03,07,10

Ab initio расчет структуры и частотные зависимости диэлектрических свойств новых полупроводников $TIIn_{1-x}Tm_xS_2$ (x = 0.001 и 0.005)

© С.Н. Мустафаева¹, С.М. Асадов^{2,3} С.С Гусейнова^{1,4}

 ¹ Институт физики МНОА, Баку, Азербайджан
 ² Институт катализа и неорганической химии им. М.Ф. Нагиева МНОА, Баку, Азербайджан
 ³ Научно-исследовательский институт "Геотехнологические проблемы нефти, газа и химия" АГУНП, Баку, Азербайджан
 ⁴ Университет Хазар, Баку, Азербайджан
 E-mail: solmust@gmail.com

Поступила в Редакцию 3 февраля 2024 г. В окончательной редакции 3 февраля 2024 г. Принята к публикации 4 февраля 2024 г.

> Проведены исследования моноклинной структуры TIIn_{1-x}Tm_xS₂ в рамках теории функционала плотности (DFT). Рассмотрены случаи замещения атомов индия тулием. Параметры элементарной ячейки определялись в оптимизированных суперъячейках TIInS2 с учетом приближения локальной плотности. На основе расчетов моноклинной структуры с пространственной группой C/2c (координационное число $Z = 16, N_0 15$) теоретически определены параметры решетки для слоистого кристалла TIIn_{1-x}Tm_xS₂ и сопоставлены с экспериментальными результатами. В кварцевых ампулах были синтезированы новые полупроводниковые поликристаллы составов TlIn_{1-x}Tm_xS₂ (x = 0, 0.001 и 0.005), из которых методом направленной кристаллизации выращены соответствующие монокристаллы. Анализ рентгеновских дифрактограмм показывает, что все составы $TIIn_{1-x}Tm_xS_2$ имеют устойчивую моноклинную сингонию с пр. гр. C/2c. Вычисленные параметры элементарной ячейки образцов TlIn_{1-x}Tm_xS₂ подтверждают это. В монокристаллах изучены диэлектрические свойства в переменных электрических полях частотой $f = 5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz при комнатной температуре. Установлены релаксационный характер диэлектрической проницаемости, природа диэлектрических потерь, а также прыжковый механизм переноса заряда в образцах TlIn_{1-x}Tm_xS₂. С использованием модели Мотта рассчитаны параметры локализованных состояний в кристаллах образцов $TlIn_{1-x}Tm_xS_2$. Показано, что по сравнению с нелегированным TlInS₂ проводимость на переменном токе, плотность локализованных состояний вблизи уровня Ферми, среднее расстояние и время прыжков носителей заряда в TIIn_{1-x}Tm_xS₂ увеличиваются.

> Ключевые слова: моноклинная структура, DFT LDA, монокристалл TlInS₂, влияние легирования, примесь тулия, параметры элементарной ячейки, диэлектрическая проницаемость, прыжковая проводимость, частотная дисперсия, диэлектрические потери.

DOI: 10.61011/FTT.2024.04.57789.8

1. Введение

Легированные фазы на основе слоистых кристаллов соединений группы $TlB^{III}C_2^{VI}$, имеющие высокую фоточувствительность, являются перспективными сегнетоэлектрическими и полупроводниковыми материалами. Они могут быть использованы как активные материалы датчиков инфракрасного и видимого диапазона, рентгеновского и гамма-излучения, элементов памяти и т.д. [1–19]. Свойства этих соединений существенно зависят от параметров легирующих компонентов, химического состава и структуры матрицы (размера кристаллов, их морфологии, доли кристаллической фазы), а также и условий обработки. В частности, материалы на основе тройного соединения $TlInS_2$, имеющие слоистую структуру, характеризуются анизотропией физических свойств и являются перспективными в качестве активности.

ных элементов полупроводниковых устройств [1–19]. Кристаллическая структура соединения TIInS₂ характеризуется образованием нескольких полиморфных модификаций [1,2]. Сообщается по крайней мере о пяти стабильных полиморфных модификациях соединения TIInS₂: моноклинной [3–5], ромбической [4], тетрагональной [6], гексагональной [7] и триклинной [8].

