09.4

Субнаносекундная люминесценция молекулярных кластеров в кристаллах LiF, имплантированных ионами серебра

© В.Л. Паперный¹, А.А. Черных¹, А.С. Ищенко², С.В. Мурзин², В.П. Дресвянский²

¹ Иркутский государственный университет, Иркутск, Россия

² Иркутский филиал Института лазерной физики СО РАН, Иркутск, Россия

E-mail: paperny@math.isu.runnet.ru

Поступило в Редакцию 1 ноября 2023 г. В окончательной редакции 15 декабря 2023 г. Принято к публикации 13 февраля 2024 г.

> Исследованы параметры люминесцирующих слоев, сформированных в образцах кристаллов фторида лития в результате облучения пучком высокоэнергетических ($\sim 100 \, {\rm keV}$) ионов серебра. В спектрах люминесценции обнаружены три компоненты, две из которых соответствуют излучению радиационноиндуцированных агрегатных центров окраски F_3^+ - и F_2 -типов. Третья, термически стабильная компонента, связанная со спектральным максимумом на длине волны 440 nm, соответствует люминесценции молекулярных кластеров серебра, сформированных в облученных приповерхностных слоях фторида лития. На кинетических кривых затухания люминесценции выделяются четыре компоненты, причем две медленные соответствуют агрегатным центрам, а две интенсивные быстрые компоненты с временем затухания ~ 1.3 и 0.2 ns — молекулярным кластерам серебра.

> Ключевые слова: субнаносекундная люминесценция, молекулярные кластеры, кристаллы LiF, имплантация ионов серебра.

DOI: 10.61011/PJTF.2024.10.57706.19787

Композитные оптические среды, содержащие люминесцирующие металлические кластеры (суб)нанометрового масштаба, в течение ряда лет являются предметом активных исследований. Это обусловлено многочисленными областями применения таких композитных материалов в фотонике и оптоэлектронике [1]. Наиболее широко исследования проводятся для случая аморфной матрицы на основе различных типов стекол, где нанокластеры формируются из атомов металлических примесей путем соответствующей обработки матрицы (облучение, отжиг и др.) [2]. Вместе с тем перспективные оптические свойства проявляют подобные композитные материалы, в которых слои субмикрометровой толщины, содержащие металлические кластеры, формируются путем имплантации в матрицу пучков высокоэнергетических ионов металлов [3].

Отметим также, что сравнительно небольшое число работ посвящено исследованиям излучения композитных материалов на основе кристаллических структур, например Al_2O_3 [4] или LiF [5]. Изучение последних представляет интерес еще и потому, что в кристаллах LiF в результате ионной имплантации образуются агрегатные центры люминесценции, представляющие самостоятельный интерес и находящие широкое применение в оптике [6]. В настоящей работе исследовались спектрально-кинетические параметры люминесценции кристаллов LiF, содержащих тонкие слои (суб)наноразмерных кластеров серебра, синтезированных путем облучения высокоэнергетическим пучком ионов Ag. Эти параметры, с одной стороны, важны для демонстрации возможных приложений таких ком-

позитных материалов, а с другой — для выяснения физических механизмов люминесценции нанокластеров.

Облучение образцов кристаллов фторида лития проводилось на ионном имплантере MEVVA [5]. Образцы размещались в вакуумной камере при давлении остаточного газа ~ 10^{-2} Ра и облучались импульсным пучком ионов Ag длительностью 200 μ s с плотностью тока около 5 mA/cm² при ускоряющем напряжении 50 kV, что для ионов Ag²⁺, составляющих основную часть ионного пучка [7], соответствует энергии 100 keV.

