M. Arroyo. J. Mech. Phys. Solids 72, 61 (2014).
- [29] T. Al-Mulla, Z. Qin, M.J. Buehler. J. Phys.: Condens. Matter 27, 345401 (2015).
- [30] W. Zhu, Y. Liu, X. Wei. JOM 72, 3987 (2020).
- [31] C. Zhao, F. Liu, X. Kong, T. Yan, F. Ding. Int. J. Smart Nano Mater. 11, 3, 277 (2020).
- [32] A.V. Savin, E.A. Korznikova, S.V. Dmitriev.Phys. Rev. B 99, 235411 (2019).
- [33] A.V. Savin, E.A. Korznikova, S.V. Dmitriev. Phys. Rev. B 92, 035412, (2015).
- [34] А.В. Савин, Е.А. Корзникова, С.В. Дмитриев. ФТТ 57, 11, 2278 (2015).
- [35] Z.H. Aitken, R. Huang. J. Appl. Phys. 107, 123531 (2010).
- [36] S.P. Koenig, N.G. Boddeti, M.L. Dunn, J.S. Bunch. Nature Nanotech 6, 543 (2011).
- [37] F. Zheng, Q.H. Thi, L.W. Wong, Q. Deng, T.H. Ly, J. Zhao. ACS Nano 14, 2137 (2020).

Редактор Ю.Э. Китаев