Влияние протонного и электронного облучения на параметры нитрид-галлиевых диодов Шоттки

© А.А Лебедев¹, А.В. Сахаров¹, В.В. Козловский², Д.А. Малевский¹, А.Е. Николаев¹, М.Е. Левинштейн¹

¹ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

² Санкт-Петербургский политехнический университет Петра Великого,

195251 Санкт-Петербург, Россия

E-mail: Shura.Lebe@mail.ioffe.ru

Поступила в Редакцию 30 января 2024 г. В окончательной редакции 5 февраля 2024 г. Принята к публикации 29 февраля 2024 г.

Определены скорости удаления электронов при протонном и электронном облучении GaN *n*-типа, выращенного методом газофазной эпитаксии из металлорганических соединений. Облучение производилось протонами с энергией 15 МэВ в диапазоне флюенсов $0 \le \Phi_p \le 5 \cdot 10^{14} \text{ см}^{-2}$; диапазон флюенсов при облучении электронами с энергией 0.9 МэВ составлял $0 \le \Phi_n \le 5 \cdot 10^{16} \text{ см}^{-2}$. Установленное значение скорости удаления при протонном облучении, $\eta_p \approx 140 \text{ см}^{-1}$, близко к нижней границе известных в настоящее время величин η_p и свидетельствует о достаточно высоком уровне радиационной стойкости исследованного материала по отношению к протонному облучению. Скорость удаления носителей под влиянием электронного облучения η_e составляет $\approx 0.47 \text{ см}^{-1}$ и соответствует типичным значениям η_e , характерным для нитрида галлия *n*-типа, полученного различными методами.

Ключевые слова: нитрид галлия, протонное облучение, электронное облучение, скорость удаления носителей.

DOI: 10.61011/FTP.2024.01.57635.5980

1. Введение

В настоящее время нитрид галлия рассматривается как один из наиболее перспективных широкозонных материалов полупроводниковой электроники. Большая ширина запрещенной зоны $E_g = 3.4$ эВ и величина поля пробоя $E_i \sim 3$ MB/см, на порядок превосходящая значение E_i в кремнии (~ 0.3 MB/см), уже сейчас позволяет создавать GaN-диоды Шоттки (SBD) с блокирующим напряжением U_b , превышающим 1 кВ, и близким к единице фактором идеальности η [1–3].

Ширина запрещенной зоны GaN лишь незначительно превышает величину E_g 4*H*-SiC (3.34 эВ), уже нашедшего очень широкое практическое применение (см., например, [4]). Однако важными потенциальными преимуществами GaN перед карбидом кремния являются более высокая подвижность электронов, наличие прямой запрещенной зоны, позволяющее реализовать на основе GaN эффективные оптоэлектронные приборы, и возможность использования гетероструктур GaN/AlGaN для реализации приборов с двумерным электронным газом с высокой подвижностью.

Устойчивость полупроводниковых приборов по отношению к различным типам облучения, в частности по отношению к облучению протонами и электронами, нередко определяет возможность и условия применения приборов в электронных системах ядерных реакторов, ускорителях заряженных частиц, космической и авиационной электронике. Радиационная устойчивость приборов на основе SiC по отношению к электронному и протонному облучению исследовалась в целом ряде работ (см. соответствующие ссылки в работах [5,6]). Установлено, что при электронном облучении один из самых основных параметров: скорость удаления электронов η_e в зависимости от энергии электронов, метода получения материала, уровня и характера легирования — может отличаться более чем на 2 порядка и находится в пределах от 0.015 [7] до 1.67 см⁻¹ [8]. При протонном облучении SiC диапазон значений скорости удаления носителей η_p лежит в пределах от ~ 10 [9] до ~ 110 см⁻¹ [10].

Скорость удаления электронов как при электронном, так и при протонном облучении GaN n-типа также зависит от энергии и дозы облучения, метода получения и исходной концентрации носителей в GaN, а также от плотности дислокаций в облучаемом материале [11]. Диапазон значений η_e в зависимости от этих параметров лежит в пределах от $\sim 10^{-1}$ до $10 \, \text{см}^{-1}$ [12]. В работе [13] был обнаружен рост концентрации носителей в GaN-диодах Шоттки, подвергнутых протонному облучению. Как отмечается в обзорных работах [11,14], такой эффект может свидетельствовать об образовании в результате облучения мелких донорных уровней и, возможно, связан с недостаточной чистотой исходных эпитаксиальных слоев. Во всех остальных случаях протонное облучение приводило к удалению электронов из зоны проводимости. Установленные величины η_p лежат в очень широком диапазоне от 40 [15] до $10^4 \,\mathrm{cm}^{-1}$ [16].