Особенности структуры сказываются на физических свойствах $TlInS_2$ [9–19]. Это подтверждается, в частности, результатами изучения температурной зависимости степени анизотропии проводимости монокристаллов $TlInS_2$ на постоянном токе [9]. Результаты низкотемпературных (100–300 K) рентгенографических исследований монокристалла $TlInS_2$ указывают на то, что с ростом температуры параметры элементарной ячейки кристалла плавно увеличиваются [10]. На кривых температурной зависимости параметров решеток наблюдаются анома-

лии в виде перегибов и изломов при температурах, соответствующих фазовым переходам в TIInS₂. Определен коэффициент линейного теплового расширения α вдоль кристаллографического направления [001] кристалла TIInS₂. С ростом температуры значение коэффициента α несколько изменяется. Диэлектрические свойства и проводимость на переменном токе (ас-проводимость) монокристалла соединения TIInS₂ также заметно меняются под влиянием легирования редкоземельными трехвалентными ионами *Re* [11]. Однако закономерности влияния состава на свойства легированных слоистых кристаллов на основе TIInS₂ мало изучены.

Мало работ, посвященных исследованию процессов кристаллизации и свойств легированных TIInS₂, содержащих *Re*. Добавление примеси, например, эрбия (Er) приводит к значительному улучшению диэлектрических характеристик кристаллов TIInS₂ [11]. Сильное изменение свойств кристаллов на основе TIInS₂, в частности, можно связать с модифицированием зонной структуры за счет частичного катионного замещения при введении Er^{3+} в кристаллическую решетку TIInS₂. Легированные трехвалентными редкоземельными ионами Re^{3+} кристаллы TIInS₂ изучены недостаточно.

Формирование новых электронных материалов с заданным комплексом физико-химических характеристик связано с изучением многокомпонентных сплавов, включающих легирующие элементы. При этом в сплавах замещения можно варьировать межатомные расстояния и характер обменных взаимодействий, приводящих, например, к структурному упорядочению, а также к фазовым превращениям в $TIInS_2$ [12–18]. Эти явления существенно зависят от величины и типа замещения примеси, например, *Re*. Поэтому комплексное изучение структуры и физических свойств $TIInS_2$, содержащего *Re*, представляет собой актуальную задачу.

Неясно также, какие физико-химические механизмы ответственны за формирование чувствительных параметров (диэлектрические коэффициенты, фотолюминесценция и др.) при катионном замещении Re^{3+} в кристаллической решетке TlInS₂.

Цель настоящей работы — изучение влияния легирующей примеси тулия (x = 0.001 и 0.005) на структуру и диэлектрические характеристики выращенных монокристаллов TIInS₂ моноклинной модификации с использованием расчетов методом теории функционала плотности (DFT). Второй целью является выяснение механизма переноса заряда в образцах TIIn_{1-x}Tm_xS₂ (x = 0.001 и 0.005) в переменных электрических полях радиочастотного диапазона при комнатной температуре.

2. Методическая часть

2.1. DFT-расчет параметров решетки

Использовался пакет программ АТК на основе теории функционала плотности. В DFT-расчетах рассматривались электронные конфигурации компонен-

Рис. 1. Схема первой зоны Бриллюэна кристаллической решетки базоцентрированной моноклинной сингонии для TllnS₂.

тов TlIn_{1-x}Tm_xS₂: Tl — [Xe] $4f^{14}5d^{10}6s^26p^1$, In — [Kr] $4d^{10}5s^25p^1$, S — [Ne] $3s^23p^4$ и примеси Tm — [Xe] $4f^{13}6s^2$. Выполнены DFT-расчеты параметров решетки моноклинной структуры C/2c с координационным числом Z = 16 суперьячеек на основе TlInS₂. Структуру суперьячейки кристалла оптимизировали изменением позиции атомов компонентов TlIn_{1-x}Tm_xS₂, формы и объема элементарной ячейки. Энергия отсечки плоской волны в расчетах самосогласованного поля равнялась 300 eV. Использовали схему генерации *k*-точек по методу Монкхорста–Пака с плоской сеткой размерностью $4 \times 4 \times 2$ точки для зоны Бриллюэна моноклинной структуры (рис. 1). Это обеспечивает сходимость метода при полной энергии элементарной ячейки $\geq 5 \cdot 10^{-6}$ eV/atom. Порог сходимости для межатомных сил составлял 10^{-4} eV/Å.

В DFT-расчетах принимали, что соединение TIInS₂ кристаллизуется в центрированной моноклинной решетке с пространственной группой симметрии C/2c, Z = 16и имеет четыре формульные единицы на примитивную ячейку, содержащую 32 атома. Примитивная элементарная ячейка на основе кристаллов TIInS₂, рассчитанная методом DFT, представлена на рис. 1.

