11

Исследование нутационной кинетики в сильном неоднородном поле

© В.В. Давыдов,¹ А.А. Гольдберг,¹ Р.В. Давыдов,^{1,2,3} В.И. Дудкин³

¹1Санкт-Петербургский политехнический университет Петра Великого, 195251 Санкт-Петербург, Россия ²Алферовский университет, 194021 Санкт-Петербург, Россия ³Санкт-Петербургский государственный университет телекоммуникаций им. профессора М.А. Бонч-Бруевича, 193232 Санкт-Петербург, Россия e-mail: davydov_vadim66@mail.ru

Поступоло в Редакцию 28 октября 2023 г. В окончательной редакции 25 декабря 2023 г. Принято к публикации 12 февраля 2024 г.

Доказана необходимость проведения новых исследований для текущих намагниченных сред, чтобы внести дополнения в описание движения компонент вектора намагниченности для случаев образования линии нутации. Отмечены недостатки, которые присущи используемым уравнениям Блоха для описания формирования линии нутации в катушке нутации с текущей средой. Предложены новые коэффициенты в уравнения Блоха, которые описывают движение трех компонент намагниченности (M_x , M_y и M_z) в катушке нутации в потоке жидкости. В разработанных уравнениях по длине катушки нутации учтен характер изменения значения неоднородности магнитного поля ΔB_0 от изменения B_1 при протекании жидкости с намагниченностью в заданном направлении. Для различных параметров B_0 и расхода текущей среды q рассчитаны формы линий нутации. Для линий нутации, полученных при различных условиях, приведены результаты исследований. Проведено сравнение теоретических расчетов с экспериментальными данными.

Ключевые слова: поток жидкости, магнитное поле, ядерный магнитный резонанс, линия нутация, инверсия намагниченности, релаксация, однородность магнитного поля, резонансная частота, ширина линии, отношение сигнал/шум.

DOI: 10.61011/JTF.2024.04.57540.273-23

Введение

В настоящее время во многих случаях при проведения исследований и измерений предпочтение отдается бесконтактным приборам и измерительным системам [1-6]. Таких устройств и приборов, работающих на разных физических принципах, в эксплуатации достаточно. Среди них особое место занимает ЯМР (ядерный магнитный резонанс), особенно для проведения исследований с потоками жидкости [1,7,8]. Это связано с тем, что ЯМР-измерители (ядерно-магнитные расходомерырелаксометры, а также спектрометры, магнитометры и вариометры на текущей жидкости) обладают широкими функциональными возможностями [1,4,9–12]. Стоит отметить, что ряд задач по контролю всех параметров потока, например, при работе с агрессивными средами и их смесями (концентрированная серная или азотная кислота, бензол и прочие) без применения ЯМРизмерителей решить крайне сложно [9-13]. То же самое относиться к случаям, когда при работе требуется соблюдение условий стерильности (биологические растворы и суспензии) [9–12]. Кроме того, ядерно-магнитный расходомер-релаксометр является одним из основных измерительных устройств в системах контроля, работающих в сложных условиях, например, в составе атомной энергетической установки — в системе охлаждения

на атомной электрической станции или на подвижном объекте [13-15].

Если для измерения расхода текущей среды q в ЯМР расходомере-релаксометре используется катушка нутации, то можно модернизацией электронной части прибора обеспечить с его помощью контроль параметров магнитного поля (индукции и однородности) [16-18]. В этом случае на промышленном предприятии или в научной лаборатории легко реализовать трансформацию в ЯМР-измерителях одного прибора в другой (например, расходомера-релаксометра в магнитометр (тесламетр)). Преимущества использования ЯМР-магнитометров по сравнению с другими типами магнитометров подробно рассмотрены в [16,19,20]. Основным из них является отсутствие необходимости проводить градуировку прибора в процессе его эксплуатации. Все измерения физических величин реализуются в реальном времени. В отличие от других типов магнитометров данный прибор также прост в эксплуатации [16-18]. Поэтому на основе нутационного ЯМР-магнитометра разработано и успешно эксплуатируется первичное [19] и вторичное [20] средство измерения индукции. Особо в конструкции данного магнитометра надо отметить полную развязку между его функциональными элементами [16]. Это уникальное свойство позволило разработать и поставить в эксплуатацию специальный государственный эталон (единиц индукции магнитного поля) [17].