В настоящей работе исследовано влияние облучения электронами с энергией 0.9 МэВ и протонами с энергией 15 МэВ на параметры SBD на основе GaN тестовых структур, выращенных методом газофазной эпитаксии из металлорганических соединений. Определены скорости удаления носителей η_e и η_p из базовых слоев исследованных структур

2. Условия эксперимента

Исследовались структуры, выращенные методом газофазной эпитаксии из металлорганических соединений (MOVPE). Структуры выращивались на сапфировых подложках диаметром 2 дюйма ориентации (0001) с использованием стандартных соединений на установке Dragon 125 с горизонтальным реактором с индуктивным нагревом. Сначала на подложке выращивался буферный слой нелегированного GaN толщиной 2.4 мкм, а затем слои, сильно и слабо легированные кремнием толщиной ~ 1 мкм каждый. Концентрация электронов в этих слоях, определенная из вольт-емкостных измерений, составляла $6 \cdot 10^{18}$ и $8 \cdot 10^{16}$ см⁻³ соответственно. Завершался процесс роста in situ нанесением тонкого слоя пассивирующего диэлектрика Si₃N₄ для снижения токов утечки [17]. Никелевые контакты диаметром 600 мкм, формирующие барьеры Шоттки, создавались методом термического напыления Ni через теневую маску.

Облучение протонами с энергией 15 МэВ проводилось в импульсном режиме на циклотроне MGTs-20. Частота и длительность следования импульсов составляли 100 Гц и 2.5 мс соответственно. Облучение электронами с энергией 0.9 МэВ проводилось в импульсном режиме при частоте следования и длительности импульсов 490 Гц и 330 мкс соответственно. И протонное, и электронное облучение проводилось при комнатной температуре. Температура во время облучения поддерживалась с точностью ±5°C.

Изотермические вольт-амперные характеристики диодов измерялись при комнатной температуре в режиме одиночных импульсов. Длительность импульсов равнялась 5 мкс, частота следования составляла 100 Гц.

3. Результаты и обсуждение

На рис. 1 показаны прямые вольт-амперные характеристики исходного диода (кривая *I*) и диодов, облученных четырьмя дозами протонов с энергией 15 МэВ при комнатной температуре.

При всех значениях флюенса Φ вольт-амперные характеристики измерялись в диапазоне значений плотности тока $5 \cdot 10^{-6} \le j \le 1 \text{ A/cm}^2$. Как и в случае SiC-диодов Шоттки, облучение практически не оказывает влияния на вольт-амперные характеристики при смещениях U, меньших напряжения отсечки U_c (cut-off voltage), когда подавляющая часть приложенного напряжения падает на барьере Шоттки и зависимость I(U) носит экспоненциальный характер (см, например, [6]).

Рис. 1. Прямые вольт-амперные характеристики диодов после облучения протонами с энергией 15 МэВ при различных значениях флюенса Φ , см⁻²: I - 0, $2 - 2 \cdot 10^{14}$, $3 - 4 \cdot 10^{14}$, $4 - 5 \cdot 10^{14}$. На вставке показана зависимость концентрации электронов в базе диода от флюенса Φ . (Цветной вариант рисунка представлен в электронной версии статьи).

При $U > U_c$ дифференциальное сопротивление базы диодов монотонно возрастает с увеличением флюенса Ф. При относительно небольших значениях Ф изменением подвижности в результате облучения можно пренебречь [18]. Тогда концентрация электронов обратно пропорциональна дифференциальному сопротивлению базы, и скорость удаления электронов из базы под влиянием облучения η_p (removal rate) может быть рассчитана как $\eta_p = (n_0 - n)/\Phi$, где n_0 — концентрация электронов в базе исходного образца, n — концентрация после облучения флюенсом Ф.

