03,08

Осцилляции магнетосопротивления в пленках многокомпонентных топологических изоляторов на основе теллурида висмута

© Л.Н. Лукьянова, О.А. Усов, М.П. Волков

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: lidia.lukyanova@mail.ioffe.ru

Поступила в Редакцию 8 марта 2024 г. В окончательной редакции 8 марта 2024 г. Принята к публикации 14 марта 2024 г.

В слоистых пленках твердых растворов n-(Bi, Sb, In)₂(Te, Se)₃, которые являются топологическими 3D-изоляторами, проведен анализ квантовых осцилляций и температурных зависимостей магнетосопротивления в магнитных полях до 14 Т. В рамках теории Лифшица—Косевича рассчитаны параметры поверхностных состояний фермионов Дирака и установлено, что исследованные пленки характеризуются двумя частотами циклотронного резонанса. Поверхностная концентрация фермионов Дирака возрастает в пленках с высоким параметром термоэлектрической мощности при замещениях атомов в подрешетке Bi на In по сравнению с замещениями Sb \rightarrow Bi. Рассчитаны номера уровней Ландау и фаза Берри. Показано, что с повышением частоты циклотронного резонанса в пленке n-Bi_{1.92}In_{0.02}Te_{2.88}Se_{0.12} уровни Ландау наблюдаются в более высоких магнитных полях, чем в n-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09}. В пленках n-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09} на температурных зависимостях удельного сопротивления в магнитном поле B = 14 T наблюдаются плато в области низких температур, характерные для топологических изоляторов. При температурах ниже 15 K обнаружена нелинейная зависимость сопротивления от магнитного поля вследствие квантовых интерференционных эффектов, которые связаны со слабой антилокализацией фермионов Дирака.

Ключевые слова: термоэлектрики, слоистые пленки, квантовые осцилляции, сильные магнитные поля, поверхностные состояния.

DOI: 10.61011/FTT.2024.04.57791.47

1. Введение

Слоистые пленки твердых растворов $n-(Bi, Sb, In)_2/(Te, Se, S)_3$ являются эффективными термоэлектриками со структурой тетрадимита и относятся к сильным топологическим 3D-изоляторам (ТИ) с поверхностными 2D-состояниями фермионов Дирака [1-3]. Топологические поверхностные состояния в этих материалах возникают в результате инверсии электронных состояний на краях запрещенной зоны и связаны с сильным спин-орбитальным взаимодействием Для фермионов Дирака характерна аномальная спинзависимая металлическая проводимость и спиральноспиновая текстура [1,2].

В настоящее время проводятся интенсивные исследования халькогенидных термоэлектриков с целью использования топологических поверхностных состояний в электронных технологиях, в фотонике, в системах оптической связи [4–6]. Отсутствие обратного рассеяния на немагнитных примесях в ТИ способствует увеличению подвижности, что стимулирует создание энергоэффективных полевых транзисторов на основе пленок Bi_2Se_3 и Bi_2Te_3 [4,7,8]. Перспективным является применение пленок Bi_2Te_3 для обработки информации с помощью магнитных устройств, которые могут быть конкурентоспособными по быстродействию и производительности с имеющимися современными техноло-

гиями [4]. При разработке нейроморфных материалов и устройств используются пленки соединений Sb_2Te_3 , GeTe, $Ge_2Sb_2Te_5$ [9].

В термоэлектричестве использование свойств поверхностных состояний фермионов связано с эффектом сверхтекучести поверхностных топологических экситонов в гетероструктурах Sb_2Te_3/Bi_2Te_3 , содержащих p—n-переход [10,11].

Влияние фермионов Дирака на увеличение фактора мощности в пленках p-Bi₀₅Sb_{1.5}Te₃ субмикронной толщины наблюдалось в изоструктурных топологических переходах [12,13] при высоких давлениях, P = 3-4 GPa. Существенный рост фактора мощности под давлением по сравнению с обычными условиями определяет перспективы применения пленок p-Bi₀₅Sb_{1.5}Te₃ в качестве p-ветви термоэлектрических устройств [12]. Характеристики разработанных устройств могут быть улучшены в магнитном поле за счет дополнительных поперечных и продольных магнито-термоэлектрических эффектов [14].