2.2. Приготовление образцов и детали эксперимента

В качестве исходных химических элементов использовали: Tl (Tl-00), In (In-000), S (ос. ч. 16-5), Tm (99.99%). Поликристаллические образцы составов TlIn_{1-x}Tm_xS₂ (x = 0, 0.001 и 0.005) синтезировали из взятых в стехиометрических количествах элементов по методике описанной в [11,19]. Компоненты непосредственно сплавляли в вакуумированных до 10^{-3} Ра кварцевых ампулах в электропечи. Ампулы с образцами на начальном этапе нагревали со скоростью 20-30 K/h до температури 720 K, при которой выдерживали 24 h. Затем температуру ампулы повышали до 1050 K (температура плавления TlInS₂ $T_m = 1040$ K) и выдерживали 5 h. Далее ампулы с образцами охлаждали до комнатной температуры со ско-

Рис. 2. Оптимизированные структуры суперьячеек на основе кристаллов TIInS₂, полученные нами из *ab initio* расчетов методом DFT в приближении LDA: *a* — примитивная ячейка кристалла TIInS₂ с моноклинной сингонией (пр. гр. C/2c, Z = 16); *b*, *c*, *d* — примитивная ячейка кристалла TIInS₂, включающего Tm, с моноклинной сингонией.

ростью 10–20 К/h. Гомогенизирующий отжиг синтезированных поликристаллических образцов $TIIn_{1-x}Tm_xS_2$ (x = 0, 0.001 и 0.005) производили в вакууме 10^{-3} Ра при 670 К в течение 120 h. После отжига ампулы с образцами закаляли в холодной воде. Завершенность синтеза образцов $TIIn_{1-x}Tm_xS_2$, их гомогенность и индивидуальность контролировали методом дифференциальнотермического анализа (ДТА) с помощью термического анализатора STA 449 F3 Jupiter и методом рентгенофазового анализа (РФА). Рентгенограммы были получены для порошкообразных образцов на дифрактометре типа D8-ADVANCE (СиК_{*a*}-излучение, $\lambda = 1.5418$ Å) в

режиме $0.5^{\circ} < 2\theta < 80^{\circ}$ при 40 kV и 40 mA. Из синтезированных кристаллов TIIn_{1-x}Tm_xS₂ в агатовой ступке готовили порошковые образцы TIIn_{1-x}Tm_xS₂. Анализ рентгенограмм синтезированных образцов проводили с использованием базы данных ICDD PDF-4 и экспериментальных значений параметров решетки TIInS₂ при комнатной температуре.

Монокристаллы образцов составов $\text{TIIn}_{1-x}\text{Tm}_x\text{S}_2$ (x = 0, 0.001 и 0.005) выращивали вертикальным методом Бриджмена–Стокбаргера [11,19]. Предварительно синтезированные поликристаллы $\text{TIIn}_{1-x}\text{Tm}_x\text{S}_2$ в вакуумированных до 10^{-3} Ра кварцевых ростовых ампулах

длиной 30 mm и диаметром 9 mm с дном в виде конуса подвергали направленной кристаллизации. Поликристаллический образец заданного состава TIIn_{1-x}Tm_xS₂ массой 10 д загружали в ампулу, которую вакуумировали и запаивали. Затем ампулу с образцом помещали в трубчатую вертикальную двухзонную электрическую печь установки для выращивания кристаллов. Температуру каждой из двух зон печи (горячая зона — ≤ 1050 K, ростовая зона — ≤ 1040 K) регулировали отдельно друг от друга. Точность поддержания температуры в двухзонной печи составляла ±0.5 К. Температурный градиент на фронте кристаллизации при выращивании составлял 2-3 К/min. Максимальная температура горячей зоны печи составляла 1050 К (на 10 К больше T_m соединения TlInS₂). Скорость роста (скорость фронта кристаллизации) монокристалла была 0.1-0.2 mm/h. Поликристаллический образец состава $TlIn_{1-x}Tm_zS_2$ (x = 0, 0.001и 0.005) в ампуле, помещенной в горячую зону печи, расплавлялся и выдерживался в течение 1-2h. Затем ампулу с расплавом перемещали из горячей зоны в зону роста со скоростью 10 mm/h и выращивали монокристаллы TlIn_{1-x}Tm_xS₂. Далее обе зоны печи одновременно охлаждали со скоростью 20-30 K/h до 700 K и при этой температуре в течение 100 h проводили отжиг монокристаллов. Отожженные монокристаллы охлаждали до комнатной температуры в режиме выключенной печи. Таким образом, получили однородные темно-оранжевые монокристаллы $\text{TlIn}_{1-x}\text{Tm}_x\text{S}_2$ (x = 0, 0.001 и 0.005).

Измерения диэлектрических свойств и проводимости были выполнены на монокристаллических образцах $Tlln_{1-x}Tm_xS_2$ (x = 0, 0.001 и 0.005). Образцы для электрофизических исследований изготовляли в виде плоских конденсаторов. Микроскопический анализ (микроскоп Zeiss KL1500) показал, что образцы имели высокое качество и микровключения в них отсутствовали. Ориентировка образцов относительно кристаллографических осей не проводилась, поскольку кристаллы $Tlln_{1-x}Tm_xS_2$ принадлежат моноклинной сингонии и характеризуются слоистой структурой. Они легко скалывались по базисной плоскости кристалла.