Спектрально-кинетические характеристики люминесценции облученных образцов исследовались с помощью конфокального сканирующего флуоресцентного микроскопа MicroTime 200 (PicoQuant GmbH Company). Для возбуждения фотолюминесценции использовался высокостабильный лазер с длиной волны 405.0 ± 0.7 nm, работающий в импульсном режиме с частотой повторения импульсов 10 MHz при длительности импульса порядка 50 ps. Спектры фотолюминесценции регистрировались спектрометром Ocean Optics 6500, совмещенным с микроскопом MicroTime 200. Для отсечки рассеянного образцом возбуждающего излучения использовался интерференционный фильтр HQ430LP (Chroma Technology Corp.) с граничной длиной волны спектра пропускания $430 \,\text{nm}$ (оптическая плотность OD = 6). Обработка кривых затухания фотолюминесценции проводилась с помощью специализированного программного продукта SymPho Time, входящего в состав информационного обеспечения микроскопа MicroTime 200. Алгоритм обработки основан на анализе гистограмм, регистрируемых при реализации метода времякоррелированного счета

Рис. 1. a — спектры люминесценции кристалла LiF после облучения ионами серебра с дозой $5 \cdot 10^{15}$ ion/cm² ($\lambda_{exc} = 405$ nm). Тонкими сплошными линиями показаны гауссовские контуры, аппроксимирующие спектральные компоненты, пунктиром — суммарный контур, жирной сплошной линией — экспериментальный контур. b — спектр люминесценции этого же кристалла после отжига. Штриховая линия — гауссовский контур, аппроксимирующий спектр люминесценции кластеров Ag(n+).

одиночных фотонов, обеспечивающего временно́е разрешение $\Delta t \approx 16$ ps.

Спектр люминесценции облученного образца, который приведен на рис. 1, a, можно с достаточной степенью точности аппроксимировать тремя гауссовскими контурами с максимумами на длине волны 440, 540 и 665 nm. Два последних контура естественно связать с агрегатными центрами окраски F_3^+ и F_2 соответственно, имеющими довольно близкие к полученным величинам положения максимумов полос люминесценции [8]. Эти радиационно-индуцированные центры образовались в матрице LiF в результате облучения высокоэнергетическим пучком ионов серебра.

Можно предположить, что полоса с максимумом при 440 nm связана с (суб)наноразмерными кластерами серебра, которые сформировались в результате слияния ионов (атомов) серебра, имплантированных в кристалл LiF. В пользу этого предположения свидетельствует тот факт, что амплитуда данной полосы почти не меняется после отжига образца в течение 30 min при температуре 633 K (рис. 1, *b*).

На кинетических кривых затухания люминесценции (рис. 2, *a*) выделяются четыре компоненты с постоянными затухания ~ 0.27, 1.29, 5.20 и 13.5 пs. Две последние величины достаточно близки к постоянным затухания люминесценции центров F_3^+ и F_2 соответственно [8]. Две быстрые компоненты соответствуют люминесценции кластеров Ag, причем интенсивность этих компонент существенно превосходит интенсивность полос центров F_3^+ и F_2 .

После отжига при указанных выше параметрах амплитуда компоненты, соответствующей люминесценции центров F_2 , упала ниже порога регистрации, амплитуда компоненты, отвечающей люминесценции центров F_3^+ , уменьшилась более чем в 60 раз, при этом амплитуда быстрой компоненты с постоянной затухания ~ 0.2 пs уменьшилась менее чем в 4 раза (рис. 2, b). Этот результат подтверждает предположение о том, что быстрые компоненты соответствуют люминесценции термически стабильных кластеров серебра.

Из рис. 3, на котором приведены интенсивности люминесценции различных временны́х компонент в широком диапазоне доз имплантированных ионов Ag, следует, что

Рис. 2. *а* — кинетика люминесценции центров окраски и кластеров серебра в кристалле LiF после ионной имплантации. *Lifet.* — время затухания [ns], а *Ampl.* — амплитуда [a. u.] этих компонент, *Backgr.* — фон. *b* — кинетика люминесценции образца после отжига при 633 К в течение 30 min.

Рис. 3. Зависимость интенсивности люминесценции различных компонент от дозы имплантированных ионов.