Информативным методом анализа топологии термоэлектриков халькогенидов висмута и сурьмы являются гальваномагнитные эффекты, измеренные в сильных магнитных полях [15–17]. В настоящей работе исследованы квантовые осцилляционные эффекты магнетосопротивления в магнитных полях до 14 Т при низких температурах и зависимости магнетосопротивления от

Рис. 1. Удельное сопротивления ρ_{xx} (кривые 1-3) в зависимости от обратного магнитного поля B^{-1} в пленках *a*) n-Bi_{1.92}In_{0.02}Te_{2.88}Se_{0.12} и *b*) n-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09} при температурах *T*, K: 1 - 3, 2 - 5, 3 - 10.

температуры вплоть до комнатной в пленках твердых растворов $n-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09}$.

2. Квантовые осцилляции магнетосопротивления

Периодические квантовые осцилляции амплитуд магнетосопротивления в сильных магнитных полях при низких температурах, возникающие в результате модуляции плотности состояний электронов с частотой циклотронного резонанса *F*, применяются для расчета параметров поверхностных состояний фермионов Дирака в ТИ [18–20].

Слоистые пленки твердых растворов n-Bi_{1.92}In_{0.02}Te_{2.88}Se_{0.12} и n-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09} для исследований были приготовлены расслоением монокристаллических зерен объемных материалов до 500 nm методом, описанным в [21]. На полученных пленках, на подложке из липкой полимерной ленты были измерены зависимости удельного сопротивления ρ_{xx} от магнитного поля (рис. 1) на установке Physical Property Measurement System (PPMS) Transport Option в области низких температур T < 10 К в магнитных полях до 14 Т. Во время измерений ток І был направлен вдоль, а магнитное поле В — перпендикулярно межслоевой поверхности ван дер Ваальса (0001), что соответствует поперечному магнетосопротивлению.

Частоты циклотронного резонанса F_1 и F_2 в слоистых пленках (рис. 3) были определены из зависимостей осцилляций $\Delta \rho_{xx}(B^{-1})$ (рис. 2) методом быстрого преобразования Фурье. На рис. 3 показано, что спектральные значения амплитуды A квантовых осцилляций магнетосопротивления в зависимости от частоты F в пленках имеют две резонансные частоты, F_1 и F_2 . Появление двух резонансных частот в исследованных пленках определяется изменением условий циклотронного резонанса на свободной поверхности пленки и по-

верхности, находящейся на подложке, а также особенностями поверхности Ферми [17]. Как следует из рис. 3, амплитуды осцилляций магнетосопротивления Aуменьшаются с ростом температуры. Уровень Ферми в пленках близкого состава n-Bi_{1.6}Sb_{0.4}Te_{2.94}Se_{0.06} [22] и n-Bi_{1.92}In_{0.02}Te_{2.85}Se_{0.15} [23] находится в запрещенной зоне, что подтверждает вклад поверхностных носителей в квантовые осцилляции магнетосопротивления (рис. 2 и 3).

3. Параметры фермионов Дирака

Из амплитуд осцилляций магнетосопротивления $\Delta \rho_{xx}(B^{-1})$ (рис. 2, *а* и *b*) в соответствии с теорией Лифшица–Косевича [16,18,24,25] были рассчитаны площадь сечения поверхности Ферми $S(k_F)$, волновой вектор k_F и поверхностная концентрация фермионов n_s для слоистых пленок. Частота циклотронного резонанса осцилляций

$$F = \left(\frac{\hbar}{2\pi e}\right) S(k_{\rm F}),\tag{1}$$

$$k_{\rm F} = \sqrt{\frac{S(k_{\rm F})}{\pi}}.$$
 (2)

Поверхностная концентрация n_s определена следующим образом: $n_s = k_F^2/(4\pi)$.