В качестве электродов на поверхности образцов TlIn_{1-x}Tm_xS₂ наносили серебряную пасту Leitsilber. Толщина образцов составляла 0.02–0.09 ст. Диэлектрические коэффициенты образцов измеряли резонансным методом [11,19]. Диапазон частот переменного электрического поля составлял $5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz. Диэлектрические свойства измерены в направлении, перпендикулярном слоям кристаллов TlIn_{1-x}Tm_xS₂. Все диэлектрические измерения проводили при 300 K. Воспроизводимость положения резонанса составляла по емкости ± 0.2 ,pF, а по добротности (Q = 1/ tg δ) $\pm 1.0-1.5$ деления шкалы. При этом наибольшие отклонения от средних значений составляли 3-4% для действительной части диэлектрической проницаемости ε' и 7% для тангенса угла диэлектрических потерь tg δ .

3. Результаты и их обсуждение

3.1. Структура легированных образцов

Для системы, состоящей из N электронов, волновая функция находится с учетом пространственных и спиновых координат электронов. В частности, в DFT используется функция, зависящая от трех пространственных переменных электронной плотности $\rho(\mathbf{r})$. В этом случае функционал полной энергии записывается известным образом [11]:

$$E[\rho(\mathbf{r})] \equiv \int V_0(\mathbf{r})\rho(\mathbf{r})d\mathbf{r} + T_S[\rho(\mathbf{r})]$$
$$+ \frac{1}{2}\int \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}d\mathbf{r}d\mathbf{r}' + E_{XC}[\rho(\mathbf{r})]$$

где $V_0(\mathbf{r})\rho(\mathbf{r})d\mathbf{r}$ — потенциал кулоновского притяжения электронов к ядрам, $T_S[\rho(\mathbf{r})]$ — кинетическая энергия, $\int \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} d\mathbf{r}$ — кулоновские межэлектронные взаимодействия, $E_{XC}[\rho(\mathbf{r})]$ — остальные вклады в межэлектронные взаимодействия (обменно-корреляционный потенциал). Результаты DFT-расчетов, в частности, для полупроводников сильно зависят от вида обменнокорреляционного потенциала E_{XC} , который характеризует многочастичные взаимодействия.

В DFT-расчетах обменно-корреляционный функционал E_{XC} нами использовался в приближении локальной плотности (LDA). Расчеты с использованием функционала E_{XC} в приближении обобщенного градиента (GGA) с параметризацией PBE чуть завышают значения параметров решетки TIInS₂. Это связано с тем, что при расчете потенциала E_{XC} в приближении GGA учитываются как локальное значение электронной плотности, так и ее градиент [19].

Оптимизированные структуры суперьячеек на основе кристаллов TlInS₂, полученные нами из расчетов методом DFT в приближении LDA, указывают на то, что они имеют моноклинную сингонию с параметрами элементарной ячейки a = 10.901, b = 10.945, c = 15.181 Å (пр. гр. C/2c, Z = 16, № 15), согласующимися с данными РФА.

Замещение в структуре чистого $TlInS_2$ атома индия атомом тулия (рис. 2, *a*, *b*, *c*, *d*) существенно не изменяет параметры кристаллической решетки (табл. 1).

Анализ порошковых образцов $\text{TIIn}_{1-x}\text{Tm}_x\text{S}_2$ (x = 0.001 и 0.005) методом РФА показал, что они, как и TIInS_2 , имеют моноклинную структуру с пространственной группой симметрии C/2c. Отсутствие примесных рефлексов на рентгенограммах указывает на то, что образцы не содержат других фаз. На рентгенограммах образцов $\text{TIIn}_{1-x}\text{Tm}_x\text{S}_2$ (x = 0, 0.001 и 0.005) имеющиеся дифракционные рефлексы соответствуют моноклинной фазе TIInS_2 . Вплоть до состава x = 0.005образцы не содержат рефлексов других фаз.