Основной характеристикой в рассмотренных ранее ЯМР приборах с текущей жидкостью для проведения измерений является линия нутации. Есть несколько определений линии нутации, но в основном используют зависимость U_s от f_n , где f_n — частота поля B_1 , U_s — амплитуда ЯМР-сигнала [1,16,19,20–22]. Необходимо отметить, что данное определение соответствует случаю, когда катушка нутации размещена на участке трубопровода между магнитными системами магнита-поляризатора и магнита-анализатора [15–23].

С развитием научно-технического прогресса в мире возникает все больше различных задач по контролю структуры и характеристик магнитных полей как постоянных, так и переменных, у которых индукция больше 1 T с однородностью более 0.1 cm¹ в различных условиях (сильные электромагнитные помехи, повышенное радиационное воздействие и т.д.), где использование оптических датчиков [24–26] и других типов магнитометров [27] затруднено — например, в зоне ускорителя частиц или спектрометра высокого разрешения, вблизи преобразователей напряжения силовой энергетической установки на морских объектах с ядерным реактором и т.д. В этих условиях для контроля поля достаточно измерений его параметров с погрешностью порядка 2%.

Ядерно-резонансные магнитометры с линией нутации для измерений магнитных полей [14–23,28,29] эти сложные задачи позволяют успешно решать. Это возможно, так как катушку нутации с учетом особенности конструкции прибора можно расположить на необходимом расстоянии (например, 80, 100 m и более) от блоков формирования намагниченности и регистрации сигнала ЯМР-нутационного магнитометра [22,23,28–30]. Поток жидкости с инверсией намагниченности обеспечивает развязку между зоной измерения параметров магнитного поля и системами регистрации ЯМР-сигнала. Особое внимание надо обратить на то, что данная развязка является полной (регистрация ЯМР-сигнала от потока жидкости абсолютно бесконтактна).

В потоке жидкости изменения в направлении намагниченности (ее поворот на некоторый угол) в катушке нутации определяются параметрами магнитного поля в зоне ее размещения. Вся информация об этих изменениях в систему регистрации сигнала ЯМР поступает с протекающей жидкостью [14–23,28–30]. Это позволяет разместить устройство регистрации сигнала ЯМР в зоне, где влияние электромагнитных помех наименьшее, и нет радиационного воздействия.

Для обеспечения погрешности измерения параметров магнитного поля менее 2% в случае модернизации находящихся в эксплуатации нутационных ЯМРмагнетометров особое внимание уделяется выбору оптимальных параметров катушки нутации (как ее геометрических размеров, так и характеристик провода). Это, в свою очередь, позволяет обеспечить устойчивую работу электронных схем, которые управляют током при форимировании поля B_1 для создания инверсии намагниченности в текущей жидкости. Проведенные нами исследования с использованием рассмотренных ЯМР-измерителей (расходомеры и магнитометры) различного назначения показали, что геометрические размеры и форма катушки нутации влияют на погрешность измерения индукции и неоднородности поля [1,4,13,15–17,21–23,28–30]. В сильных неоднородных полях зависимость погрешности измерения этих параметров только усилится, поэтому необходимы дополнительные исследования для определения направлений по решению этой задачи.

Стоит отметить, что математические соотношения на основе уравнений Блоха [31–34], полученные для расчетов в однородных полях, применять в этих случаях нельзя. Полученые нами экспериментальные данные это подтверждают. Это существенно ограничивает возможности по проектированию систем для измерения параметров поля в нутационных ЯМР-магнитометрах.

Решение этих сложных задач является целью настоящей работы, для реализации которой требуется проведение новых экспериментальных и теоретических исследований. Эти исследования необходимы, чтобы понять, как адекватно учесть влияние изменения в неоднородности поля в секторе размещения катушки нутации посредством формирования новых коэффициентов в уравнениях Блоха. В условиях работы в сильных неоднородных магнитных полях крайне важно определить оптимальное значения B_1 для различных значений индукции и неоднородности магнитного поля в секторах, где будет располагаться катушка нутации, от расхода жидкости q, от времен релаксации жидкости, а также от геометрических размеров катушки нутации.

