06,11

Диэлектрические и оптические свойства прозрачной керамики $K_{0.5}Na_{0.5}NbO_3 - 0.02 Ba_2NaNb_5O_{15}$

© Л.С. Камзина

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: ASKam@mail.ioffe.ru

Поступила в Редакцию 28 февраля 2024 г. В окончательной редакции 28 февраля 2024 г. Принята к публикации 27 марта 2024 г.

Изучена связь между температурами деполяризации T_d и полиморфного фазового перехода T_{F-R} в малоизученной релаксорной горячепрессованной керамике $(K_{0.5}Na_{0.5}) \cdot NbO_3 - 0.02Ba_2NaNb_5O_{15}$. С этой целью проводились диэлектрические и оптические измерения поляризованных образцов. Обнаружено, что температуры T_d и T_{F-R} не совпадают. Полученные результаты обсуждаются с точки зрения степени размытия фазового перехода и размеров полярных областей. Высказано предположение, что взаиморасположение температуры деполяризации и температуры перехода поляризованного образца в релаксорную фазу T_{F-R} не зависит от типа фазовой границы (полиморфная или морфотропная), а связано только с размерами полярных областей.

Ключевые слова: бессвинцовая прозрачная керамика, полиморфный фазовый переход, релаксоры.

DOI: 10.61011/FTT.2024.04.57794.39

1. Введение

Сегнетоэлектрические свинцово-содержащие материалы со структурой перовскита, такие как цирконаттитанат свинца $Pb(Zr_xTi_{1-x})O_3$ (PZT) [1], магнониобат свинца Pb(Mg,Nb)O3 (PMN) [2] и твердые растворы на их основе, обладают прекрасными пьезоэлектрическими свойствами, но из-за токсичности использование их в приборах вызывает серьезные проблемы для окружающей среды и здоровья. Бессвинцовая керамика на основе (KNa)NbO₃, представляющая собой смесь твердых растворов KNbO3 и NaNbO3, является одной из наиболее изучаемых сегнетоэлектрических систем со структурой типа перовскита [3]. Диэлектрические и пьезоэлектрические свойства (KNa)NbO3 являются наилучшими в районе состава ($K_{0.5}$ Na_{0.5})NbO₃ (KNN). С повышением температуры в KNN наблюдаются следующие переходы: переход из ромбоэдрической (R) в орторомбическую фазу (O) при $T_{\rm R-O} \approx 153$ K, переход из орторомбической в тетрагональную фазу (T) при $T_{\rm O-T} \approx 473 \, {\rm K}$ и из тетрагональной в кубическую фазу (C) $T_{\rm C} \approx 673 \, {\rm K}$ (температура Кюри $T_{\rm C}$) [4,5].

Во многих ранних работах авторы связывают лучшие пьезоэлектрические свойства состава KNN, по сравнению с другими составами (KNa)NbO₃, с наличием морфотропной фазовой границы (MPB) между орторомбической и тетрагональной фазами [6]. Хотя наличие этой MPB до сих пор вызывает споры в литературе [7,8], неоспоримым фактом является возможность улучшения пьезоэлектрических свойств KNN введением примесей [9,10]. Недостатками этого состава являются относительно небольшое значение пьезомодуля (чистая керамика $d_{33} \approx 80 \text{ pC/N}$), а также слишком низкая для ряда промышленных применений механическая добротность Q_m (ниже 300). Эти недостатки могут быть легко устранены за счет легирования или малых добавок другой компоненты (d_{33} может быть существенно увеличено до $d_{33} \approx 416 \text{ pC/N}$ и выше [11,12]). С введением добавок температуры $T_{\text{O}-\text{T}}$ и T_{C} понижаются, а $T_{\text{R}-\text{O}}$ повышается и сдвигается к комнатной температуре с увеличением содержания добавки.