В пределах экспериментальной точности наблюдается совпадение параметров элементарной ячейки по-

Таблица 1. Оптимизированные методом DFT параметры кристаллической структуры $TIIn_{0.999}Tm_{0.001}S_2$ с моноклинной сингонией (пр. гр. C2/c, Z = 16, № 15) в сравнении с экспериментальными данными о кристаллической структуре $TIInS_2$

Параметры решетки, Å	Расчет методом DFT в приближении LDA, TlIn _{0.999} Tm _{0.001} S ₂	Эксперимент, TlInS ₂		
		Настоящая работа	[4]	[12]
а	10.901	10.9017	10.95	10.90
b	10.945	10.9412	10.95	10.94
С	15.181	15.1809	15.14	15.18

лученных легированных монокристаллов $\text{TIIn}_{1-x}\text{Tm}_x\text{S}_2$ (x = 0, 0.001 и 0.005) с параметрами элементарной ячейки TIInS₂. В табл. 1 для сравнения приведены также известные данные по структурным характеристикам соединения TIInS₂. Видно, что параметры решетки моноклинной фазы на основе TIInS₂ согласуются с литературными данными. Таким образом, обнаружено, что параметры элементарной ячейки легированного полупроводника TIIn_{1-x}Tm_xS₂ при изменении состава от x = 0.001 до x = 0.005 практически одинаковы.

3.2. Диэлектрические свойства

На рис. 3–7 представлены результаты измерений частотных зависимостей действительной ε' и мнимой ε'' частей комплексной диэлектрической проницаемости, тангенса угла диэлектрических потерь tg δ и электропроводности на переменном токе монокристаллов TIIn_{1-x}Tm_xS₂ (x = 0, 0.001 и 0.005), выполненных при комнатной температуре.

Из рис. З видно, что во всем изученном диапазоне частот зависимость $\varepsilon'(f)$ для TIIn_{1-x}Tm_xS₂ характеризовалась более ощутимой дисперсией по сравнению с TIInS₂. Увеличение концентрации легирующей примеси тулия в кристаллах приводило к заметному увеличению ε' (более чем в три раза), как видно из рис. 4. Частотные зависимости мнимой части комплексной диэлектрической проницаемости ε'' образцов TIIn_{1-x}Tm_xS₂ свидетельствуют о релаксационной дисперсии (рис. 5).

На рис. 6 показаны для сравнения частотные зависимости тангенса угла диэлектрических потерь tg δ в "чистом" кристалле TlInS₂ (кривая *1*) и легированном тулием кристалле TlIn_{1-x}Tm_xS₂ с концентрацией тулия x = 0.005 (кривая 2). Гиперболический спад tg δ свидетельствует о потерях сквозной проводимости в изученных образцах TlIn_{1-x}Tm_xS₂. Введение тулия в решетку TlInS₂ приводило к существенному увеличению tg δ .

Построенная частотная зависимость проводимости на переменном токе σ_{ac} (ас-проводимости) образцов TlIn_{1-x}Tm_xS₂ представлена на рис. 7. Значение σ_{ac} для образцов TlIn_{1-x}Tm_xS₂ было значительно выше, чем для TlInS₂. На частотной зависимости $\sigma_{ac}(f)$ в

Рис. 3. Частотные зависимости действительной составляющей комплексной диэлектрической проницаемости кристаллов $TlIn_{1-x}Tm_xS_2$ различных составов: x = 0 (1), 0.001 (2) и 0.005 (3); T = 298 K.

Рис. 4. Зависимость действительной составляющей комплексной диэлектрической проницаемости кристаллов $TlIn_{1-x}Tm_xS_2$ от их состава при $f = 5 \cdot 10^4$ Hz; T = 298 K.

TIInS₂ наблюдались два участка. Вначале имела место зависимость $\sigma_{ac} \sim f^{0.8}$, которая затем (при $f \ge 10^7 \, \text{Hz}$) переходила к суперлинейному закону $\sigma_{ac} \sim f^{1.2}$.

В образце состава TlIn_{0.999}Tm_{0.001}S₂ закон $\sigma_{ac} \sim f^{0.8}$ имел место в области частот $5 \cdot 10^4 - 6 \cdot 10^6$ Hz, а при более высоких частотах наблюдалась линейная зависимость ас-проводимости от частоты.

Для состава TIIn_{0.995}Tm_{0.005}S₂ на зависимости $\sigma_{ac}(f)$ наблюдались три участка. Вначале до $2 \cdot 10^5$ Hz имела место зависимость $\sigma_{ac} \cdot f^{0.5}$, которая затем сменялась зависимостью $\sigma_{ac} \sim f^{0.8}$, а с дальнейшим увеличением частоты от $6 \cdot 10^6$ Hz вплоть до 35 MHz наблюдался линейный участок $\sigma_{ac} \sim f$.

