05.2;06.5

Особенности формирования структуры и свойств Mn–Zn-ферритов, полученных методом золь-гель синтеза

© Р.Р. Хабиров, А.В. Масс, Р.И. Кузьмин, А.А. Руктуев, Н.Ю. Черкасова, М.Ю. Агафонов, В.А. Королева, А.А. Миллер

Новосибирский государственный технический университет, Новосибирск, Россия E-mail: xabirov.2016@stud.nstu.ru

Поступило в Редакцию 11 декабря 2023 г. В окончательной редакции 9 января 2024 г. Принято к публикации 26 января 2024 г.

Показано влияние золь-гель синтеза как начального этапа изготовления Mn-Zn-ферритов на их структуру и свойства. Использованный метод позволил получить спеченный материал с равномерной зеренной структурой, повысить плотность, начальную магнитную проницаемость и максимальную индукцию, снизить магнитные потери.

Ключевые слова: Mn-Zn-феррит, золь-гель, микроструктура, магнитная проницаемость, магнитные потери.

DOI: 10.61011/PJTF.2024.09.57563.19834

В массовом производстве Mn-Zn-ферритов для электроники применяется керамическая технология. Слабой стороной этой технологии является недостаточно однородное распределение компонентов при смешивании порошков оксидов [1]. В последнее время значительное внимание уделяется химическим методам синтеза, так как смешивание растворов солей металлов на молекулярном уровне позволяет получить гомогенное распределение компонентов [2]. Равномерность распределения оказывает значительное влияние на формирование микроструктуры [3], поэтому химический синтез порошков может стать перспективным методом получения ферритов с высоким уровнем магнитных свойств. Перспективным методом синтеза керамических порошков является золь-гель технология [4]. Этот метод позволяет точно контролировать химический состав и структурные характеристики синтезируемых материалов [5]. По данным исследований [6,7] в результате золь-гель синтеза формируются порошки с высокой концентрацией феррита. Фазовый состав оказывает значительное влияние на протекание предварительной термической обработки, помола и спекания. Так, авторы работы [8] установили, что спекание порошков с высоким содержанием феррита повышает магнитную проницаемость и снижает магнитные потери Mn-Zn-ферритов.

В современной литературе методы химического синтеза часто используются для получения нанопорошков Mn—Zn-ферритов. В то же время ферриты, полученные спеканием из таких порошков, изучены недостаточно. В работе [9] показано, что с ростом температуры спекания порошков, полученных с применением зольгель синтеза, увеличиваются средний размер зерен и намагниченность насыщения феррита. В [10] исследовались микроструктура, намагниченность насыщения и коэрцитивная сила Mn-, Ni- и Cu-ферритов с различным содержанием Zn. Однако мало внимания уделялось сравнительному анализу особенностей формирования зеренной структуры ферритов, полученных с использованием химического синтеза и керамической технологии. Данных о влиянии способа синтеза порошков на магнитную проницаемость и магнитные потери объемных материалов из Mn-Zn-ферритов также недостаточно. В настоящей работе оценивалось влияние золь-гель синтеза как начального этапа изготовления Mn-Zn-ферритов на микроструктуру и свойства спеченных материалов.

Были получены образцы ферритов состава Mn_{0.65}Zn_{0.28}Fe_{2.08}O₄ без добавок и с добавкой 0.035 mass% Со₃О₄ и 0.05 mass% СаО. Для оксидной технологии использовались порошки Fe₂O₃, MnCO₃, ZnO, Co₃O₄, CaO (чистота 99.5%). Смешивание проводили в шаровой мельнице в водной среде. Высушенную смесь прокаливали при 1000°С с выдержкой в течение 2h на воздухе, проводили мокрый помол в шаровой мельнице, гранулировали высушиванием с добавлением 1 mass% поливинилового спирта. Из полученного гранулированного порошка осевым прессованием получали кольцевые образцы размером 20 × 10 × 5 mm. Для удаления органических добавок заготовки прокаливали при 700°С. Спекание проводили при 1300°С с нагревом и выдержкой (3 h) на воздухе и охлаждением в вакууме.