Поскольку в исследованных пленках обнаружены две резонансные частоты F_1 и F_2 (рис. 3), то им соответствуют два набора параметров (таблица).

Поверхностная концентрация по является одним из параметров, который влияет на вклад поверхностных фермионов Дирака в термоэлектрические свойства. В пленке п-Bi_{1.92}In_{0.02}Te_{2.88}Se_{0.12} с высоким фактором мощности $PF = 48 \cdot 10^{-6} \text{ W} \cdot \text{cm}^{-1} \cdot \text{K}^{-2}$ величина n_s при низких температурах была выше, чем в составе п-Bi_{1.65}Sb_{0.4}Te_{2.91}Se_{0.09} с меньшим фактором

Рис. 2. Квантовые осцилляции магнетосопротивления $\Delta \rho_{xx}$ (кривые 1-3) в зависимости от обратного магнитного поля B^{-1} в пленках a) п-Bi_{1.92}In_{0.02}Te_{2.88}Se_{0.12} и b) п-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09} для температур T, K: 1 - 3, 2 - 5, 3 - 10.

Рис. 3. Амплитуды *A* квантовых осцилляций магнетосопротивления в зависимости от частоты циклотронного резонанса *F* в пленке *a*) п-Bi_{1.92}In_{0.02}Te_{2.88}Se_{0.12} и *b*) п-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09}. Кривые *1*, 2 — 3 K, 3, 4 — 5 K, 5, 6 — 10 K. Максимальные частоты циклотронного резонанса: $a - F_1 = 38.5$ и $F_2 = 15.6$ T, $b - F_1 = 26$ и $F_2 = 12$ T.

 $PF = 29.3 \cdot 10^{-6} \,\mathrm{W} \cdot \mathrm{cm}^{-1} \cdot \mathrm{K}^{-2}$ (таблица). Следует отметить, что величина $n_{\rm s}$ в пленке п-Bi_{1.92}In_{0.02}Te_{2.88}Se_{0.12} по данным дифференциальной туннельной проводимости, измеренная методом сканирующей туннельной спектроскопии при комнатной температуре составляет 2.8 $\cdot 10^{12} \,\mathrm{cm}^{-2}$ [23], что существенно выше, чем n_s при низких температурах (таблица).

Уровень Ферми E_F (таблица), соответствующий большей частоте F_1 , расположен выше, чем при меньшей частоте F_2 (рис. 3), поэтому частоту F_1 ассоциируют с верхней свободной поверхностью пленки, а F_2 с нижней поверхностью, которая находится на подложке, что согласуется с экспериментальными исследованиями пленок на основе теллурида висмута и сурьмы [17,26]. Подтверждением более высокой частоты F_1 на свободной поверхности исследуемых пленок являются результаты сравнения данных, полученных методом фотоэлектронной спектроскопии с угловым разрешением (ARPES) на свободной поверхности пленок при низких температурах и исследования осцилляционных эффектов в сильных магнитных полях [17,26]. Измерения ARPES спектров показали, что значения уровня Ферми $E_{\rm F}$ и поверхностной концентрации $n_{\rm s}$ на свободной поверхности пленок согласуются с аналогичными данными, полученными из осцилляционных эффектов для более высокой частоты циклотронного резонанса [17,26]. Из данных, приведенных в таблице, следует, что $E_{\rm F}$ и $n_{\rm s}$ в пленках п-Bi_{1.92}In_{0.02}Te_{2.88}Se_{0.12} и п-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09} выше на свободной поверхности, как и частота циклотронного резонанса.

