02,05

К вопросу об измерении характерного напряжения контактов Джозефсона

© М.В. Голубков, В.А. Степанов

Физический институт им. П.Н. Лебедева РАН, Москва, Россия E-mail: golubkov@lebedev.ru

Поступила в Редакцию 6 марта 2024 г. В окончательной редакции 6 марта 2024 г. Принята к публикации 27 марта 2024 г.

> Предложен метод определения характерного напряжения контактов Джозефсона из периода осцилляций ступенек тока на вольт-амперных характеристиках контактов в поле СВЧ-излучения, применимый для контактов всех типов.

> Ключевые слова: эффект Джозефсона, быстродействие, резистивная модель, характерное напряжение контакта Джозефсона.

DOI: 10.61011/FTT.2024.04.57787.45

1. Введение

Контакт Джозефсона (КД) является основным элементом сверхпроводниковой аналоговой и цифровой электроники [1]. Важнейшей характеристикой КД является его быстродействие. Собственное время переключения идеального туннельного КД $\tau_i \propto \hbar//2\Delta \approx \hbar/eV_c$ (Δ – энергетическая щель сверхпроводящего электрода КД, $V_C = I_C R_N$ — характерное напряжение КД, I_C — критический ток контакта, R_N — сопротивление в "нормальном" состоянии, \hbar — постоянная Планка, e заряд электрона). Эта оценка $\tau_i \propto 1/V_C$ принята для определения быстродействия любой джозефсоновской слабой связи [2]. Поэтому критическое напряжение V_C является одной из основных характеристик, определяющих применение КД в аналоговых и цифровых цепях. В некоторых КД эту величину можно найти из вольтамперной характеристики (ВАХ) контакта, если последняя достаточно точно аппроксимируется резистивношунтированной моделью, учитывающей емкость контакта и шумы (RSJCN) [2,3]. В этой модели КД представляется в виде включенных параллельно — идеального контакта, через который течет только ток пар, нормального сопротивления R_N и емкости C, а к току смещения добавляется шумовой ток. RSJCN-модель позволила описать характеристики многих джозефсоновских структур и широко используется при трактовке свойств КД [1,4]. В настоящее время возможность аппроксимации вольтамперной характеристики (BAX) КД RSJCN-моделью рассматривается в качестве основы для оценки V_C [2,3].

За годы, прошедшие с открытия эффекта Джозефсона в туннельной SIS (сверхпроводник–изолятор– сверхпроводник) структуре, было создано и изучено множество КД с отличными от изолятора типами слабых связей. В качестве электродов КД используются новые многозонные сверхпроводники с разными параметрами порядка и типами проводимости [5]. Все это приводит к заметным отклонениям ВАХ и других характеристик КД от следующих из стандартной RSJCN-модели. В связи с прогнозируемым применением новых структур и новых сверхпроводников для создания КД измерение V_C становится весьма актуальным [2].

В данной работе сравниваются методы измерения V_C в КД со сверхпроводящими электродами на основе железа (Ferrum Base Superconductors — FBS) по вольтамперной характеристике и по периоду осцилляций ступенек тока (Shapiro steps) в поле высокочастотного электромагнитного излучения на основе наших измерений.

2. Методика эксперимента

В наших экспериментах в качестве FBS электродов КД использовались высококачественные монокристаллические пластинки $FeSe_xTe_{1-x}$, $K_{1-x}Ba_xFe_2As_2$, KFe_2As_2 [6–9]. Мы исследовали характеристики двух типов точеных КД: 1) контакты "обычный сверхпроводник" — FBS в стандартной конфигурации "игла– наковальня" (needle-anvil) и 2) точечные контакты на микротрещине (break-junction) в кристалле FBS. Описание методов создания КД и электронных приборов, использованных в экспериментальной установке, приведены в работах [6–11].

После настройки КД при минимальной температуре проводились записи серий ВАХ при увеличении мощности СВЧ-излучения *P* на контакте до появления признаков нагрева, приводящего к росту сопротивления.