Из данных, представленных на вставке к рис. 1, видно, что при относительно малых значениях Ф концентрация носителей линейно падает с ростом флюенса. Наклону зависимости $n(\Phi)$ на этом участке соответствует скорость удаления носителей $\eta_p \approx 140 \, {\rm cm}^{-1}$. При такой зависимости $n(\Phi)$ условие n = 0 должно было бы выполняться при $\Phi \approx 5.5 \cdot 10^{14} \, \mathrm{cm}^{-2}$ (пунктирная линия на вставке к рис. 1). Однако значение *п* при $\Phi = 5 \cdot 10^{14} \,\mathrm{cm}^{-2}$ заметно больше, чем можно было бы ожидать при линейной зависимости $n(\Phi)$. В соответствии с анализом, проделанным в работе [19], такой результат может указывать на то, что в GaN в отличие от SiC при облучении протонами реализуется механизм компенсации, при котором радиационный дефект (вакансия) взаимодействует с атомом мелкой примеси, образуя электрически нейтральный или акцепторный центр. Такой механизм компенсации характерен, например, в случае облучения электронами Si.

На рис. 2 показаны прямые вольт-амперные характеристики исходного диода (кривая *1*) и диодов, облученных тремя дозами электронов с энергией 0.9 МэВ при комнатной температуре.

Рис. 2. Прямые вольт-амперные характеристики диодов после облучения электронами с энергией 0.9 МэВ при различных значениях флюенса Φ , см⁻²: 1 - 0, $2 - 2 \cdot 10^{16}$, $3 - 4 \cdot 10^{16}$, $4 - 6 \cdot 10^{16}$. На вставке показана зависимость концентрации носителей в базе диода от флюенса Φ .

Вольт-амперные характеристики измерялись в диапазоне значений плотности тока $1 \cdot 10^{-8} \le j \le 1 \text{ A/cm}^2$. Как и при облучении протонами, облучение электронами практически не влияет на вольт-амперные характеристики при смещениях $U < U_c$.

В области $0 \le \Phi \le 6 \cdot 10^{16} \text{ см}^{-2}$ дифференциальное сопротивление базы монотонно возрастает с увеличением Ф. Пренебрегая, как и в случае облучения протонами, изменением подвижности, из представленных на рис. 2 данных легко рассчитать изменение концентрации электронов в зависимости от флюенса Ф (см. вставку к рис. 2). Как видно из представленных на вставке данных, концентрация электронов линейно падает с ростом флюенса. Наклону зависимости $n(\Phi)$ соответствует скорость удаления электронов $\eta_e \approx 0.47 \text{ см}^{-1}$.

Установленное значение $\eta_p \approx 140 \,\mathrm{cm}^{-1}$ близко к нижней границе величины скорости удаления носителей при протонном облучении и свидетельствует о достаточно высоком уровне радиационной стойкости. Определенная в работе величина $\eta_e \approx 0.47 \,\mathrm{cm}^{-1}$ приблизительно соответствует середине диапазона установленных в литературе значений скорости удаления носителей при электронном облучении.

4. Заключение

В заключение следует отметить, что установленное в работе для GaN *n*-типа значение $\eta_p \approx 140 \text{ см}^{-1}$ близко к нижней границе величины скорости удаления носителей при протонном облучении и свидетельствует о достаточно высоком уровне радиационной стойкости, вполне сопоставимой с радиационной стойкостью карбида кремния *n*-типа. Определенная в работе скорость удаления электронов $\eta_e \approx 0.47 \text{ см}^{-1}$ приблизительно соответствует середине диапазона установленных в литературе

значений η_e для *n*-типа GaN. Это значение также сопоставимо с величинами η_e , характерными для SiC *n*-типа.