Из температурных зависимостей $\Delta \rho_{xx}(B^{-1})$ (рис. 2), нормированных на амплитуду осцилляций при T = 3 K, при фиксированном максимальном магнитном поле B = 14 T была рассчитана методом наименьших квадра-

F, T	$S(k_{\rm F})$, nm ⁻²	$k_{\rm F}$, nm ⁻¹	$E_{\rm F}$, meV	$n_{\rm s},10^{12}{\rm cm}^{-2}$	$m_{\rm cyc}/m_{\rm e}$	$ au, \ 10^{-13} { m s}$	$T_{\rm D}, {\rm K}$	<i>l</i> _F , nm	$v_{\rm F}, 10^5 {\rm m/s}$	μ , m ² /Vs
$n-Bi_{1.92}In_{0.02}In_{0.02}Se_{0.12}$										
38.5	0.368	0.342	81.0	0.93	0.11	3.06	3.98	110	3.6	0.489
15.6	0.149	0.218	24.1	0.38	0.15	2.44	4.96	41.0	1.68	0.286
n-Bi _{1.6} Sb _{0.4} Te _{2.91} Se _{0.09}										
26.0	0.248	0.281	46.3	0.63	0.13	4.5	2.7	84.0	2.50	0.454
12.0	0.115	0.191	16.3	0.29	0.17	4.5	2.7	35.0	1.30	0.278

Параметры поверхностных состояний фермионов Дирака

тов (МНК) циклотронная эффективная масса фермионов $m_{\rm cyc}$. Скорость $v_{\rm F}$ и энергия Ферми $E_{\rm F}$ (таблица) были получены из данных по эффективной массе $m_{\rm cyc}$ и волнового вектора $k_{\rm F}$ в соответствии с [16,25]. Время релаксации фермионов τ и температура Дингля $T_{\rm D}$ были рассчитаны при минимальной температуре T = 3 К из углов наклона максимальных амплитуд осцилляций $\Delta \rho_{xx}(B^{-1})$ и обратного магнитного поля (рис. 2). Длина свободного пробега $l_{\rm F} = v_{\rm F}\tau$ и подвижность фермионов $\mu = e\tau/m_{\rm cyc}$ [16,25]. Величины $l_{\rm F}$ и подвижность фермионов μ были определены с помощью $k_{\rm F}$, $v_{\rm F}$ и $m_{\rm cyc}$. Величины $l_{\rm F}$ для двух циклотронных частот F_1 и F_2 были выше в пленке n-Bi_{1.92}In_{0.02}Te_{2.88}Se_{0.12}, при этом подвижность μ возрастала слабо по сравнению с пленкой n-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09} (таблица).

4. Уровни Ландау и фаза Берри

Квантовые осцилляции магнетосопротивления $\Delta \rho_{xx}(B^{-1})$ (рис. 2, *а* и *b*) связаны с перераспределением электронной плотности носителей на уровнях Ландау. Разность энергий уровней Ландау соответствует частоте циклотронного резонанса [18,19]. Для построения диаграммы Ландау и определения фазы Берри (рис. 4) в пленках п-Bi_{1.92}In_{0.02}Te_{2.88}Se_{0.12} и п-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09} использовались экстремальные положения амплитуд осцилляций $\Delta \rho_{xx}$ на зависимостях $\Delta \rho_{xx}(B^{-1})$ (рис. 2, *а* и *b*).

Индексы уровней Ландау *n* и фаза Берри β (рис. 4) были определены по МНК в соответствии с выражением $n = F \cdot B_{exs}^{-1} + \beta$ [17,25] для частот циклотронного резонанса F_1 и F_2 в обратных магнитных полях B_{exs}^{-1} , которые характеризуют положения минимумов и максимумов амплитуд осцилляций магнетосопротивления.

На верхней поверхности пленки n-Bi_{1.92}In_{0.02}Te_{2.88}Se_{0.12} для циклотронной частоты $F_1 = 38.5$ Т уровни Ландау n были обнаружены в интервале магнитных полей B = (13.7-8.8) Т. Целые индексы уровней Ландау были равны n = 4, 5,а полуцелые индексы — n = 3.5 и 4.5 (рис. 4, кривая I). Для частоты $F_2 = 15.6$ Т на нижней поверхности пленки n-Bi_{1.92}In_{0.02}Te_{2.88}Se_{0.12} целые индексы n = 5, 6,