Из начального участка ВАХ ($V \le 100 \,\mu$ V) при P = 0 без использования какой-либо модели находились величины I_C и R_N и $V_C^{\text{CVC}} = I_C R_N$ [7–9] (табл. 1). Из записанных при разных P ВАХ извлекались зависимости амплитуд ступенек тока от мощности СВЧ-облучения

Таблиц	a 1.	Характери	стики КД [$[6-9]: V_C^{CVC} = 1$	$I_C R_N$ — xap	оактерное	напряжение,	найденное из	³ BAX, Ω [№]	^{MW} — I	нормированна	ая
частота	СВЧ	I-излучения	, найденная	из периода	осцилляций	ступенек	тока, V_C^{MW}	— характерн	эе напряж	ение, в	ычисленное и	из
периода	осци	ілляций сту	пенек тока	в СВЧ-поле								

N₂	I_C , mA	R_N , mOhm	$V_C^{\text{CVC}}, \mu \text{V}$	Ω^{MW}	$V_C^{ m MW},\mu{ m V}$	$V_C^{ m CVC}/V_C^{ m MW}$
1	2.82	16	45.1	0.15	105	43%
2	1.83	5.7	10.4	0.25	62.9	17%
3	1.39	5.5	7.65	0.33	47.6	16%
4	1.27	14	17.8	0.31	50.7	35%
5	1.05	46	48.3	0.22	71.5	68%
6	0.66	100	66	0.25	62.9	105%
7	0.51	330	167	0.16	98.3	171%
8	0.44	80	35.2	0.60	26.2	134%
9	1.45	53	76.9	0.095	166	46%
10	0.66	136	89.8	0.12	131	69%
11	0.95	53	50.4	0.34	46.2	109%
12	0.60	144	86.4	0.091	173	50%

Рис. 1. Основные типы ВАХ, которые наблюдались при изучении характеристик КД с ферропниктидами. Символами обозначены экспериментальные значения, линиями — аппроксимация. a — гиперболическая ВАХ, начальный участок хорошо аппроксимируется RSJ моделью, b — линейная ВАХ, c — ВАХ с I_C размытым шумами, аппроксимирована теоретической зависимостью [4], $I_C = 0.43$ mA, $R_N = 8.6$ mOhm, $V_C^{CVC} = 3.7 \mu$ V, $\gamma = 15.1$ — параметр, характеризующий тепловые флуктуации.

 $i_n^{\exp}(\sqrt{P}) = I_n(\sqrt{P})/I_C(P=0)$ (n=0, 1, 2, ступенька с n=0 представляет критический ток контакта I_C).

Измеренные зависимости $i_n^{\exp}(\sqrt{P})$ сравнивались с вычисленными из RSJ-модели $i_n^{\text{calk}}(i_{\text{ac}})$ (i_{ac} — переменный ток в КД, наведенный СВЧ-излучением, нормированный на I_C) [7–9]. Это давало возможность определить нормированную частоту СВЧ-сигнала $\Omega = 2\pi f / ((2e/\hbar)V_C^{\text{MW}})$ f — частота внешнего СВЧ-излучения) и характерное напряжение КД по осцилляциям ступенек тока $V_C^{\text{MW}} = V_{n=1}/\Omega$ ($V_{n=1}$ — напряжение при котором на ВАХ КД появлялась первая ступенька тока) [7–9].

3. Результаты измерений

На рис. 1, a-c показаны основные типы ВАХ, которые наблюдались в КД с FBS. На рис. 1, a-c показаны также примеры аппроксимации начального участка ВАХ: a — гиперболой $V = R_N (I^2 - I_C^2)^{0.5}$, отвечающей RSJ- модели [4]; *b* — прямой линией; *c* — теорией, учитывающей тепловой шум [4].

При включении генератора СВЧ-излучения критический ток ТК I_C уменьшался и на ВАХ при напряжениях $V_n = 2\pi \hbar f n/2e$ (n = 1, 2, ...) появлялись ступеньки тока I_n , отвечающие гармоникам частоты СВЧ-сигнала.