Экспериментальная установка и результаты исследования движения вектора намагниченности в сильных магнитных полях с различной неоднородностью

В настоящей работе поставлена новая сложная задача, решение которой потребовало разработки и создания специальной экспериментальной установки (рис. 1), в которой совмещены функции ЯМР-магнитометра и расходомера-релаксометра. Процессы создания намагниченности в текущей жидкости от циркулярного насоса *I* подробно расмотрены во многих работах [21–23,27–30,33,34]. Отметим, что в экспериментальной установке, использущей поле с $B_p = 1.023$ Т при внутреннем диаметре трубопровода $d_p = 15$ mm, неоднородность поля составляет 0.0044 ст⁻¹. В нашем случае вутренний диаметр трубопровода, на котором

Рис. 1. Схема специальной экспериментальной установки, в которой совмещены функции ЯМР-магнитометра и расходомерарелаксометра: 1 — циркулярный насос; 2 — магнит-поляризатор; 3 — сосуд-поляризатор; 4 — полюсные наконечники электромагнита; 5 — регулировочные винты электромагнита; 6 — катушки электромагнита; 7 — вспомогательные катушки; 8 — источник питания; 9 — катушка нутации; 10 — соединительный участок трубопровода; 11 — магнитный экран; 12, 21 радиочастотные генераторы; 13 — частотомер; 14 — катушка регистрации; 15 — сосуд-анализатор; 16 — магнит-анализатор; 17 — катушки модуляции; 18 — источник питания; 19 — устройство регистрации сигнала ЯМР; 20 — осциллограф; 22 устройство управления и обработки.

расположена катушка нутации 9, d_p , составляет 2.5 mm. Жидкость по этому трубопроводу из 3 поступает в катушку нутации 9.

Принципиально новым элементом в разработанной конструкции экспериментальной установки в отличие от ранее используемых является специальный электромагнит, в котором значение B_0 изменяется от 0 до 1.246 Т, неоднородность поля — от 0.0001 до 0.1 сm⁻¹. Управление величиной неоднородности поля осуществляется с помощью вспомогательных катушек *б* и регулировочных винтов 7 (рис. 1). Магнитное поле создается между полюсными наконечниками с диаметром 150 mm, расстояние между ними можно регулировать в пределах от 2 до 36 mm. Эти функциональные возможности электромагнита позволяют создать условия, в которых находится катушка нутации при проведении реальных измерений нутационным ЯМР-магнетометром.

Поворот вектора намагниченности M_p в катушке нутации 9 осуществляется воздействием поля B_1 на текущую намагниченную жидкость. Под действием поля B_1 в катушке 9 вектор намагниченности M_p поворачивается на угол φ_n . Значение φ_n зависит от параметров магнитного поля в секторе расположения катушки 9. Особенностью разработанной нами экспериментальной установки является следующее. Между катушками 9 и 14 для потока жидкости с намагниченностью действует условие адиабатической теоремы (ориентация вектора М_р не изменяется). Далее текущая среда поступает в катушку регистрации 14. В экспериментальной установке в качестве магнита-анализатора 16 используется электромагнит, так как необходима отстройка на резонансные частоты (по изменению индукции поля В_а) во время регистрации сигналов ЯМР, на которых уровень внешних помех минимальный. В условиях лаборатории это соответствовало индукции В_а = 0.348 Т. Между полюсами магнита в зоне размещения катушки регистрации 14 была обеспечена однородность поля $0.0001 \,\mathrm{cm}^{-1}$ при $d_a = 1.6 \,\mathrm{cm}$ (рис. 1). Для регистрации ЯМРсигнала использовался генератор слабых колебаний (автодин) [1,4,13,15–18,23,28–30], к которому подключалась катушка регистрации 14. Структурно генератор слабых колебаний является частью схемы регистрации 19 (рис. 1).

Исследования в экспериментальной установке проводились с использованием водопроводной воды при температуре Т, которая изменялась в диапазоне от 288 до 308 К. Один из регистрируемых ЯМР-сигналов от текущей воды для T = 291.2 К представлен на рис. 2. Времена релаксации воды при данной температуре следующие: $T_1 = 1.22$ s, $T_2^* = 0.84$ ms. Сигналы ЯМР, представленные на рис. 2, получены при $B_1 = 0$ (радиочастотное поле отключено) и с инверсией намагниченности ($\phi_n = 180^\circ$). Катушка нутации 9, которая используется в экспериментальной установке, имеет следующие парамеры: длина $L_n = 0.35$ сm, диаметр $d_n = 0.6$ сm. Она расположена в поле с $B_0 = 1142 \text{ mT}$ и неоднородностью $6.16 \cdot 10^{-2} \, \text{cm}^{-1}$. Для обеспечния максимальной чувствительности при измерении параметров магнитного поля в экспериментальной установке было установлено оптимальное значение расхода жидкости $q_{\text{opt}} = 2.04 \text{ ml/s}.$ При таком значении q_{opt} обеспечивается максимальное отношением сигнал/шум (S/N) в регистрируемом сигнале ЯМР.