Рис. 4. Индексы уровней Ландау *n* и фаза Берри β в обратном магнитном поле B^{-1} , полученные из экстремумов амплитуд осцилляций магнетосопротивления $\Delta \rho_{xx}(B^{-1})$, (рис. 2, *a* и *b*) в пленке (кривые *I*, *2*) п-Ві_{1,92}In_{0.02}Te_{2.88}Se_{0.12} и (*3*, *4*) п-Ві_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09} для частот циклотронного резонанса F_1 (*I*, *3*) и F_2 (*2*, *4*). На вставке фаза Берри β , рассчитанная одновременно с индексами Ландау по МНК. 5 — $\beta = 0.58$ в пленках п-Ві_{1.92}In_{0.02}Te_{2.88}Se_{0.12} и 6 — $\beta = 0.47$ в п-Ві_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09}.

а полуцелые — n = 5.5 и 6.5 при B = (3.6-2.6) Т (рис. 4, кривая 2).

В пленке n-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09} на верхней поверхности для частоты $F_1 = 26$ T целые индексы — n = 3, 4, 5при B = (10.2-5.75) T, а полуцелые индексы — n = 2.5,3.5, 4.5 при B = (12.9-6.4) T (рис. 4, кривая 3). На нижней поверхности пленки для частоты $F_2 = 12$ T n = 5, 6при B = (2.7-2.15) T, и n = 5.5, 6.5 при B = (2.4-2) T (рис. 4, кривая 4).

Полученные данные о положении уровней Ландау n показали (рис. 4), что в пленке n-Bi_{1.92}In_{0.02}Te_{2.88}Se_{0.12}, которая характеризуется более высокими циклотронными частотами F_1 и F_2 , уровни Ландау наблюдаются в более высоких магнитных полях.

Величина фазы Берри β (рис. 4, вставка) в пленках n-Bi_{1.92}In_{0.02}Te_{2.88}Se_{0.12} (прямые 1, 2) и n-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09} (прямые 3, 4), составляет 0.58 и 0.47 соответственно, и совпадает для верхней и нижней поверхности пленок и находится на пересечении прямых I, 2 и 3, 4 с осью индексов Ландау n. Величины β согласуются с экспериментальными данными [17,25]. Изменение кривизны циклотронной орбиты, зеемановское расщепление [27] и искажение линейной дисперсии фермионов с увеличением магнитного поля объясняют расхождения между экспериментальными величинами фазы Берри β и теоретическим значением, равным 0.5 в ТИ [19,25,28].

5. Температурные зависимости сопротивления в магнитном поле

В пленках в n-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09} были исследованы температурные зависимости удельного сопротивления ρ в интервале температур (4.2 – 300) К в магнитных полях B = 5, 10 и 14 Т.

На нормированных температурных зависимостях отношений сопротивлений ρ_{xx}/ρ_{xx} (T = 100 K) и ρ_{xx}/ρ_{xx} , (T = 50 K) в магнитном поле B = 14 T были обнаружены ярко выраженные плато в области низких температур при T < 15 K (рис. 5, кривые 4, 8). При нормировании отношений ρ_{xx}/ρ_{xx} (T = 300 K) тенденция к появлению плато в области низких температур при B = 14 T наблюдалась, однако полный выход на плато не был обнаружен (рис. 5, вставка).

Появление таких плато вследствие насыщения сопротивления с ростом магнитного поля в [29] объясняли влиянием поверхностных состояний фермионов Дирака на транспортные свойства в результате превращения объемной части материала в изолятор в материалах с сильным спин орбитальным взаимодействием благодаря сохранению симметрии относительно обращения времени.

В области магнитных полей, при которых наблюдались плато на нормированных зависимостях ρ_{xx}/ρ_{xx} (T = 100 K) и ρ_{xx}/ρ_{xx} (T = 50 K) от температуры, в пленке n-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09} (рис. 5, кривые 4, 8) были определены индексы Ландау и фаза Берри (рис. 4, кривая 3). Минимальный индекс Ландау n = 2.5, который характеризуется высокой заселенностью фермионами (рис. 4, кривая 3), и отличная от нуля фаза Берри $(\beta = 0.47)$ подтверждают топологический характер выявленных плато в исследованных пленках ТИ.