В качестве сырья для химического синтеза применялись порошки $FeSO_4 \cdot 7H_2O$, $MnSO_4 \cdot 5H_2O$, $ZnSO_4 \cdot 7H_2O$, $CoSO_4 \cdot 7H_2O$, $Ca(NO_3)_2 \cdot 4H_2O$ (квалификация хч). Раствор солей металлов смешивали с лимонной кислотой и аммиаком до достижения pH = 7. Золь высушивали при 100° С, нагревали до самовоспламенения, в результате чего образовался мелкодисперсный порошок. Порошки прокаливали при 1000° С на воздухе, измельчали, гранулировали, прессовали и спекали в соответствии с описанными выше режимами. Микроструктура ферритов

Рис. 1. *а* — дифрактограммы порошков ферритов после прокалки при 1000°С, полученные золь-гель (SG1000) и керамическим (CM1000) методом, а также золь-гель порошка (SG) и смеси оксидов (CM) до прокалки; *b* — микроструктура спеченного феррита, полученного по керамической технологии.

исследована с помощью оптического микроскопа Carl Zeiss Axio Observer Z1m, рентгенофазовый анализ проведен на дифрактометре Adwin POWDIX 600 с использованием Си K_{α} -излучения, плотность ρ измерена методом гидростатического взвешивания. Начальная магнитная проницаемость μ_i определена методом измерения индуктивности кольцевых сердечников с обмоткой медного кабеля. В-Н-анализатор DX-2012SA (DEXINMAG) был использован для измерения максимальной магнитной индукции B_m в поле с напряженностью $H_m = 1200 \,\text{A/m}$ и магнитных потерь. Для определения фазового состава, размера областей когерентного рассеяния (ОКР), параметров кристаллической решетки, объема элементарной ячейки и теоретической плотности фаз проводился полнопрофильный анализ дифрактограмм методом Ритвельда с использованием программного обеспечения Maud 2.9993 [11]. Для расшифровки фазового состава была использована база данных ICDD PDF 4+.

Порошок после золь-гель синтеза имеет кристаллическую структуру и содержит фазу феррита (рис. 1, а). Напротив, порошковая смесь, полученная смешиванием оксидов, состоит только из фаз исходных компонентов: *α*-Fe₂O₃ (ICDD 04-002-7501), ZnO (ICDD 04-008-8199), MnCO₃ (ICDD 04-001-7250). После прокалки при 1000°C в обоих случаях порошок состоит из феррита (ICDD 01-074-2400) и *α*-Fe₂O₃ (ICDD 01-089-0597). Оксид железа присутствует из-за неполного завершения реакции образования феррита при 1000°С, а также в результате распада MnFe₂O₄, неустойчивого на воздухе при температурах ниже 1000°C [12]. Однако порошок, полученный прокалкой смеси оксидов, крупнее $(50 \text{ mass.}\% \text{ частиц остается на сите с ячейкой } 250 \,\mu\text{m})$ по сравнению с синтезированным из солей (10 mass% частиц остается на сите с ячейкой 250 µm). Вероятно, процесс агрегации и роста частиц при термической