Авторы работ [13-15] связывают существенное увеличение пьезомодуля при введении добавок с возникновением многофазной структуры (сосуществование многих фаз (О-Т, R-О-Т или R-Т) вместо чистой О-фазы в KNN. В многофазной системе наблюдается сложная доменная структура, включающая микронные домены $(200 \text{ nm} - 5 \mu \text{m})$, нанодомены (1 - 200 nm) и полярные нанообласти (PNR) (1-10 nm), которая играет решающую роль в улучшении пьезосвойств составов на МРВ. Кроме того, сосуществование многих фаз приводит к разрушению дальнего порядка сегнетоэлектрической фазы, предотвращает образование доменов с дальним порядком и индуцирует образование нанодоменов и даже PNR [15]. Такое многообразие доменной структуры с областями разных размеров является одной из причин релаксорных свойств твердых растворов на основе KNN.

В работе [14] авторы, исследуя с помощью электронного микроскопа керамические твердые растворы KNN с SrZrO₃ и $Bi_{0.5}Ag_{0.5}ZrO_3$, обнаружили в них присутствие PNR, встроенных в матрицу упорядоченных сегнетоэлектрических доменов с дальним порядком. Основными причинами фазового сосуществования являются композиционные неоднородности и дефекты [16].

Следует заметить, что причины возникновения релаксорных свойств твердых растворов на основе KNN отличаются от классических релаксоров.

Обычно наблюдаются два типа PNR.

При типе I PNR встроены в неполярную матрицу, и релаксорное поведение происходит при фазовом переходе параэлектрик-сегнетоэлектрик. Тип I широко наблюдается в PMN и PZT.

В типе II PNR встроены в полярную матрицу, которая, кроме них, демонстрирует обилие упорядоченных сегнетоэлектрических доменов с дальним порядком. Релаксорное поведение типа II проявляется как при фазовых переходах сегнетоэлектрик–сегнетоэлектрик, который происходит при достаточно высоких температурах, так и параэлектрик–сегнетоэлектрик. Тип II обычно наблюдается в релаксорно-сегнетоэлектрических твердых растворах, таких как PbMg_{1/3}Nb_{2/3}O₃–PbTiO₃ (PMN–PT) и PbZn_{1/3}Nb_{2/3}O₃–PbTiO₃ (PZN–PT).

В твердых растворах на основе керамики KNN наблюдается многообразие фаз уже при комнатной температуре и сосуществование доменов с дальним порядком с нанообластями и PNR. Таким образом, релаксорное поведение керамики происходит уже при переходе между сегнетоэлектрической-сегнетоэлектрической фазой ($T_{\rm R-O}$) при комнатной температуре, которое отличается от релаксорного поведения вышеупомянутых двух типов. Нанодомены в керамических твердых растворах на основе KNN индуцируются как вследствие сосуществования многих фаз, так и из-за разрушения дальнего порядка. Это отличается от керамики PZT, в которой нанодомены возникают только вследствие сосуществования R-T-фаз.

В неполяризованной керамике на основе KNN нанодомены имеют размер 20–200 nm и сложную конфигурацию в виде полос, узоров "елочкой", водяных знаков и т.д. [14,15,17]. После поляризации конфигурация нанодоменов существенно упрощается. Основная часть нанодоменов имеет форму полос размером 20–100 nm. Упрощение конфигурации нанодоменов вызвано исчезновением доменной стенки 180° и переключением доменов, отличных от 180° [17,18]. С повышением температуры нанодомены постепенно сжимались, происходила постепенная деполяризация образца и переход в релаксорную фазу.

Однако к выбору добавок следует подходить с осторожностью. Так, некоторые добавки вследствие несоответствия валентностей могут вызвать быстрое снижение температуры Кюри и нелинейную зависимость температуры Кюри по компонентному составу [19].

Одними из лучших компонентов являются сегнетоэлектрические соединения со структурой вольфрамовой бронзы, например, Ba₂NaNb₅O₁₅ (BNN). Они обладают отличными электрооптическими и нелинейными оптическими свойствами. Небольшая добавка этого соединения может существенно улучшить пьезоэлектрические свойства KNN. Смещение температуры перехода из орторомбической в тетрагональную фазу в сторону комнатной температуры авторы [20,21] связывают с полиморфным фазовым переходом (PPT). Этот переход, как и МРТ, предполагает сосуществование фаз. При PPT фазовая граница между тетрагональной и орторомбической фазами (PPB) не является вертикальной (как, например, MPB), а обнаруживает сильную температурную зависимость. При нагревании поляризованный образец выше температуры T_{F-R} (температура T_{O-T} для неполяризованного образца) переходит из сегнетоэлектрической орторомбической фазы в релаксорную фазу (T_{F-R}).