С ростом магнитного поля до 14 T отношения ρ_{xx}/ρ_{xx} (100 K, 50 K) на плато увеличивается, однако металлический тип проводимости в пленках n-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09} сохраняется, в отличие от пленок Bi₂Te₃, в которых с ростом магнитного поля изменялся тип проводимости с металлической на полупроводниковую вследствие топологического фазового перехода металл–изолятор [30].

Как и в Bi₂Te₃ [28], в исследованных пленках при низких температурах (рис. 5) наблюдается нелинейная зависимость сопротивления ρ_{xx}/ρ_{xx} (T = 100 K) (кривые 2, 3) при T < 15 К и ρ_{xx}/ρ_{xx} (T = 50 K) при T < 20 К (кривые 6, 7) в магнитных полях

Рис. 5. Нормированные температурные зависимости отношений сопротивления к значениям ρ при температурах 100 К (кривая 1), 50 К (5), 300 К (9) и сопротивления ρ_{xx}/ρ_{xx} (T = 100 К), (2–4) и ρ_{xx}/ρ_{xx} , (T = 50 К), (6–8) в магнитных полях *B*. На вставке соответствующие отношения при 300 К (9–12) для пленки n-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09}. *B*, T: 1, 5, 9 — 0; 2, 6, 10 — 5; 3, 7, 11 — 10; 4, 8, 12 — 14.

при B = 5 и 10 Т, то есть с ростом магнитного поля от 5 до 10 Т отношения уменьшаются ρ_{xx}/ρ_{xx} (T = 100 K) и ρ_{xx}/ρ_{xx} (T = 50 K). На зависимостях ρ_{xx}/ρ_{xx} (T = 300 K) (кривые 10-12) нелинейность не была обнаружена.

Нелинейность при низких температурах в отношениях ρ_{xx}/ρ_{xx} (T = 100 K) и ρ_{xx}/ρ_{xx} (T = 50 K), сопровождающаяся ростом магнитного поля от 5 до 10 T, возникает вследствие квантовых интерференционных эффектов, которые определяются слабой антилокализацией фермионов Дирака в пленках ТИ с большой длиной квантовой фазовой когерентности l_{ϕ} [31–33]. Длина квантовой фазовой когерентности l_{ϕ} возрастает с понижением температур, и $l_{\phi} \propto CT^{-m/2}$, где C — константа, для электрон-электронного и электрон-фононного вза-имодействия m = 3/2 и 3 соответственно. Величина l_{ϕ} больше длины свободного пробега $l_{\rm F}$ и достигает 300 nm в пленках Bi₂Te₃ [32] и 500 nm в Bi₂Se₃ [33] вследствие слабой антилокализации фермионов в магнитных полях [31–33].

6. Заключение

В споистых n-Bi_{1.98}In_{0.02}Te_{2.88}Se_{0.12} пленках и n-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09} ТИ определены параметры поверхностных состояний фермионов Дирака из анализа квантовых осцилляций магнетосопротивления, измеренных в сильных магнитных полях до 14 Т. Показано, что осцилляции в пленках характеризуются ДВУМЯ частотами циклотронного резонанса F_1 и F₂ вследствие различных резонансных условий на верхней и нижней поверхностях. В пленке n-Bi_{1.98}In_{0.02}Te_{2.88}Se_{0.12} с высоким фактором мощности поверхностная концентрация фермионов Дирака n_s , длина свободного пробега l_F и скорость Ферми v_F возрастают по сравнению с n-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09}. Рост величины n_s указывает на увеличение влияния поверхностных состояний фермионов на транспортные свойства в пленках, содержащих In.