Финансирование работы

Работа выполнена при частичной финансовой поддержке гранта РНФ № 22-12-00003.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- X. Liu, P. Zou, H. Wang, Yu. Lin, J. Wu, Z. Chen, X. Wang, Sh. Huang. IEEE Trans. Electron Dev., 70, 3748 (2023).
- [2] M. Matys, K. Kitagawa, T. Narita, T. Uesugi, J. Suda, T. Kachi. Appl. Phys. Lett., **121**, 203507 (2022).
- [3] D. Khachariya, Sh. Stein, W. Mecouch, M. Hayden Breckenridge, Sh. Rathkanthiwar, S. Mita, B. Moody¹, P. Reddy, J. Tweedie, R. Kirste, K. Sierakowski, G. Kamler, M. Bockowski, E. Kohn, S. Pavlidis, R. Collazo, Z. Sitar. Appl. Phys. Express, 15, 101004 (2022).
- [4] А.А. Лебедев, П.А. Иванов, М.Е. Левинштейн, Е.Н. Мохов, С.С. Нагалюк, А.Н. Анисимов, П.Г. Баранов. УФН, 189 (8), 803 (2019).
- [5] А.А. Лебедев, В.В. Козловский, М.Е. Левинштейн, Д.А. Малевский, Р.А. Кузьмин. ФТП, 56 (8), 809 (2022).
- [6] А.А. Лебедев, В.В. Козловский, М.Е. Левинштейн, Д.А. Малевский, Г.А. Оганесян. ФТП, 57 (1), 53 (2023).
- [7] V.V. Kozlovski, A.A. Lebedev, E.V. Bogdanova. J. Appl. Phys., 117, 155702 (2015).
- [8] E. Omotoso, W.E. Meyer, F. D. Auret, A.T. Paradzah, M. Diale, S.M.M. Coelho, P.J. Janse, van Rensburg. Mater. Sci. Semicond. Process., 39, 112 (2015).
- [9] Z. Luo, T. Chen, J.D. Cressler, D.C. Sheridan, J.R. Williams, R.A. Reed, P.W. Marshall. IEEE Trans. Nucl. Sci., 50, 1821 (2003).
- [10] V. Emtsev, A. Ivanov, V. Kozlovski, A. Lebedev, G. Oganesyan, N. Strokan, G. Wagner. ΦΤΠ, 46, 473 (2012).
- [11] S.J. Pearton, F. Ren, E. Patrick, M.E. Law, A.Y. Polyakov. ECS J. Solid State Sci. Tech., 5 (2), Q35 (2016).
- [12] A.Y. Polyakov, In-Hwan Lee, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova, N.G. Kolin, A.V. Korulin, V.M. Boiko, S.J. Pearton. J. Appl. Phys., **109**, 123703 (2011).
- [13] S. Narita, T. Hitora, E. Yamaguchi, Y. Sakemi, M. Itoh, H. Yoshida, J. Kasagi, K. Neich. Nucl. Instrum. Meth. Phys. Res. A, 717, 1 (2013).
- [14] S.J. Pearton, R. Deist, F. Ren, Lu Liu, A.Y. Polyakov, J. Kim. J. Vac. Sci. Technol. A, **31** (5), 050801 (2013).
- [15] M. Hayes, F.D. Auret, L. Wu, W.E. Meyer, J.M. Nel, M.J. Legodi. Physica B, 340–342, 421 (2003).
- [16] V.V. Emtsev, V.Yu. Davydov, E.E. Haller, A.A. Klochikhin, V.V. Kozlovskii, G.A. Oganesyan, D.S. Poloskin, N.M. Shmidt, V.A. Vekshin, A.S. Usikov. Physica B: Condens. Matter, **308**– **310**, 58 (2001).
- [17] D. Zakheim, W. Lundin, A. Sakharov, E. Zavarin, P. Brunkov, E. Lundina, A. Tsatsulnikov, S. Karpov. Semicond. Sci. Technol., 33, 115008 (2018)

- [18] M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur (eds). Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (John Wiley & Sons Inc., N.Y., 2001).
- [19] A.A. Lebedev, V.V. Kozlovski, K.S. Davydovskaya, M.E. Levinshtein. Materials, 14, 4976 (2021).

Редактор А.Н. Смирнов

Effect of proton and electron irradiation on the parameters of gallium nitride Schottky diodes

A.A. Lebedev¹, A.V. Sakharov¹, V.V. Kozlovski², D.A. Malevsky¹, A.E. Nikolaev¹, M.E. Levinshtein¹

¹ loffe Institute,

194021 St. Petersburg, Russia ² Department of Experimental Physics, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia

Abstract The carrier removal rates during proton and electron irradiations of *n*-type GaN grown by metal-organic vapor phase epitaxy were determined. Irradiation was carried out with protons with energy of 15 MeV in the fluence range $0 \le \Phi_p \le 5 \cdot 10^{14} \text{ cm}^{-2}$; the range of fluences when irradiated with electrons with energy of 0.9 MeV was $0 \le \Phi_n \le 5 \cdot 10^{14} \text{ cm}^{-2}$. The value of the removal rate during proton irradiation, $\eta_p \approx 140 \text{ cm}^{-1}$, is close to the lower limit of currently known values of η_p and indicates a sufficiently high level of radiation. The rate of carrier removal under the influence of electron irradiation, η_e is 0.47 cm⁻¹ and corresponds to the typical values of η_e for type gallium nitride obtained by various methods.