На рис. 2 показано поведение ступенек тока на ВАХ в СВЧ-поле. Хорошо видно, как высота (амплитуда) ступенек изменялась при изменении мощности СВЧ-сигнала. Высота ступенек зависела от величины нормированной частоты СВЧ-излучения Ω и степени "размытия" критического тока КД (уровня шумов).

На рис. З символами приведены измеренные зависимости амплитуд первых нормированных ступенек тока на ВАХ одного из КД $i_n^{\exp}(k\sqrt{P}) = I_n(\sqrt{P})/I_C(P=0)$ (n=0, 1, 2). Линиями на этом рисунке показаны вычисленные из уравнения RSJ модели (1) зависимости $i_n^{\operatorname{calk}}(i_{\operatorname{ac}})$ [7–9]. Коэффициент k = 3.57 подобран по совпадению первых минимумов $i_1^{\exp}(k\sqrt{P})$ и $i_1^{\operatorname{calk}}(i_{\operatorname{ac}})$.

Рис. 2. Несколько вольт-амперных характеристик контакта Джозефсона, записанных при разных уровнях мощности СВЧ излучения. Первая ступенька тока $V_{n=1} = 15.7 \,\mu$ V.

4. Обсуждение

Если ВАХ КД можно аппроксимировать RSJCNмоделью до напряжений $V \ge 3-5\Delta/e$, то измерение $V_C = I_C R_N$ не вызывает вопросов. Для таких КД I_C и R_N легко найти из вычисленной ВАХ, аппроксимирующей измеренную, либо определить I_C путем экстраполяции начального участка ВАХ на ось тока, а сопротивление в нормальном состоянии R_N измерить по линейному участку ВАХ в области напряжений $3-5\Delta/e$ или при подавлении сверхпроводимости в электродах КД магнитным полем.

В работе [12] предложен метод определения составляющих V_C величин из начального ($V \ll \Delta/e$) участка ВАХ применимый для контактов, ВАХ которых описывается резистивной моделью. При этом, для оценки I_C

и *R_N*, используется RSJCN-модель с рядом дополнительных усложнений.

Характеристики КД из новых сверхпроводников, как правило, заметно отклоняются от стандартной RSJCNмодели: форма ВАХ отличается от гиперболы, I_C размыт, записать ВАХ при $V = 3-5\Delta/e$ для измерения *R_N* стандартным методом невозможно из-за нагрева, величина V_C отличаются от вычисленной по теории Ambegaokar, Baratoff. Авторы всех работ изучавших КД с электродами из новых сверхпроводников [5,6-9,13-15] оценивали I_C и R_N по начальному участку ВАХ в области напряжений $V \leq 0.1\Delta/e$. Такой метод не позволял найти "правильную" величину V_C и, соответственно, Ω для точной аппроксимации периода осцилляций измеренных зависимостей $i_n^{\exp}(k \times \sqrt{P})$ вычисленными [7–9]. Учет емкости *C* (в виде параметра $\beta_C = (2e/\hbar)I_C R_N^2 C$), в какой-то степени, позволил решить эту проблему [16], а также описать зависимость критического тока КД от направления тока смещения (гистерезис) [4]. Включение тока шумов і_N, дало возможность описать размытие ВАХ вблизи Іс и отличие амплитуд измеренных ступенек тока от вычисленных.