Из анализа положения минимумов и максимумов амплитуд квантовых осцилляций магнетосопротивления в зависимости от обратного магнитного поля $\Delta \rho_{xx}(B^{-1})$ определены целые и полуцелые индексы уровней Ландау *n* и фаза Берри. Показано, что с повышением частоты циклотронного резонанса в пленке n-Bi_{1.92}In_{0.02}Te_{2.88}Se_{0.12} уровни Ландау наблюдаются в более высоких магнитных полях. Фаза Берри β в пленках совпадает для верхней и нижней поверхности пленок, и $\beta = 0.58$ и 0.47 для n-Bi_{1.92}In_{0.02}Te_{2.88}Se_{0.12} и n-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09} соответственно.

В пленке n-Bi_{1.6}Sb_{0.4}Te_{2.91}Se_{0.09} на нормированных температурных зависимостях сопротивления $\rho_{xx}/\rho_{xx}(T = 50 \text{ K})$ и $\rho_{xx}/\rho_{xx}(T = 100 \text{ K})$ в магнитных полях B = 14 T при низких температурах были обнаружены плато, характерные для ТИ. Нелинейная зависимость сопротивления от магнитного поля при 5 и 10 T, связанная с уменьшением сопротивления в области низких температур, объясняется слабой антилокализацией фермионов Дирака.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] M.Z. Hasan, C.L. Kane. Rev. Mod. Phys. 82, 4, 3045 (2010).
- [2] J.P. Heremans, R.J. Cava, N. Samarth. Nature Rev. Mater. 2, 10, 17049 (2017).
- [3] P. Ngabonziza. Nanotechnol. 33, 19, 192001 (2022).
- [4] M.J. Gilbert. Commun. Phys. 4, 1, 70 (2021).
- [5] G. Jiang, J. Yi, L. Miao, P. Tang, H. Huang, C. Zhao, S. Wen. Sci. Rep. 8, 1, 2355 (2018).
- [6] L. Zhang, J. Liu, J. Li, Z. Wang, Y. Wang, Y. Ge, W. Dong, N. Xu, T. He, H. Zhang, W. Zhang. Laser. Photon. Rev. 14, 4, 1900409 (2020).
- [7] H. Liu, P.D. Ye. Appl. Phys. Lett. 99, 5, 052108 (2011).
- [8] H. Steinberg, D.R. Gardner, Y.S. Lee, P. Jarillo-Herrero. Nano Lett. 10, 12, 5032 (2010).
- [9] J. Zhu, T. Zhang, Y. Yang, R. Huang. Appl. Phys. Rev. 7, *1*, 011312 (2020).
- [10] Y. Chen. Surface excitonic thermoelectric devices. US Patent Application ID US20120138115A1 (2012).
- [11] M. Eschbach, E. Młyńczak, J. Kellner, J. Kampmeier, M. Lanius, E. Neumann, C. Weyrich, M. Gehlmann, P. Gospodarič, S. Döring, G. Mussler, N. Demarina, M. Luysberg, G. Bihlmayer, T. Schäpers, L. Plucinski, S. Blügel, M. Morgenstern, C.M. Schneider, D. Grützmacher. Nature Commun. 6, 1, 8816 (2015).