Полученный нами закон $\sigma_{ac} \sim f^{0.8}$ для $\text{Tlln}_{1-x}\text{Tm}_x\text{S}_2$ свидетельствует о прыжковом механизме переноса заряда по состояниям, локализованным в окрестности уровня Ферми [19,20]. По экспериментально найденным значениям $\sigma_{ac}(f)$ образцов $\text{Tlln}_{1-x}\text{Tm}_x\text{S}_2$ была вычислена плотность состояний на уровне Ферми в рамках модели Мотта по формуле

$$\sigma_{ac}(f) = \frac{\pi^3}{96} e^2 k_{\rm B} T N_{\rm F}^2 a_L^5 f \left[\ln\left(\frac{\nu_p h}{f}\right) \right]^4, \qquad (1)$$

где e — заряд электрона, $k_{\rm B}$ — постоянная Больцмана, T — температура, $N_{\rm F}$ — плотность состояний вблизи уровня Ферми, $a_L = 1/\alpha$ — радиус локализации; α —

Рис. 5. Частотная зависимость мнимой части комплексной диэлектрической проницаемости ε' образцов $\text{TlIn}_{1-x}\text{Tm}_x\text{S}_2$ различных составов: x = 0 (1), 0.001 (2) и 0.005 (3); T = 298 К.

Рис. 6. Частотные зависимости тангенса угла диэлектрических потерь $tg \delta$ в $TlInS_2$ (кривая *I*) и $TlIn_{0.995}Tm_{0.005}S_2$ (кривая *2*); T = 298 K.

Рис. 7. Частотная зависимость ас-проводимости кристаллических образцов $\text{TIIn}_{1-x}\text{Tm}_x\text{S}_2$ различных составов: x = 0 (1), 0.001 (2) и 0.005 (3); T = 298 К.

Таблица 2. Вычисленные нами по данным высокочастотных диэлектрических измерений параметры локализованных состояний в кристаллах образцов $TlIn_{1-x}Tm_xS_2$

x	$N_{\rm F},{\rm eV}^{-1}\cdot{\rm cm}^{-3}$	<i>R</i> , Å	τ, s	ΔE , eV
0 0.001	${5.2\cdot 10^{18}}\\{1.9\cdot 10^{19}}$	86 90	$\begin{array}{c} 2 \cdot 10^{-7} \\ 3.3 \cdot 10^{-7} \end{array}$	0.14 0.03
0.005	$3.1 \cdot 10^{19}$	90	$3.3 \cdot 10^{-7}$	0.02

постоянная спада волновой функции локализованного носителя заряда $\psi \sim e^{-\alpha r}$; v_{ph} — фононная частота.

При вычислениях значений $N_{\rm F}$ образцов на основе TIInS₂ для радиуса локализации взято значение $a_L = 14$ Å, как и в кристалле TIInS₂ [11,19], а значение v_{ph} взято равным 10^{12} Hz [11].

Вычисленные нами для этих параметров a_L и v_{ph} значения N_F для образцов $\text{TIIn}_{1-x}\text{Tm}_x\text{S}_2$ (x = 0, 0.001 и 0.005) приведены в табл. 2. Из табл. 2 видно, что увеличение концентрации тулия в $\text{TIIn}_{1-x}\text{Tm}_x\text{S}_2$ приводит к увеличению плотности состояний N_F на уровне Ферми.

Согласно теории прыжковой проводимости носителей заряда в неупорядоченных материалах на переменном токе, среднее расстояние прыжков носителей заряда R определяется по следующей формуле [19,20]:

$$R = \frac{1}{2\alpha} \ln\left(\frac{\nu_{ph}}{f}\right). \tag{2}$$

В формуле (2) значение f соответствует средней частоте, при которой наблюдается $\sigma_{ac} \sim f^{0.8}$ — закон Мотта. Вычисленные по формуле (2) значения R для кристаллов TIIn_{1-x}Tm_xS₂ также приведены в табл. 2. Эти значения R примерно в шесть раз превышают среднее расстояние между центрами локализации носителей заряда в кристаллах TIIn_{1-x}Tm_xS₂. Значение R позволило по формуле

$$\tau^{-1} = \nu_{ph} \cdot \exp(-2\alpha R) \tag{3}$$

определить среднее время прыжков носителей заряда в кристаллах $TIIn_{1-x}Tm_xS_2$, значения которого размещены в четвертом столбце таблицы.

По формуле [19,20]

$$\Delta E = \frac{3}{2\pi R^3 \cdot N_{\rm F}} \tag{4}$$

в образцах TlIn_{1-x}Tm_xS₂ оценен энергетический разброс локализованных вблизи уровня Ферми состояний (последний столбец таблицы). Из табл. 2 видно, что увеличение концентрации тулия в TlIn_{1-x}Tm_xS₂ приводит к сужению энергетической полосы ΔE , увеличению плотности состояний N_F на уровне Ферми, среднего расстояния и времени прыжков. Таким образом, установлено, что введение тулия в кристаллическую решетку моноклинной сингонии TlInS₂ модифицирует частотные зависимости ее диэлектрических коэффициентов и параметры локализованных в запрещенной зоне состояний.