По мнению авторов работы [17] именно возможность аппроксимации осцилляций ступенек тока на ВАХ КД в СВЧ поле RSJ-моделью, а не форма ВАХ, является доказательством применимости этой модели к КД. В простейшей RSJ-модели (без учета емкости и шумов) вычисление ВАХ в поле СВЧ-излучения сводится к решению дифференциального уравнения [4]:

$$d\varphi/d\tau = i + i_{\rm ac}\sin\Omega\tau - \sin\varphi, \qquad (1)$$

$$\Omega = 2\pi f / \left(rac{2e}{\hbar}
ight) I_C R_N = rac{V_{n=1}}{V_C}, \ \ au = \left(rac{2e}{\hbar} I_C R_N
ight) t,$$

где φ — разность фаз параметров порядка в электродах КД, *i* и *i*_{ac} — постоянный ток и ток, наведенный СВЧ-излучением, нормированные на *I_C*, τ — нормированное время. Из решения этого уравнения определяется постоянное напряжение *v*, нормированное

Рис. 3. Осцилляции первых нормированных ступенек тока $i_n^{exp}(k \cdot \sqrt{P})$ (n = 0, 1, 2) на ВАХ КД в поле СВЧ излучения частотой f = 7.6 GHz. Символы — измеренные зависимости $i_n^{exp}(k \cdot \sqrt{P})$, линии — вычисленные $i_n^{calk}(i_{ac})$. k = 3.57, $\eta_1 = 0.52$, $\Omega = 0.34$.

Таблица 2. Коэффициенты зависимости (2) для ступенек тока с *n* = 0, 1, 2

Коэффициент	n = 0	n = 1	n = 2
b_0	-1.81558	-1.91211	-1.73247
b_1	6.80989	8.84761	7.4911
b_2	-19.0752	-32.89914	-51.13829
b_3	33.55267	80.86038	360.77082
b_4	-33.10355	-114.26291	-1533.93039
b_5	16.78838	83.25194	3597.00234
b_6	-3.3055	-22.3944	-4324.91152
b_7	-	—	2093.67881

на V_C , равное усреднённым по времени осцилляциям фазы $\nu(i) = \langle d\varphi/d\tau \rangle$, то есть нормированная ВАХ. При $i_{\rm ac} > 0$ на ВАХ появляются ступеньки тока, амплитуда которых в зависимости от $i_{\rm ac}$ осциллирует от 0 до максимума.

Мы предлагаем оценивать V_C КД без привязки к типу слабой связи и виду ВАХ, с помощью RSJмодели контакта в СВЧ-поле (1). Этот метод также позволяет проверить применимости RSJ-модели (1) к КД. Он основан на определении нормированной частоты электромагнитного излучения Ω^{MW} , которая должна быть найдена из нормированного периода осцилляций одной из ступенек тока на ВАХ КД в СВЧ-поле $\eta_n = (i_n^{(2)} - i_n^{(1)})/i_n^{(1)}$ (n = 0, 1, 2). В этой формуле $i_n^{(1)}$ и $i_n^{(2)}$ первый и второй минимумы на зависимости *n*-ой ступеньки тока $i_n^{\exp}(\sqrt{P})$. Определив Ω^{MW} , мы легко найдем характерное напряжение контакта $V_C^{MW} = V_{n=1}/\Omega^{MW}$.

Связь η_n с Ω^{MW} для первых ступенек тока на ВАХ, следующая из RSJ-модели с зависимостью $I_S = I_C \sin(\varphi)$, была вычислена в работе [17]. Мы также, численно решая уравнение (1) [7–9], получили зависимости Ω^{MW} от η_n (n = 0, 1, 2), которые представлены на рис. 4. Символами на рис. 4 обозначены результаты наших расчетов, сплошными линями — аппроксимация данных с точностью лучше 1% в интервале значений $\Omega^{MW} = (0.07-1)$. Для аппроксимации была использована формула

$$\log \Omega = \sum_{i=0}^{7} b_i (\eta_n)^i \tag{2}$$

с коэффициентами b_i , представленными в табл. 2.

Для проверки применимости RSJ-модели необходимо найти нормированные частоты Ω_n^{MW} трех первых ступенек тока n = 0, 1, 2. Равенство $\Omega_0^{MW} = \Omega_1^{MW} = \Omega_2^{MW} = \Omega^{MW}$ подтвердит применимость данной модели к изучаемому КД. Или найдя Ω_1^{MW} надо решить уравнение (1) с данным Ω_1^{MW} , найти зависимости $i_n^{exp}(k\sqrt{P})$. для ступенек тока и сравнить с измеренными $i_n^{exp}(k\sqrt{P})$.