- [12] I.V. Korobeinikov, N.V. Morozova, L.N. Lukyanova, O.A. Usov, V.A. Kulbachinskii, V.V. Shchennikov, S.V. Ovsyannikov, J. Phys. D 51, 2, 025501 (2018).
- [13] И.В. Коробейников, Н.В. Морозова, Л.Н. Лукьянова, О.А. Усов, С.В. Овсянников. ФТП **53**, *6*, 741 (2019). [I.V. Korobeinikov, N.V. Morozova, L.N. Lukyanova, O.A. Usov, S.V. Ovsyannikov. Semiconductors **53**, *6*, 732 (2019)].
- [14] N.V. Morozova, I.V. Korobeinikov, S.V. Ovsyannikov. J. Appl. Phys. **125**, *22*, 220901 (2019).
- [15] H. Liu, S. Liu, Y. Yi, H. He, J. Wang. 2D Mater. 2, 4, 045002 (2015).
- [16] L. Bao, L. He, N. Meyer, X. Kou, P. Zhang, Z. Chen, A.V. Fedorov, J. Zou, T.M. Riedemann, T.A. Lograsso, K.L. Wang, G. Tuttle, F. Xiu. Sci. Rep. 2, *1*, 726 (2012).
- [17] S.Y. Matsushita, K. Ichimura, K.K. Huynh, K. Tanigaki. Phys. Rev. Mater. 5, 1, 014205 (2021).
- [18] И.М. Лифшиц, А.М. Косевич. ЖЭТФ 29, 6, 730 (1955).
 [I.M. Lifshitz, А.М. Kosevich. Sov. Phys. JETP 2, 4, 636 (1956)].
- [19] Д. Шенберг. Магнитные осцилляции в металлах. Мир, М. (1986). [D. Shoenberg. Magnetic oscillations in metals. Ser. Monographs on physics. Cambridge University Press, Cambridge (2009)].
- [20] Y. Ando. J. Phys. Soc. Jpn. 82, 10, 102001 (2013).
- [21] Л.Н. Лукьянова, О.А. Усов, М.П. Волков. ФТП 53, 5, 626 (2019).
 [L.N. Lukyanova, О.А. Usov, М.Р. Volkov. Semiconductors 53, 5, 620 (2019)].
- [22] Л.Н. Лукьянова, И.В. Макаренко, О.А. Усов. ФТП 55, 12, 1128 (2021).
 [L.N. Lukyanova, I.V. Makarenko, О.А. Usov. Semiconductors 56, 5, 317 (2022)].
- [23] L.N. Lukyanova, I.V. Makarenko, O.A. Usov. J. Phys.: Condens. Matter 32, 46, 465701 (2020).
- [24] N.H. Tu, Y. Tanabe, Y. Satake, K.K. Huynh, P.H. Le, S.Y. Matsushita, K. Tanigaki. Nano Lett. 17, 4, 2354 (2017).
- [25] S.-M. Huang, Y.-J. Yan, S.-H. Yu, M. Chou. Sci. Rep. 7, 1, 1896 (2017).
- [26] S.K. Kushwaha, I. Pletikosić, T. Liang, A. Gyenis, S.H. Lapidus, Y. Tian, H. Zhao, K.S. Burch, J. Lin, W. Wang, H. Ji, A.V. Fedorov, A. Yazdani, N.P. Ong, T. Valla, R.J. Cava. Nature Commun. 7, 1, 11456 (2016).
- [27] R. Dey, T. Pramanik, A. Roy, A. Rai, S. Guchhait, S. Sonde, H.C.P. Movva, L. Colombo, L.F. Register, S.K. Banerjee. Appl. Phys. Lett. **104**, *22*, 223111 (2014).
- [28] A.R. Wright, R.H. McKenzie. Phys. Rev. B 87, 8, 085411 (2013).
- [29] F.F. Tafti, Q.D. Gibson, S.K. Kushwaha, N. Haldolaarachchige, R.J. Cava. Nature Phys. 12, 3, 272 (2016).
- [30] Л.Н. Лукьянова, Ю.А. Бойков, О.А. Усов, В.А. Данилов, М.П. Волков. ФТП 51, 7, 880 (2017). [L.N. Lukyanova, Yu.A. Boikov, O.A. Usov, V.A. Danilov, M.P. Volkov. Semiconductors 51, 7, 843 (2017)].
- [31] H.-Z. Lu, S.-Q. Shen. Chinese Phys. B 25, 11, 117202 (2016).
- [32] H.-T. He, G. Wang, T. Zhang, I.-K. Sou, G.K.L. Wong, J.-N. Wang, H.-Z. Lu, S.-Q. Shen, F.-C. Zhang. Phys. Rev. Lett. 106, 16, 166805 (2011).
- [33] H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen, Y. Cui. Nature Mater. 9, 3, 225 (2010).

Редактор Е.В. Толстякова