обработке происходит активнее в смеси оксидов из-за близкого расположения частиц, полученных при выпаривании воды из суспензии. Это подтверждается тем, что размер ОКР фаз феррита и *α*-Fe₂O₃ в порошках, полученных смешиванием оксидов, выше, чем после золь-гель синтеза (табл. 1). Золь-гель синтез влияет не только на размер частиц порошка, но и на протекание фазовых превращений и химический состав фаз. Это подтверждается более высокими концентрацией фазы феррита и параметрами кристаллической решетки и меньшей теоретической плотностью порошков, полученных с применением золь-гель синтеза (табл. 2). Помол проводили в одинаковых условиях в шаровой мельнице в течение 10h. После помола во всех порошках количество феррита снижается в среднем на 2 mass%. Как сообщается в работе [13], это может происходить в результате распада метастабильного MnFe₂O₄, который вызван механическими напряжениями. Размер ОКР феррита и α -Fe₂O₃ после помола для всех порошков снижается из-за увеличения количества дефектов в частицах порошка. Уменьшение ОКР при помоле зафиксировано в работе [14]. Известно [15], что с уменьшением размера частиц увеличивается площадь удельной поверхности, что ускоряет процессы спекания. Для порошков, полученных керамическим методом, после помола параметры кристаллической решетки и объем элементарной ячейки фаз феррита и α-Fe₂O₃ увеличиваются, а теоретическая плотность снижается. У материалов, синтезированных с применением золь-гель метода, наблюдается обратная зависимость (табл. 2). Авторы работы [16] сделали вывод, что в процессе помола протекают процессы, по-разному влияющие на параметры кристаллической решетки. С одной стороны, механическое воздействие мелющих тел должно приводить к росту сжимающих напряжений в частицах порошка и снижению парамет-

Матал	ОКР	, nm	Фазовый состав, mass%		
метод	Fe ₂ O ₃	Феррит	Fe ₂ O ₃	Феррит	
Керамический метод	154 ± 5	102 ± 1	50 ± 1	50 ± 1	
Керамический метод, помол 10 h	120 ± 2	91 ± 3	52 ± 1	48 ± 1	
Керамический метод $+ \operatorname{Co}_3\operatorname{O}_4 + \operatorname{CaO}$	119 ± 2	63 ± 4	52 ± 1	48 ± 1	
Керамический метод + Co ₃ O ₄ + CaO, помол 10 h	94 ± 2	73 ± 8	54 ± 1	46 ± 1	
Золь-гель	110 ± 2	87 ± 10	48 ± 1	52 ± 1	
Золь-гель, помол 10 h	98 ± 1	45 ± 3	52 ± 1	48 ± 1	
3 оль-гель $+ Co_3O_4$	108 ± 2	44 ± 1	48 ± 1	52 ± 1	
Золь-гель + Со ₃ O ₄ + СаО, помол 10 h	80 ± 1	32 ± 1	52 ± 1	48 ± 1	

Таблица 1. ОКР и фазовый состав порошков ферритов, прокаленных при 1000°С

Таблица 2. Параметры решетки, объем элементарной ячейки и теоретическая плотность порошков ферритов, прокаленных при 1000°С

	Параметры решетки, Å		$V_{cell}, \mathrm{\AA}^3$		$\rho_{theor}, \mathrm{g/cm^3}$		<i>R-</i> факторы		
Метод	Fe ₂ O ₃		Феррит	FeaOa	Феррит	FeaOa	Феррия	R_{wp} ,	R_{wpnb} ,
	а	С	а	re ₂ O ₃	Феррит	10203	Феррит	%	%
Керамический метод	$\begin{array}{c} 5.036 \pm \\ 0.001 \end{array}$	13.740± 0.001	$\begin{array}{c} 8.454 \pm \\ 0.001 \end{array}$	301.740	604.125	5.273	5.298	2.18	19.19
Керамический метод помол 10 h	$\begin{array}{c} 5.037 \pm \\ 0.001 \end{array}$	$\begin{array}{c} 13.746 \pm \\ 0.001 \end{array}$	$\substack{8.455\pm\\0.001}$	301.97	604.423	5.269	5.295	2.13	19.25
Керамический метод + Co ₃ O ₄ + CaO	$\begin{array}{c} 5.036 \pm \\ 0.001 \end{array}$	$\begin{array}{c} 13.742 \pm \\ 0.001 \end{array}$	$\begin{array}{c} 8.464 \pm \\ 0.001 \end{array}$	301.806	606.348	5.272	5.279	1.98	19.17
Керамический метод + Co ₃ O ₄ + CaO, помол 10 h	5.038± 0.001	13.745± 0.001	8.464± 0.001	301.965	606.377	5.269	5.278	2.02	21.14
Золь-гель	$\begin{array}{c} 5.037 \pm \\ 0.001 \end{array}$	13.744 ± 0.001	$\begin{array}{c} 8.458 \pm \\ 0.001 \end{array}$	301.975	605.020	5.269	5.202	2.19	19.78
Золь-гель, помол 10 h	$\begin{array}{c} 5.036 \pm \\ 0.001 \end{array}$	$\begin{array}{c} 13.740 \pm \\ 0.001 \end{array}$	$\begin{array}{c} 8.456 \pm \\ 0.001 \end{array}$	301.728	604.522	5.273	5.206	2.31	20.94
3 оль-гель + $Co_3O_4 + CaO$	$\begin{array}{c} 5.037 \pm \\ 0.001 \end{array}$	$\begin{array}{c}13.745\pm\\0.001\end{array}$	$\begin{array}{c} 8.465 \pm \\ 0.001 \end{array}$	302.029	606.608	5.268	5.276	2.39	21.63
Золь-гель + Со ₃ O ₄ + СаО, помол 10 h	5.036± 0.001	13.742 ± 0.001	8.462± 0.001	301.793	605.868	5.272	5.283	2.12	21.03