На рис. З приведен пример аппроксимации измеренных зависимостей $i_n^{\exp}(k\sqrt{P})$ вычисленными $i_n^{\operatorname{calk}}(i_{\operatorname{ac}})$ из уравнения (1). Нормированный период осцилляций первой ступеньки тока $\eta_1 = 0.52$. Из зависимости $\Omega_1^{\operatorname{MW}}(\eta_1)$

Рис. 4. Зависимости нормированной частоты КД Ω^{MW} от периодов осцилляций ступенек тока η_n (n = 0, 1, 2) в рамках RSJ модели при $I_S = I_C \sin(\varphi)$. Значения, обозначенные символами, получены из решения уравнения (1), линии — аппроксимация по формуле (2).

(рис. 4) $\Omega_1^{\text{MW}} = 0.34$. Далее из решения (1) были построены зависимости $i_n^{\text{calk}}(i_{\text{ac}})$ и подобран коэффициент k = 3.57, так чтобы первые минимумы вычисленных $i_1^{\text{calk}}(i_{\text{ac}})$ и измеренных ступенек тока $i_1^{\exp}(k\sqrt{P})$ совпали. Найденный k использовался как масштабный коэффициент оси абсцисс также и для i_0^{\exp} и i_2^{\exp} зависимостей. Периоды осцилляций измеренных и вычисленных зависимостей, совпадают для всех трех ступенек тока, следовательно, данный КД описывается RSJ-моделью, $V_C^{\text{MW}} = 15.7 \,\mu\text{V}/0.34 = 46 \,\mu\text{V}$. Подобные результаты были получены для всех изученных нами КД [7–9].

В этом методе для определения V_C используется только одна основная характеристика любого КД — осцилляции сверхпроводящего тока Джозефсона при напряжении на контакте $V \neq 0$. Соответствия формы ВАХ резистивной модели, измерений I_C , R_N , емкости и тока шумов не требуется. Как показала практика [7–9], этот метод работает для КД с любым типом слабой связи.

Преимущества данного метода связаны с тем, что метод не требует ввода параметров, учитывающих отклонение ВАХ от гиперболической формы в RSJ-модели: шумов, емкости и др. К недостаткам метода относятся: 1) усложнение схемы измерений: помимо оборудования для записи ВАХ необходимо оборудование для подвода и контроля мощности СВЧ-сигнала; 2) ограничения связанные с нагревом КД СВЧ-излучением.

Критический ток контакта надо выбирать, с одной стороны, не слишком малым, чтобы размытие ВАХ от шумов было небольшим, с другой стороны, так, чтобы его можно было подавить СВЧ-облучением без заметного нагрева контакта. В наших экспериментах критический ток КД находился в диапазоне 0.5–1.5 mA.

Частота СВЧ-излучения f должна быть такой величины, чтобы шумы незначительно сказывались на определении положения ступенек тока, но и не слишком большой, так, чтобы $\Omega < 1$. При $\Omega > 1$, как следует из рис. 4, η_n перестает зависеть от Ω . Для контактов Джозефсона с V_C порядка десятков микровольт частота СВЧ должна составлять несколько GHz.

Сравним результаты определения характерного напряжения КД, полученные предложенным методом и стандартным методом по начальному участку ВАХ. В табл. 1 приведены некоторые характеристики изученных нами КД [7–9] с электродами из ферропниктидов. Величины $V_C^{\rm CVC}$, найденные из начального участка ВАХ и из осцилляций ступенек тока в СВЧ-поле $V_C^{\rm MW}$ совпадают, когда ВАХ контакта точно описывается RSJCNмоделью, во всех других случаях $V_C^{\rm CVC} \neq V_C^{\rm MW}$. Отношение $V_C^{\rm CVC}/V_C^{\rm MW}$ может быть как больше, так и меньше 1 и определяется неизвестными нам размерами и структурой контакта, свойствами материалов, из которых он состоит. О свойствах контакта мы судим по его ВАХ, отклику на СВЧ-облучение и зависимости критического тока от температуры. К сожалению этих данных недостаточно, чтобы сделать вывод о соотношении $V_C^{\rm CVC}/V_C^{\rm MW}$.