Сведения о структуре фазы при комнатной температуре в керамике KNN-*x*BNN в литературе крайне противоречивы. В работе [22] было показано, что при комнатной температуре керамика KNN-xBNN с содержанием $x \le 0.025$ является чистым перовскитом с орторомбической симметрией, а сосуществование орторомбической и ромбоэдрический фаз наблюдается только в составах $0.05 \le x \le 0.075$. В то же время авторы работы [23], исследуя рентгеновские свойства керамик KNN-xBNN с меньшим составом, чем x = 0.025 (x = 0.013 и 0.015), пришли к выводу, что даже в этих составах при комнатной температуре наблюдается смесь орторомбической и ромбоэдрический фаз, а температура перехода T_{R-O} для состава $KNN-0.015BNN \approx 243 K$. В более поздних работах [13-15] авторы, используя разнообразные более чувствительные методики исследования, пришли к выводу, что при комнатной температуре структура керамических соединений KNN-xBNN с PPT более сложная и представляет собой смесь фаз R-O-T.

К сожалению, работ, посвященных твердым растворам KNN-*x*BNN, в литературе очень мало [22,23]. В этих работах обсуждались, в основном, только упругие и пьезоэлектрические свойства. Совсем нет сведений о взаимосвязи между температурой деполяризации предварительно поляризованных образцов T_d и температурой перехода из сегнетоэлектрической в релаксорную фазу $T_{\rm F-R}$ в образцах с полиморфным фазовым переходом. Как известно из литературы и наших работ, эти температуры могут совпадать друг с другом в ряде релаксоров, таких, как, например, РZT, PMN [24], а могут различаться, например, в таких релаксорах, как PZN, твердые растворы NBT с BaTiO₃ (NBT–BT) [25–30].

Единой точки зрения на наблюдаемое различие температур T_d и T_{F-R} в ряде релаксоров нет. Так, авторы работы [26] разницу в температурах в твердых растворах NBT-6BT связывают с тем, что деполяризация в них проходит в два этапа. На первом этапе нагрев поляризованного образца выше T_d разрушает только макроскопическую поляризацию, но взаимосвязь локальных диполей внутри доменов не теряется. На втором этапе, когда материал нагревается до температуры T_{F-R} и выше, домены распадаются на полярные нанообласти (PNR). Авторы работы [29], исследуя керамические образцы Pb_{0.99}[Zr_{0.45}Ti_{0.47}(Ni_{0.33}Sb_{0.67})_{0.08}]O₃, объясняют потерю поляризации при более низких температурах T_d, чем распад дальнего порядка при температуре $T_{\rm F-R}$, существованием деполяризующих полей и напряжений, вызванным несоответствием деформации на границах зерен из-за различных кристаллографических ориентаций зерен и искажением структур. Мы в работе [28], исследуя монокристаллические твердые растворы PMN-*x* PT, PZN-*x*PT, NBT-*x*BT предположили, что совпадение или различие температур связано со степенью размытия фазового перехода и размерами PNR. В релаксорах с наибольшей степенью размытия фазового перехода и малыми размерами PNR эти температуры совпадают. В таких составах при нагревании поляризованного образца при температуре T_d не только разрушается макроскопическая поляризация, но и, вследствие образующихся PNR маленького размера, теряется взаимосвязь локальных диполей внутри доменов. В релаксорах с меньшей степенью размытия фазового перехода и большими размерами PNR эти температуры не совпадают. Имеющиеся в литературе сведения относительно взаиморасположения температур T_d и T_{F-R} в различных релаксорах были приведены только для соединений с морфотропным фазовым переходом (МРТ).

Совсем нет сведений о поведении этих температур в соединениях с полиморфным фазовым переходом, к которым относится керамика KNN–xBNN. В связи с этим представляется интересным изучить связь между температурами T_d и T_{F-R} в малоизученной релаксорной керамике KNN–xBNN. Для этой цели будет исследована прозрачная керамика KNN–0.02BNN, изучены диэлектрические и оптические свойства поляризованных образцов. Оптические методы исследования служат хорошим дополнением к диэлектрическим методам, т. к. являются более чувствительными, особенно для изучения изменения размеров неоднородностей при фазовых переходах.