Рис. 2. Сигналы ЯМР от потока намагниченной жидкости (водопроводная вода) при $f_m = 50$ Hz: a — соответствует $B_1 = 0, b$ — соответствует полной инверсии намагниченности.

Рис. 3. Зависимость изменения амплитуды сигнала ЯМР U_s от f_n (линия нутации) для водопроводной воды при различных температурах *T*. Расход воды $q_{opt} = 2.04$ ml/s. Индукция поля $B_{1 exp} = 28.01 \,\mu$ T. Графикам I-3 соответствуют температуры *T*: 287.2, 291.1, 309.2 К.

Для текущей водопроводной воды при различных ее параметрах (температура, расход и т.д.) на экспериментальной установке были получены линии нутации. На рис. 3 для различных температур T текущей воды представлены экспериментальные линии нутации. В электромагните при измерении линии нутации значения неоднородности и индукции поля в секторе расположения катушки нутации 9 не изменялись. Отметим, что катушка 9 располагается на полимерном каркасе. Это позволило полностью исключить влияние изменения температуры воды T в небольших пределах (порядка 20-25 K) на полюса магнитной системы.

Для контроля величины неоднородности магнитного поля мы использовали экспериментально измеренные значения Δf_n (ширина линии нутации, которая определяется как $\Delta f_n = f_2 - f_1$ (рис. 3)). Проведенные экспериментальные исследования с использование текущей воды при $T = 294.4 \,\mathrm{K}$ (расход $q = 2.04 \,\mathrm{ml/s}$) с использованием катушки нутации с размерами $L_n = 0.35 \, \mathrm{cm}$ и $d_n = 0.6 \,\mathrm{cm}$ позволили определить в зоне электромагнита неоднородность поля $\Delta n = 0.0614 \pm 0.0003 \, \mathrm{cm}^1$. Контроль значения неоднородности магнитного поля в этой зоне размещения катушки нутации был реализован с использованием измерителя магнитной индукции "Ш1-1". Дополнительно для контроля применялся многофункциональный тесламер Measure ac & dc magnetic field DX-160. С их использованием были получены следующие результаты — $0.0619 \pm 0.0005 \,\mathrm{cm^{-1}}$ и $0.0619 \pm 0.0005 \text{ cm}^{-1}$. Анализ результатов трех измерений показал, что они совпадают в пределах погрешности измерений. Данное сопадение подтверждает адекватность предложенного нами в эксперименте метода контроля неоднородности магнитного поля.

Исследование характера изменения компонент намагниченности M_z, M_x и M_y в катушке нутации для определения новых коэффициентов в уравнениях Блоха

Для описания движения компонент (продольной M_z и поперечных M_x и M_y) намагниченности M в катушке 9 (рис. 1) в соответствии с классической теорией применяют феноменологические уравнения Блоха [31–36]. Эти уравнения часто записываются во вращательной системе координат, в которую осуществляется переход по методу Вагнесса [37,38]:

$$dM'_{x}/dt + M'_{x}/T_{2} = -\Delta f M_{y},$$

$$dM'_{y}/dt + M'_{y}/T_{2} = \Delta f M'_{x} - \gamma B_{1}M'_{z},$$

$$dM'_{z}/dt + M'_{z}/T_{1} = \chi_{0}B_{0}/T_{1} + \gamma B_{1}M'_{y}.$$
 (1)

Необходимо отметить, что в случае совпадения частоты нутации f_n с частотой $f_0 = \gamma B_0/2\pi$ $(\Delta f = f_0 - f_n)$ в катушке регистрации 14 формируется ЯМР-сигнал с инверсией намагниченности (амплитуда данного сигнала максимальна). Для этого случая значение f_n определяется следующим соотношением [1,4,13,15–17,21–23,28–30,33,34]:

$$f_n = \gamma \cdot B_0 / 2\pi. \tag{2}$$

На соотношении (2) основан принцип измерения параметров поля с использованием нутационного ЯМРмагнитометра с текущей средой (значение U_s (с инверсией намагниченности) зависит от B_1 в катушке 9 (рис. 1). Для определения максимума регистрируемого ЯМР-сигнала с инверсией намагниченности уравнения (1) решаются рядом ученых при равенстве времен релаксации $T_1 = T_2$ для значения $\Delta f = 0$. Определяется аналитическое выражение для M, что позволяет получить выражение для определения B_1 , которое соответствует максимуму M_z :

$$\gamma B_1 \cdot t_n = \pi + 2\pi n, \tag{3}$$

где t_n — время протекания жидкости по катушке нутации.