5. Заключение

Предложен метод определения характерного напряжения контактов Джозефсона V_C по периоду осцилляций первых ступенек тока на ВАХ КД в СВЧ-поле, не связанный с формой ВАХ, типом слабой связи контакта, учитывающий все влияющие на эту величину характеристики.

Финансирование работы

Работа поддержана Программой фундаментальных исследований Президиума РАН "Физика конденсированного состояния новых материалов, молекулярных и твердотельных структур нанофотоники, наноэлектроники и спинтроники".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] T. Van Duzer. Principles of Superconductive Devices and Circuits. Pearson. 2nd ed. (2008). 480 c.
- [2] M. Ohkubo, G. Uehara, J. Beyer, M. Mimura, H. Tanaka, K. Ehara, S. Tanaka, T. Noguchi, E.E. Mitchell, C.P. Foley, R.L. Fagaly. Supercond. Sci. Technol. 35, 4, 045002 (2022).
- [3] H. Jin-Ge, O. Peng-Hui, L. En-Ping, W. Yi-Wen, W. Lian-Fu. Acta Phys. Sin. 70, 17, 170304 (2021).
- [4] А. Бароне, Дж. Патерно. Эффект Джозефсона. Физика и применения. Мир, М. (1984). 640 с.
- [5] М.Ю. Куприянов, К.К. Лихарев. УФН 160, 5, 49 (1990).

- [6] С.И. Веденеев, М.В. Голубков, Ю.И. Горина, В.В. Родин, А.В. Садаков, Н.Н. Сентюрина, О.А. Соболевский, В.А. Степанов, С.Г. Черноок. ЖЭТФ 154, 4, 844 (2018).
- [7] В.А. Степанов, М.В. Голубков. ЖЭТФ 157, 2, 245 (2020).
- [8] V.A. Stepanov, C. Lin, R.S. Gonnelli, M. Tortello. Sci. Rep. 11, 23986 (2021).
- [9] М.В. Голубков, В.А. Степанов, А.В. Садаков, А.С. Усольцев, И.В. Морозов. ЖЭТФ 163, 2, 180 (2023).
- [10] J.E. Zimmerman, P. Thiene, J.T. Harding. J. Appl. Phys. 41, 4, 1572 (1970).
- [11] J. Moreland, J.W. Ekin. J. Appl. Phys. 58, 10, 3888 (1985).
- [12] V. Ambegaokar, A. Baratoff. Phys. Rev. Lett. 10, 11, 486 (1963). ERRATA. V. Ambegaokar, A. Baratoff. Phys. Rev. Lett. 11, 2, 104 (1963).
- [13] X. Zhang, Y.S. Oh, Y. Liu, L. Yan, K.H. Kim, R.L. Greene, I. Takeuchi. Phys. Rev. Lett. **102**, *14*, 147002 (2009).
- [14] S. Döring, M. Monecke, S. Schmidt, F. Schmidl, V. Tympel, J. Engelmann, F. Kurth, K. Iida, S. Haindl, I. Mönch, B. Holzapfel, P. Seidel. J. Appl. Phys. **115**, *8*, 083901 (2014).
- [15] M. Tortello, V.A. Stepanov, X. Ding, H.-H. Wen, R.S. Gonnelli, L.H. Greene. J. Supercond. Nov. Magn. 29, 3, 679 (2016).
- [16] P. Seidel, M. Seigel, E. Heinz. Physica C 180, 1-4, 284 (1991).
- [17] К.К. Лихарев, В.К. Семенов. Радиотехника и электроника 16, 11, 2167 (1971).

Редактор Т.Н. Василевская