2. Исследуемые образцы и методика эксперимента

Прозрачная керамика KNN-0.02BNN приготавливалась из обычных материалов. Использовался метод горячего прессования. Исходные материалы прессовались в таблетки, которые затем спекались в атмосфере кислорода. Спеченные таблетки подвергались горячему прессованию под давлением. Для проведения оптических измерений таблетки полировались до толщины 0.5 mm. Для измерений использовался He-Ne-лазер. Диэлектрические измерения в отсутствие и при приложении электрического поля проводились на частоте 1 kHz в температурном интервале 298-650 К. Чтобы устранить в образцах эффекты памяти, связанные с приложением электрического поля, образец сначала нагревался без поля до температур, превышающих температуру $T_{\text{max } e}$ на ~ 50 K, и выдерживался при этой температуре

Рис. 1. Температурные зависимости диэлектрической проницаемости ε для керамики KNN-0.02BNN, снятые при нагревании: кривая l — в неполяризованном образце, кривая 2 — в отсутствие поля после приложения поля 10 kV/cm при температуре 383 K в течение 1 h.

10-15 min. После отжига образцы охлаждались без поля до комнатной температуры.

Экспериментальные результаты и их обсуждение

На рис. 1 (кривые 1 и 2) представлены температурные зависимости диэлектрической проницаемости ε для прозрачной керамики KNN-0.02BNN, снятые при нагревании в отсутствие электрического поля (кривая 1) и после приложения электрического поля 10 kV/cm при температуре 383 K в течение 1 h (кривая 2).

На обеих кривых четко видны два фазовых перехода: один при температуре ~ 493 К из орторомбической в тетрагональную фазу (полиморфный переход $T_{\rm O-T}$), другой при температуре Кюри ~ 623 К. Кроме того, на кривой 2, снятой в частично поляризованном образце, заметна третья аномалия в виде еле заметного перегиба в области температур 433–443 К, которая может соответствовать температуре деполяризации T_d .

Для более полной поляризации образца мы приложили электрическое поле $10 \, kV/cm$ при температуре 493 К с выдержкой 1 h. После этого образец охлаждался в том же поле до комнатной температуры, затем поле выключалось и проводились температурные измерения ε в отсутствие поля. К сожалению, большие поля, необходимые для полной поляризации образца, к прозрачной керамике приложить не удалось. Температура поляризации 493 К выбрана не случайно, т. к. условия поляризации (особенно температура поляризации) явля-

Рис. 2. Диэлектрическая проницаемость є керамики KNN-0.02BNN как функция температуры в области 418-458 K, снятая при нагревании в отсутствие поля и после поляризации в разных электрических полях: кривая 1 - 0 kV/cm, кривая 2 - после приложения поля 10 kV/cm при температуре 383 K, кривая 3 - после приложения поля 10 kV/cm при температуре 493 K.

ются важным фактором для керамики KNN и твердых растворах на ее основе. Это связано с тем, что фазовый переход при температуре T_{O-T} является полиморфным фазовым переходом (PPT). Это означает, что на фазовой диаграмме температура—состав полиморфная фазовая граница (PPB) не является вертикальной и обнаруживает сильную температурную зависимость. Поэтому для поляризации KNN обычно выбирают температуру вблизи температуры фазового перехода [30–32]. Заметим, что при вертикальной MPB температура поляризации не влияет на MPB.

На рис. 2 (кривые 1-3) представлены изменения ε в области аномалии 433-443 К в отсутствие электрического поля (кривая 1) и в поле 10 kV/cm, приложенном при разных температурах (кривые 2 и 3).

Из рис. 2 четко видно, что в отсутствие электрического поля (кривая I) в этой температурной области никаких аномалий не наблюдается, тогда как в частично поляризованном образце в области 433–443 К наблюдается аномалия ε . Более отчетливо аномалия наблюдается в случае приложения поля при температуре, близкой к $T_{\rm O-T}$ (кривая 3). Небольшой максимум находится на ~ 50 К ниже температуры полиморфного перехода $T_{\rm O-T}$ и может быть связан с температурой деполяризации T_d .