Наиболее целесообразным для определения B_1 с использованием (3) считается выбор n = 0. Остальными значения *n* пренебрегают [11,28,30,33–36]. При значении n = 0 получается следующая формула: $B_1 = \pi/(\gamma t_n)$. Во многих работах это характерезуется как воздействие π -импульса. В этом случае время t_n определяется через объем V_n , который занимает сегмент намагниченной жидкости при движении его через катушку нутации $(t_n = V_n/q)$. При расчете необходимого значения B1 также учитывается диапазон изменения q. С учетом этих факторов рассчитываются параметры электронных схем для обеспечения диапазона изменений значений B_1 в катушке нутации. В этом диапазоне изменения значений B_1 для различных значений измеряемой индукции и неоднородности магнитного поля должно быть получено максимальное значение U_s с инверсией намагниченности.

С использованием (3) по результатам экспериментальных исследований (ранее был определен q_{opt}, а также установлено значение V_n) было рассчитано $B_{1 \text{calc}} = 23.01 \,\mu\text{T}$. В соответствии с теорией нутационной кинетики [31-36] расчетное значение В_{1calc} необходимо сопоставлять экспериментальныму значению $B_{1 exper}/2$. Полученные даные по $B_{1 calc}$ и $B_{1 exper}$ представлены в таблице. Сравнение полученных значений В_{1calc} и В_{1exper} показало существенное расхождение между расчетом и экспериментом. Однородность поля В₀ в эксперименте составляла 0.001 cm^{-1} . Необходимо отметить, что в формуле (3) при определении B_1 есть ряд несоответствий с условиями проведения эксперимента. Особое внимание надо обратить на то, что диаметр катушки нутации d_n не учитывается в расчетах. Эксперименты показали, что его величина может быть в 2–3 раза больше значения d_p , применяемого для определения V_n.

Анализ экспериментальных данных различных исследований [4,7-12,28-30,33-36] показал, что поле B₁ вне объема катушки нутации (за пределами ее геометрических размеров) также воздействует на поток жидкости с намагниченностью. Это воздействие есть с двух сторон катушки нутации и может распространяться на расстоянии l_a до диаметра намотки d_n . Проведенные нами исследования и данные других ученых [28-30,33-36] показали, что значение l_a зависит от соотношения между d_n и L_n . Кроме того, при расчетах с текущей жидкостью необходимо учитывать коэффициент заполнения η потоком жидкости объема катушки нутации [28-30,33,34]. С учетом зоны действия В1 за пределами геометрических размеров катушки нутации был выполнен расчет $B_1^{1 \text{ calc}}$. Его результаты представлены в таблице. В выполненном расчете использовалось предельное значение длины зоны действия $L_n + 2d_n$ для определении V_n . Данные теоретических расчетов отличаются от экспериментальных данных для неоднородности 10^{-3} на 10-15%.

Проведенные нами исследования позволили установить следующее. В катушке нутации на характер движения вектора намагниченности существенное влияние, кроме значения поля B_1 и параметров катушки нутации (L_n и d_n), а также величины η , оказывает неоднородность магнитного поля ΔB_0 в зоне расположения катушки нутации.

Дополнительно было исследовано влияние воздействия ΔB_0 на изменения действия поля B_1 на поток жидкости с намагниченностью за пределами катушки нутации. Было установлено, что при $B_1 \leq B_0/100$ действием поля B_1 на намагниченную текущую жидкость за пределами геометрических размеров катушки 9 можно