4. Заключение

Оптимизированные структуры суперъячеек на основе кристаллов TIInS₂, полученные нами из расчетов методом DFT в приближении LDA, имеющие моноклинную сингонию (пространственная группа C/2c, Z = 16, № 15) с соответствующими параметрами элементарной ячейки, согласуются с данными РФА образцов. Легирование образцов $TlIn_{1-x}Tm_xS_2$ (для составов с x = 0, 0.001 и 0.005) не приводит к появлению на рентгенограммах РФА новых линий, обусловленных примесными центрами тулия. Параметры элементарной ячейки легированных примесью тулия образцов TlIn_{1-x}Tm_xS₂ совпадают с параметрами исходного TIInS₂. Все составы монокристаллов $\text{TlIn}_{1-x}\text{Tm}_x\text{S}_2$ (x = 0, 0.001 и 0.005), выращенные методом направленной кристаллизации, формируются в моноклинной сингонии (пр. гр. С/2с). Найденные методом РФА параметры решетки кристаллов TlInS₂ имеют следующие значения: a = 10.9017, b = 10.9412, c = 15.1809 Å, $\beta = 100.21^{\circ}$. Тулий, введенный в катионную подрешетку системы TlIn_{1-x}Tm_xS₂ (x = 0.001 и 0.005), активно влияет на диэлектрические характеристики образцов.

Установлено, что легирование тулием моноклинной структуры $TIInS_2$ приводит к существенному изменению ее диэлектрических свойств. Увеличение концентрации Tm x от 0 до 0.005 при катионном замещении в

TlInS₂ привело к заметным изменениям диэлектрической проницаемости и тангенса угла диэлектрических потерь tg δ в переменных электрических полях частотой $f = 5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz при комнатной температуре. В этом случае увеличиваются действительная (более чем в три раза) и мнимая составляющие комплексной диэлектрической проницаемости, ас-проводимость и потери сквозной проводимости.

Частотная зависимость ас-проводимости σ_{ac} образцов TlIn_{1-x}Tm_xS₂ (x = 0.001 и 0.005) при 298 К обнаруживает прыжковый механизм переноса заряда. Обнаруженная нами закономерность $\sigma_{ac} \sim f^{0.8}$ в образце состава TlIn_{0.999}Tm_{0.001}S₂ характерна для прыжковой проводимости. Она имела место в области частот $f = 5 \cdot 10^4 - 6 \cdot 10^6$ Hz, а при более высоких частотах наблюдалась линейная зависимость ас-проводимости от частоты.

Для состава TIIn_{0.995}Tm_{0.005}S₂ зависимость $\sigma_{ac} \sim f^{0.8}$ наблюдалась при частотах от $2 \cdot 10^5$ до $6 \cdot 10^6$ Hz, а в области частот от $6 \cdot 10^6$ Hz до 35 MHz имел место линейный участок $\sigma_{ac} \sim f$. Расчеты зависимости $\sigma_{ac} \sim f^{0.8}$ в рамках модели Мотта показывают, что введение тулия с концентрацией x = 0.001 - 0.005 в кристаллы TIInS₂ приводит к увеличению плотности состояний на уровне Ферми ($5.2 \cdot 10^{18} - 3.1 \cdot 10^{19}$ eV⁻¹cm⁻³), среднего расстояния (86 - 90 Å) и времени ($2 \cdot 10^{-7} - 3.3 \cdot 10^{-7}$ s) прыжков носителей заряда из одного локализованного состояния в другое.

Таким образом, в выращенных нами новых монокристаллических образцах $\text{TlIn}_{1-x}\text{Tm}_x\text{S}_2$ (x = 0.001 и 0.005) с моноклинной сингонией выявлена значительная частотная дисперсия действительной и мнимой составляющих комплексной диэлектрической проницаемости, тангенса угла диэлектрических потерь и аспроводимости при частотах $f = 5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz и температуре 298 K. Другими словами, изменение концентрации примеси тулия в кристаллах TlInS₂ позволяет модифицировать их диэлектрические характеристики.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- C.H. Мустафаева, М.М. Асадов. ΦΤΤ 61, 11, 2030 (2019).
 [S.N. Mustafaeva, M.M. Asadov. Phys. Solid State 51, 11, 1999 (2004). https://doi.org/10.1134/S1063783419110246].
- [2] О.Б. Плющ, А.Ю. Шелег. Кристаллография 44, 5, 873 (1999).
 [О.В. Plyushch, A.U. Sheleg. Crystal. Reports 44, 5, 813 (1999)].
- [3] T. Babuka, O.O. Gomonnaic, K.E. Glukhov, L.Yu. Kharkhalis, M. Sznajder, D.R.T. Zahn. Acta Phys. Pol. A 136, 4, 640 (2019). https://doi.org/10.12693/APhysPolA.136.
- [4] W. Henkel, H.D. Hochheimer, C. Carlone, A. Werner, S. Ves, H.G. von Schnering. Phys. Rev. B 26, 6, 3211 (1982). https://doi.org/10.1103/PhysRevB.26.3211.