Чтобы подтвердить высказанное предположение о существовании температуры деполяризации ниже температуры $T_{\rm F-R}$, мы провели оптические измерения. Так

как изменения пропускания в частично поляризованном образце могут быть незначительными и их трудно заметить на фоне большого пропускания, мы использовали измерения в скрещенных николях. Для этих измерений образец частично поляризовался в поле 8 kV/cm при температуре 383 К в течение 1 h. В этом поле образец охлаждался до комнатной температуры, поле выключалось и проводились температурные измерения оптического пропускания. На рис. 3 приведены измерения Δn в отсутствие электрического поля (кривая 1) и после приложения поля (кривая 2).

Несмотря на то, что изменение оптического пропускания связано только с изменением размеров неоднородностей и происходит в широком температурном интервале, оно может свидетельствовать о фазовом переходе, в котором происходят эти изменения. На кривой 1 возрастание Δn при повышении температуры и приближении ее к температуре фазового перехода $T_{\rm O-T} \approx 493 \, {\rm K}$ (T_{F-R} в поляризованном образце) свидетельствует об увеличении числа и размеров областей тетрагональной сегнетоэлектрической фазы. После перехода выше 493 К при приближении к температуре Кюри число и размеры тетрагональных областей уменьшаются, и Δn резко падает. В кубической фазе Δn практически равно нулю. Следует отметить, что в отличие от диэлектрических измерений, на температурной зависимости Δn в отсутствие электрического поля отчетливо видна еще одна незначительная аномалия в области температур 433-443 К, которая находится ниже температуры перехода ТО-Т и может быть связана с температурой деполяризации *T*_d.

На кривой 2, снятой после приложения электрического поля, четко видно уменьшение Δn в области температуры деполяризации и дальнейшее увеличение Δn при приближении к температуре $T_{\rm F-R}$. Уменьшение Δn связано с разрушением макроскопической поляризации,

возникшей только в части объема поляризованного образца, тогда как остальная часть образца остается неполяризованной из-за небольшого поляризующего электрического поля. Используемые в работе электрические поля приводят не к полной (монодоменное состояние), а только к частичной поляризации образца, и дальний порядок возникает в части объема образца. К сожалению, значительные диэлектрические потери в образце не позволили приложить большие электрические поля. После температуры T_{F-R} дальний порядок разрушается, образец переходит в релаксорную фазу.

Из приведенных зависимостей (рис. 1–3) видно, что температуры T_{F-R} и T_d в исследуемой керамике отличаются друг от друга. Аналогичное несовпадение температур T_{F-R} и T_d наблюдалось в монокристаллических образцах PZN, NBT и их твердых растворах [25,28–30].

В наших предыдущих работах [28,30], исследуя монокристаллические образцы PZN, NBT и их твердые растворы, мы пришли к выводу, что несовпадение температур T_d и T_{F-R} наблюдается только в тех релаксорах, в которых существует размытый фазовый переход в сегнетоэлектрическое состояние в отсутствие электрического поля, и связано это с размерами и концентрацией PNR (размеры ~ 100–200 nm).

В исследуемой в настоящей работе керамике KNN-0.02BNN спонтанный размытый переход в сегнетоэлектрическое состояние наблюдается и в отсутствие электрического поля при температуре T_{O-T} . При охлаждении керамики KNN-0.02BNN из параэлектрической фазы домены сегнетоэлектрической тетрагональной фазы появляются при температуре T_C , затем очень быстро растут за счет уменьшения объема кубической фазы, и ниже температуры T_{O-T} большая часть образца переходит в смешанную фазу, в которой сосуществуют R-O-T-области, но в целом макроструктура остается кубической.