при дозе порядка $5 \cdot 10^{14}$ ion/cm² для всех компонент наблюдается насыщение интенсивности, дальнейшее увеличение дозы приводит к уменьшению интенсивности излучения.

Ранее было установлено, что минимальное время затухания широкополосной (450-700 nm) люминесценции кластеров серебра, сформированных в оксифторидном стекле, при возбуждении пикосекундным излучением с длиной волны 406 nm составляло 0.5 и 2.4 ns для наблюдаемых двух временны́х компонент излучения на длине волны 450 nm [9]. Сходный с обнаруженным нами характер кинетики люминесценции свидетельствует об аналогичных механизмах этого процесса, однако более узкий спектр люминесценции и заметно меньшее время излучения в нашем случае указывают на влияние характеристик матрицы и/или люминесцирующего слоя.

Таким образом, в работе показано, что в спектре люминесценции слоев, сформированных в кристаллах LiF в результате имплантации ионов серебра, присутствуют две интенсивные полосы, соответствующие излучению кластеров серебра, причем их постоянные затухания (~ 0.2 и 1.3 ns) оказались заметно меньше ранее измеренных соответствующих минимальных значений для аналогичной системы в аморфной матрице фторидного стекла. Этот результат указывает на возможность использования наблюдаемого эффекта при создании оптических элементов пикосекундного диапазона для задач фотоники.

Благодарности

Авторы выражают глубокую признательность А.Л. Ракевичу за помощь, оказанную при проведении исследований на лазерном люминесцентном конфокальном сканирующем микроскопе MicroTime 200 (PicoQuant GmbH).

Финансирование работы

Работа выполнена в рамках Плана фундаментальных исследований РАН на период до 2025 г. (проект № 0243-2021-0004).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- J.Z. Zhang, Optical properties and spectroscopy of nanomaterials (World Sci., London, 2009). DOI: 10.1142/7093
- [2] A.I. Ignatiev, D.A. Klyukin, V.S. Leontieva, N.V. Nikonorov, T.A. Shakhverdov, A.I. Sidorov, Opt. Mater. Exp., 5, 1635 (2015). DOI: 10.1364/OME.5.001635
- [3] Metal-polymer nanocomposites, ed. by A.L. Stepanov, L. Nicolais, G. Carotenuto (John Wiley & Sons, London, 2004), p. 241.
- J. Bornacelli, C. Torres-Torres, H.G. Silva-Pereyra, G.J. Labrada-Delgado, A. Crespo-Sosa, J.C. Cheang-Wong, A. Oliver, Sci. Rep., 9, 5699 (2019).
 DOI: 10.1038/s41598-019-42174-1
- [5] O.I. Shipilova, S.P. Gorbunov, V.L. Paperny, A.A. Chernykh, V.P. Dresvyansky, E.F. Martynovich, A.L. Rakevich, Surf. Coat. Technol., **393**, 125742 (2020). DOI: 10.1016/j.surfcoat.2020.125742
- [6] E.F. Martynovich, V.P. Dresvyansky, N.L. Lazareva, S.V. Mikhailova, A.V. Konyashchenko, P.V. Kostryukov, B.E. Perminov, S.N. Bagayev, in *Advanced photonics 2017* (Optica Publishing Group, 2017), paper NoW2C.6. DOI: 10.1364/NOMA.2017.NoW2C.6
- [7] A. Anders, G.Yu. Yushkov, J. Appl. Phys., 91, 4824 (2002).
 DOI: 10.1063/1.1459619
- [8] G. Baldacchini, E. De Nicola, R.M. Montereali, A. Scacco, V. Kalinov, J. Phys. Chem. Solids, 61, 21 (2000).
 DOI: 10.1016/S0022-3697(99)00236-X
- J.J. Velázquez, V.K. Tikhomirov, L.F. Chibotaru, N.T. Cuong, A.S. Kuznetsov, V.D. Rodíguez, M.T. Nguyen, V.V. Moshchalkov, Opt. Express, 20, 13582 (2012).
 DOI: 10.1364/OE.20.013582