ров решетки. С другой стороны, накопление дефектов кристаллической решетки и перераспределение катионов по подрешеткам шпинели может увеличивать ее параметры.

Плотность ферритов, полученных золь-гель методом, на 2.5-5% выше, чем у изготовленных из оксидов (табл. 3). В ферритах одинакового состава максимальная индукция B_m возрастает с увеличением плотно-

Метод	ho, g/cm ³	Средний размер зерен без учета аномально крупных зерен, µm	Начальная магнитная проницаемость μ_i			Максимальная индукция <i>B_m</i> , mT
			$T = 25^{\circ} \mathrm{C}$	$T = 100^{\circ}$ C	$T = 150^{\circ}$ C	(при $H_m = 1200 \text{ A/m},$ f = 10 kHz)
Керамический метод	4.65 ± 0.01	2.7 ± 0.1	1300 ± 100	2000 ± 200	2200 ± 100	420 ± 20
Керамический метод + Co ₃ O ₄ + CaO	4.67 ± 0.02	2.4 ± 0.1	1600 ± 100	1900 ± 100	2200 ± 100	430 ± 20
Золь-гель метод	4.89 ± 0.02	9.8 ± 0.4	1700 ± 100	2600 ± 200	3100 ± 200	490 ± 20
Золь-гель метод + Со ₃ О ₄ + СаО	4.79 ± 0.01	5.3 ± 0.1	1400 ± 100	1600 ± 100	1900 ± 100	450 ± 20

Таблица 3. Свойства спеченных ферритов

Рис. 2. Микроструктура спеченных ферритов. *а* — керамический метод с добавкой Co₃O₄+CaO; *b* — золь-гель метод без добавок.

сти. Полученный керамическим методом феррит имеет мелкозернистую структуру, при этом наличие 2.5 vol.% аномально крупных зерен (средний размер 80 µm) свидетельствует о вторичной рекристаллизации (рис. 1, b). При введении 0.035 mass% Co₃O₄ и 0.05 mass% CaO в феррит, полученный из оксидов, объемная доля аномально крупных зерен возросла до 8.8 vol.%, средний размер — до 100 µm, средний размер зерен без учета аномально крупных уменьшился (рис. 2, а). С одной стороны, снижение среднего размера зерен свидетельствует о проявлении эффекта снижения скорости миграции границ зерен за счет введения легирующих добавок, как показано в [17]. С другой стороны, увеличение количества и размера аномально крупных зерен может свидетельствовать о том, что в феррите существуют локальные области, в которых концентрация примесных элементов и других дефектов ниже. В таких областях границы зерен закреплены слабее, что приводит к их ускоренному движению при спекании. Параметр кристаллической решетки феррита при введении добавок в случае керамического и золь-гель метода увеличивается, что приводит к росту объема элементарной ячейки, отсюда следует снижение теоретической плотности. Это

связано с замещением ионов Fe^{3+} (0.67 Å) ионами Co^{2+} (0.82 Å) с бо́льшим ионным радиусом [18].