Хорошо известно, что размер домена в сегнетоэлектрических материалах тесно связан с соответствующим размером зерна [33,34]. Размер зерна в горячепрессованной керамике KNN-0.02BNN составляет ~ 200 nm [14,17], следовательно, средний размер доменов также ~ 200 nm. Несовпадение температур T_d и $T_{\rm F-R}$ в исследуемом составе, как и в твердых растворах PZN и NBT, может быть связано с размерами доменов, которые приводят к двухэтапному прохождению фазового перехода. В этом случае T_d не обязательно включает полную потерю состояния поляризации материала.

4. Заключение

В настоящей работе изучено влияние электрического поля на фазовые переходы в малоизученной бессвинцовой горячепрессованной керамике KNN-0.02BNN. Эта керамика имеет ряд особенностей по сравнению как со свинцово-содержащими твердыми растворами, так и с бессвинцовыми твердыми растворами на основе NBT. Во-первых, керамика KNN-0.02BNN претерпевает полиморфный фазовый переход (РРТ) между орторомбической и тетрагональной фазами (T_{O-T}) , тогда как в вышеупомянутых составах наблюдается морфотропный фазовый переход (МРТ). Фазовая граница при РРТ не является вертикальной (как, например, морфотропная фазовая граница в РZT, твердых растворах с РМN и ряде других соединений), а обнаруживает сильную температурную зависимость. Во-вторых, релаксорное поведение в этой керамике наблюдается уже при комнатной температуре при фазовом переходе между ромбоэдрической и орторомбической сегнетоэлектрическими фазами ($T_{\rm R-O}$). В-третьих, нанодомены в керамических твердых растворах на основе KNN индуцируются как вследствие сосуществования многих фаз (R-O-T), так и из-за разрушения дальнего порядка. Это отличается от керамики PZT, в которой нанодомены возникают только вследствие сосуществования R-Т-фаз.

В такой керамике с РРТ впервые исследовано взаиморасположение температур деполяризации (T_d) и (T_{O-T}) $(T_{F-R}$ — температура перехода в релаксорное состояние в поляризованном образце). Обнаружено несовпадение этих температур, что связано с двухэтапным переходом поляризованного образца в релаксорную фазу: при T_d теряется макроскопическая поляризация, а затем уже при T_{F-R} происходит окончательный переход в релаксорную фазу. Высказано предположение, что причиной являются меньшая степень размытия фазового перехода и бо́льшие размеры PNR. В связи с тем, что начало и конец перехода не совпадают, поляризованный образец при нагревании переходит в релаксорную фазу тоже постепенно — в два этапа.

Аналогичная картина наблюдалась в твердых растворах с MPB с достаточно большими размерами PNR.

Сделан вывод, что взаиморасположение температуры деполяризации и температуры перехода поляризованного образца в релаксорную фазу не зависит от типа фазовой границы (полиморфная или морфотропная), а связано только со степенью размытия фазового перехода и с размерами полярных областей.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Список литературы

- Y. Deng, J.L. Wang, K.R. Zhu, M.S. Zhang, J.M. Hong, Q.R. Gu, Z. Yin. Mater. Lett. 59, 26, 3272 (2005).
- [2] F. Li, M.J. Cabral, B. Xu, Z. Cheng, E.C. Dickey, J.M. LeBeau, J. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L.-Q. Chen, T.R. Shrout, S. Zhang. Science **364**, 6437, 264 (2019).
- [3] K. Wang, B. Malič, J. Wu. MRS Bull. 43, 8, 607 (2018).
- [4] N. Ishizawa, J. Wung, T. Sakakura, Y. Inagaki, K. Kakimoto. J. Solid State Chem. 183, 11, 2731 (2010).