- [5] H. Hahn, B. Wellman. Sci. Nature 54, 2, 42 (1967). https://doi.org/10.1007/bf00680166
- [6] K.-J. Range, G. Engert, W.A. Muller, A. Weiss. Z. Naturforsch B. 29, 181 (1974).
 - https://doi.org/10.1515/znb-1974-3-410
- [7] T.J. Isaacs, J.D. Feichtner. J. Solid State Chem. 14, 3, 260 (1975). https://doi.org/10.1016/0022-4596(75)90030-4
- [8] Project 2D Materials Encyclopedia. TlInS₂. mp-632539. https://next-gen.materialsproject.org/materials/mp-632539/
- [9] С.Н. Мустафаева, М.М. Асадов, А.А. Исмайлов. ФТТ 51, 11, 2140 (2009). [S.N. Mustafaeva, М.М. Asadov. Phys. Solid State 51, 11, 2269 (2009). https://doi.org/10.1134/S1063783409110122].
- [10] А.А. Шелег, В.В. Шевцова, В.Г. Гуртовой, С.Н. Мустафаева, Э.М. Керимова. Поверхность 11, 39 (2013).
 [A.U. Sheleg, V.V. Shautsova, V.G. Hurtavy, S.N. Mustafaeva. J. Surf. Invest.: X-Ray, Synchrotron and Neutron Techniques. 7, 6, 1052 (2013)].
 - https://doi.org/10.1134/s1027451013060190].
- [11] С.Н. Мустафаева, М.М. Асадов, С.С. Гусейнова, Н.З. Гасанов, В.Ф. Лукичев. ФТТ 64, 6, 628 (2022).
 [S.N. Mustafaeva, M.M. Asadov, S.S. Huseynova, N.Z. Gasanov, V.F. Lukichev. Phys. Solid State 64, 6, 617 (2022)].
 https://doi.org/ 10.21883/PSS.2022.06.53823.299].
- [12] S. Kashida, Y. Kobayashi. J. Phys. Condens. Matter 11, 4, 1027 (1999). https://doi.org/10.1088/0953-8984/11/4/010
- [13] O.V. Korolik, S.A. Kaabi, K. Gulbinas, A.V. Mazanik, N.A. Drozdov, V. Grivickas. J. Lumin. 187, 507 (2017). https://doi.org/10.1016/j.jlumin.2017.03.065
- [14] V. Grivickas, P. Scajev, V. Bikbajevas, O.V. Korolik, A.V. Mazanik. Phys. Chem. Chem. Phys. 21, 2102 (2019). https://doi.org/ 10.1039/c8cp06209a
- [15] M. Isik, N.M. Gasanly, F. Korkmaz. Phys. B: Condens. Matter 421, 50 (2013). https://doi.org/10.1016/j.physb.2013.03.046
- [16] A.F. Qasrawi, N.M. Gasanly. J. Mater. Sci. 41, 3569 (2006). https://doi.org/10.1007/s10853-005-5618-0.
- [17] K.R. Allakhverdiev, N.D. Akhmed-zade, T.G. Mamedov, T.S. Mamedov, Mir-Gasan Yu. Seidov. Low Temp. Phys. 26, *1*, 56 (2000). https://doi.org/10.1063/1.593863
- [18] M.M. El-Nahass, M.M. Sallam, A.H.S. Abd Al-Wahab. Curr. Appl. Phys. 9, 2, 311 (2009). https://doi.org/10.1016/j.cap.2008.02.011
- [19] С.Н. Мустафаева, М.М. Асадов, С.С. Гусейнова, Н.З. Гасанов, В.Ф. Лукичев. ФТТ 64, 6, 628 (2022). [S.N. Mustafaeva, М.М. Asadov, S.S. Huseynova, N.Z. Hasanov, V.F. Lukichev. Phys. Solid State 64, 6, 617 (2022). https://doi.org/10.21883/PSS.2022.06.53823.299].
- [20] N.F. Mott, E.A. Davis. Electronic Processes in Non-Crystalline Materials. OUP, Oxford, (2012). 590 p. ISBN: 9780199645336

Редактор Е.Ю. Флегонтова