Увеличение в 3.6 раза среднего размера зерен феррита, полученного золь-гель методом, по сравнению с таковым для феррита, полученного с применением керамической технологии, свидетельствует о более высокой активности порошка при спекании (рис. 2, *b*). Так, в работе [3] показан рост среднего размера зерен при измельчении порошка. Структура без аномально крупных зерен может быть следствием равномерного распределения компонентов в процессе химического синтеза. Увеличение среднего размера зерен и ρ способствовало повышению μ_i на 30%. Кроме того, феррит, полученный с применением золь-гель синтеза, показывает наибольший рост μ_i при нагреве от 25 до 150°С.

Добавки 0.035 mass% Co₃O₄ и 0.05 mass% CaO в случае золь-гель синтеза также способствовали снижению среднего размера зерен на 10% и μ_i на 16% (рис. 3, *a*). Сдерживание процессов спекания добавками также привело к снижению ρ и B_m . Однако в отличие от керамического метода аномальные крупные зерна не сформировались, что подтверждает равномерность распределения добавок.

Рис. 3. a — микроструктура золь-гель феррита с добавкой Co₃O₄+CaO; b — зависимость магнитных потерь от максимальной индукции B_m при частоте 10 kHz.

Показанные на рис. 3, *b* магнитные потери при низкой частоте 10 kHz для Mn-Zn-ферритов в первую очередь связаны с гистерезисными потерями [19]. Известно, что потери на гистерезис зависят от легкости перемещения доменных границ в феррите. Наименьший уровень потерь показывает материал, полученный с применением метода золь-гель синтеза без добавок. Благодаря наибольшему размеру зерен он имеет наименьшую удельную площадь границ, которые препятствуют движению доменных стенок. С одной стороны, увеличение магнитных потерь при введении легирующих компонентов связано с измельчением зеренной структуры. С другой стороны, известно [17], что ионы Са не растворяются в феррите, а формируют отдельную фазу на поверхности зерен феррита, которая также затрудняет движение границ доменов.

Таким образом, в работе показано следующее.

 Золь-гель синтез порошков Mn-Zn-феррита приводит к увеличению концентрации феррита, параметра решетки, снижению теоретической плотности и ОКР порошков по сравнению с керамическим методом.

— После помола в шаровой мельнице концентрация феррита и размер ОКР порошков снизились. Помол привел к увеличению параметров решетки и снижению теоретической плотности порошков, полученных керамическим методом. В случае золь-гель синтеза параметры уменьшились, теоретическая плотность увеличилась.

— Применение золь-гель синтеза позволило повысить плотность, начальную магнитную проницаемость, средний размер зерен, B_m при $H_m = 1200$ A/m, снизить магнитные потери при частоте 10 kHz по сравнению с аналогичными характеристиками Mn–Zn-ферритов, полученных с применением керамической технологии.

— Добавление 0.035 mass% Co₃O₄ и 0.05 mass% CaO привело к уменьшению размера зерен, плотности, *B_m*

при $H_m = 1200$ A/m, начальной магнитной проницаемости, увеличению магнитных потерь при частоте 10 kHz.