- [5] L. Egerton, D.M. Dillion. J. Am. Ceram. Soc. **42**, *9*, 438 (1959).
- [6] V.J. Tennery, K.W. Hang. J. Appl. Phys. 39, 10, 4749 (1968).
- [7] Y.J. Dai, X.W. Zhang, K.P. Chen. Appl. Phys. Lett. 94, 4, 042905 (2009).
- [8] J. Tellier, B. Malič, B. Dkhil, D. Jenko, J. Cilensek, M. Kosec. Solid State Sci. 11, 2, 320 (2009).
- [9] L. Wu, J.L. Zhang, C.L. Wang, J.C. Li. J. Appl. Phys. 103, 8, 084116 (2008).
- [10] Y. Kang, Y. Zhao, R. Huang, Y. Zhao, H. Zhou. J. Am. Ceram. Soc. 94, 6, 1683 (2011).
- [11] C. Montero-Tavera, M.D. Durruthy-Rodríguez, F.D. Cortés-Vega, J.M. Yañez-Limón. J. Adv. Ceram. 9, 3, 329 (2020).
- [12] M.-H. Zhang, K. Wang, J.-S. Zhou, J.-J. Zhou, X. Chu, X. Lv, J. Wu, J.-F. Li. Acta Mater. **122**, 344 (2017).
- [13] C. Shi, J. Ma, J. Wu, K. Chen, B. Wu. Ceram. Int. 46, 3, 2798 (2020).
- [14] W. Yang, P. Li, F. Li, X. Liu, B. Shen, J. Zhai. Ceram. Int. 45, 2 Part A, 2275 (2019).
- [15] X.-X. Sun, J. Zhang, X. Lv, X.-X. Zhang, Y. Liu, F. Li, J. Wu. J. Mater. Chem. A 7, 28, 16803 (2019).
- [16] J. Frantti, S. Ivanov, S. Eriksson, H. Rundlöf, V. Lantto, J. Lappalainen, M. Kakihana. Phys. Rev. B 66, 6, 064108 (2002).
- [17] X. Lv, J. Wu. J. Mater. Chem. C 7, 7, 2037 (2019).
- [18] X. Lv, X. Zhang, J. Wu. J. Mater. Chem. A 8, 20, 10026 (2020).
- [19] V.A. Isupov. Physica Status Solidi A 181, 1, 211 (2000).
- [20] S. Zhang, R. Xia, T.R. Shrout, G. Zang, J. Wang. J. Appl. Phys. 100, 10, 104108 (2006).
- [21] Y. Shiratori, A. Magrez, C. Pithan. J. Eur. Ceram. Soc. 25, 12, 2075 (2005).
- [22] X. Chen, Y. Wang, J. Chen, H. Zhou, L. Fang, L. Liu. J. Am. Ceram. Soc. 96, 11, 3489 (2013).
- [23] K. Yoshida, K. Kakimoto, M. Wei, S.J. Rupitsch, R. Lerch. Jpn J. Appl. Phys. 55, 10S, 10TD02 (2016).
- [24] V. Bobnar, Z. Kutnjak, R. Pirc, A. Levstik. Phys. Rev. B 60, 9, 6420 (1999).
- [25] X. Tan, E. Aulbach, W. Jo, T. Granzow, J. Kling, M. Marsilius, H.J. Kleebe, J. Rödel. J. Appl. Phys. **106**, *4*, 044107 (2009).
- [26] E. Sapper, S. Schaab, W. Jo, T. Granzow, J. Rödel. J. Appl. Phys. 111, 1, 014105 (2012).
- [27] Y. Hiruma, H. Nagata, T. Takenaka. J. Appl. Phys. 105, 8, 084112 (2009).
- [28] Л.С. Камзина. ФТТ **64**, *6*, 665 (2022). [L.S. Kamzina. Phys. Solid State **64**, *6*, 654 (2022)].
- [29] A.B. Kounga, T. Granzow, E. Aulbach, M. Hinterstein, J. Rödel. J. Appl. Phys. **104**, *2*, 024116 (2008).
- [30] Л.С. Камзина. ФТТ **64**, *11*, 1792 (2022). [L.S. Kamzina. Phys. Solid State **64**, *11*, 1754 (2022)].
- [31] H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Z. Pei. Appl. Phys. Lett. 91, 20, 202907 (2007).
- [32] J. Wu, D. Xiao, Y. Wang, W. Wu, B. Zhang, J. Zhu. J. Appl. Phys. **104**, *2*, 024102 (2008).
- [33] M. Eriksson, H.X. Yan, G. Viola, H.P. Ning, D. Gruner, M. Nygren, M.J. Reece, Z. Shen. J. Am. Ceram. Soc. 94, 10, 3391 (2011).
- [34] W.W. Cao, C.A. Randall. J. Phys. Chem. Solids 57, 10, 1499 (1996).

Редактор Е.В. Толстякова

584