Финансирование работы

Исследование выполнено при финансовой поддержке в рамках реализации программы развития НГТУ (научный проект № С23-30). Исследования выполнены на оборудовании ЦКП "Структура, механические и физические свойства материалов" (соглашение с Минобрнауки № 13.ЦКП.21.0034, 075-15-2021-698).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- K. Li, C. Peng, K. Jiang, J. Hazard. Mater., **194**, 79 (2011). DOI: 10.1016/j.jhazmat.2011.07.060
- I. Szczygieł, K. Winiarska, A. Bieńko, K. Suracka,
 D. Gaworska-Koniarek, J. Alloys Compd., 604, 1 (2014).
 DOI: 10.1016/j.jallcom.2014.03.109
- [3] L. Wang, G. Lei, R. Cheng, C. Yan, H. Ge, Physica B, 552, 6 (2019). DOI: 10.1016/j.physb.2018.09.035
- [4] E.K. Papynov, O.O. Shichalin, V.Yu. Mayorov, E.B. Modin, A.S. Portnyagin, E.A. Gridasova, I.G. Agafonova, A.E. Zakirova, I.G. Tananaev, V.A. Avramenko, Ceram. Int., 43, 8509 (2017). DOI: 10.1016/j.ceramint.2017.03.207
- Apanasevich, [5] E.K. Shichalin, Papynov, 0.0. V.I. A.S. Portnyagin, V.Yu. Mayorov, LYu. Buravley. E.B. Merkulov, T.A. Kaidalova, E.B. Modin, I.S. Afonin, I.O. Evdokimov, B.I. Geltser, S.V. Zinoviev, Stepanyugina, E.A. Kotciurbii, A.K. A.A. Bardin. O.V. Korshunova, Powder Technol., 367, 762 (2020). DOI: 10.1016/j.powtec.2020.04.040

- [6] S.O. Aisida, M.H. Alnasir, S. Botha, A.K.H. Bashir, R. Bucher, I. Ahmad, T.-K. Zhao, M. Maaza, F.I. Ezema, Eur. Polym. J., 132, 109739 (2020). DOI: 10.1016/j.eurpolymj.2020.109739
- [7] F. Alam, M.L. Rahman, B.C. Das, A.K.M.A. Hossain, Physica B, 594, 412329 (2020). DOI: 10.1016/j.physb.2020.412329
- [8] Y.T. Chien, Y.C. Ko, J. Mater. Sci., 26, 5859 (1991). DOI: 10.1007/BF01130125
- [9] L. Sun, J. Guo, Q. Ni, E. Cao, Y. Zhang, W. Hao,
 L. Ju, J. Mater. Sci.: Mater. Electron., 29, 5356 (2018).
 DOI: 10.1007/s10854-017-8501-2
- [10] T. Tangcharoen, A. Ruangphanit, W. Pecharapa, Ceram. Int., 39, 239 (2013). DOI: 10.1016/j.ceramint.2012.10.069
- [11] L. Lutterotti, Nucl. Instrum. Meth. Phys. Res. B, 268, 334 (2010). DOI: 10.1016/j.nimb.2009.09.053
- [12] В.Г. Костишин, И.И. Канева, В.Г. Андреев, А.Н. Николаев, Е.И. Волкова, Изв. вузов. Материалы электронной техники, № 1, 23 (2013).
- [13] M.J.N. Isfahani, M. Myndyk, V. Šepelák, J. Amighian, A. Mössbauer, J. Alloys Compd., 470, 434 (2009). DOI: 10.1016/j.jallcom.2008.02.113
- [14] A. Hajalilou, M. Hashim, M. Taghi Masoudi, Ceram. Int., 41, 8070 (2015). DOI: 10.1016/j.ceramint.2015.03.005
- [15] L. Nalbandian, A. Delimitis, V.T. Zaspalis, E.A. Deliyanni, D.N. Bakoyannakis, E.N. Peleka, Micropor. Mesopor. Mater., 114, 465 (2008). DOI: 10.1016/j.micromeso.2008.01.034
- [16] S. Bid, S.K. Pradhan, Mater. Chem. Phys., 84, 291 (2004).
 DOI: 10.1016/j.matchemphys.2003.08.012
- [17] T. Akashi, Trans. Jpn. Inst. Met., 2, 171 (1961). DOI: 10.2320/matertrans1960.2.171
- [18] Q. Zhang, P. Zheng, L. Zheng, J. Zhou, H. Qin, J. Electroceram., 32, 230 (2014).
 DOI: 10.1007/s10832-013-9878-9
- [19] G. Kogias, V. Tsakaloudi, P. Van Der Valk, V. Zaspalis, J. Magn. Magn. Mater., **324**, 235 (2012).
 DOI: 10.1016/j.jmmm.2011.07.055