N⁰	<i>B</i> ₀ , T	Неоднородность, сm $^{-1}$	$B_{1\exp},\mu T$	$2B_1^{1 ext{calc}}, \mu T \ n = 0$	$2B_1^{2\text{calc}}, \mu \text{T}$	$2B_1^{3 \text{calc}}, \mu \text{T}$
1	0.423037	0.001	9.95 ± 0.10	10.58	11.48	10.85
2	0.423037	0.005	10.10 ± 0.10	10.58	24.45	11.53
3	0.423037	$8.6 \cdot 10^{-3}$	10.64 ± 0.10	17.54	30.81	12.01
4	0.423037	$2.86 \cdot 10^{-3}$	12.34 ± 0.13	46.62	—	14.27
5	0.423037	$5.97 \cdot 10^{-3}$	15.24 ± 0.15	46.62	—	17.65
6	0.864076	0.001	9.97 ± 0.10	10.58	25.08	8.72
7	0.864076	0.006	10.15 ± 0.10	17.21	34.56	10.95
8	0.864076	$8.7 \cdot 10^{-3}$	11.27 ± 0.11	17.21	41.64	12.91
9	0.864076	$2.91 \cdot 10^{-2}$	13.66 ± 0.13	46.62	—	15.42
10	0.864076	$6.07 \cdot 10^{-2}$	16.60 ± 0.16	46.62		18.80
11	1.130666	0.001	10.02 ± 0.10	10.58	37.41	11.17
12	1.130666	0.006	10.19 ± 0.10	17.21	47.45	11.83
13	1.130666	$8.8 \cdot 10^{-3}$	11.71 ± 0.11	46.62		13.37
14	1.130666	$2.96 \cdot 10^{-2}$	14.67 ± 0.13	46.62	—	16.45
15	1.130666	$6.16 \cdot 10^{-2}$	18.32 ± 0.18	46.62	—	20.28

Сравнение значений индукции В₁, измереных и рассчитанных для различных случаев

Примечание. Экспериментальным измерениям соответствует $B_{1\text{exp}}$, расчетам соответствууют значения $B_1^{1\text{calc}}$, $B_1^{2\text{calc}}$ и $B_1^{3\text{calc}}$ для потока водопроводной воды при T = 291.1 K, $q_{\text{opt}} = 2.04 \text{ ml/s}$. Расчеты выполнялись для различных значений B_0 и неоднородности поля. Значение $B_1^{1\text{calc}}$ получены с использованием (3), значения $B_1^{2\text{calc}}$ — на основе решения уравнения (1), в которых неоднородность ΔB_0 учитывается через соотношение (4). Для получения значения $B_1^{3\text{calc}}$ решалось уравнение (5) с новыми коэффициентами.

пренебречь. На расстояниях $L_n + d_n/10$ и больше действие поля B_1 в расчетах можно не учитывать.

В данных по расчету B₁^{lcalc}, представленных в таблице, было учтено, что в секторе расположения катушки нутации происходит изменение неоднородности магнитного поля при изменении соотношения между B₁ и ΔB₀. При изменениях неоднородности поля в диапазоне $0.0001 - 0.001 \,\mathrm{cm}^{-1}$ значения $B_1^{1 \,\mathrm{calc}}$ и $B_{1 \,\mathrm{exper}}$ отличаются между собой (см. таблицу) не более чем на 10%. Проведенные эксперименты и расчеты показали, что расхождение между $B_1^{1 \text{ calc}}$ и $B_{1 \text{ exper}}$ увеличивается с ростом ΔB_0 . В формуле (3) при определении $B_1^{1 \text{ calc}}$ значения ΔB_0 нет, так как данная формула была выведена при предположении однородности поля $0.0001\,\mathrm{cm}^{-1}$ по всему потоку жидкости с намагниченностью, который находится в катушке нутации 9 (рис. 1). За пределами 9 действие поля В1 на поток жидкости с намагниченностью предполагалось незначительным.

Для разработчиков ЯМР-расходомеров-релаксометров получаемые несоответствия между теоретическими и экспериментальными значениями B_1 при однородностях поля B_0 порядка $10^{-4}-10^{-2}$ cm⁻¹ не создавали проблем. Это связано с тем, что измеряемый в этих устройствах расход жидкости q меняется по величине не меньше чем на два порядка. Также в потоке существенно могут изменяться времена релаксации. Поэтому для этих случаев измерения значения q катушки нутации устанавливаются в постоянном магните с $B_0 \approx 30-40$ mT при неоднородности 0.001 cm⁻¹. Значение q_{opt} в 10 раз меньше верхнего предела q, который необходимо контролировать. Поскольку при определении оптимального значения B_1 используется в (3) значение q_{opt} , длину L_n катушки нутации при проектировании прибора

стараются сделать максимальной (размеры магнита это позволяют). Значение Δf_n при высокой однородности магнитного поля небольшое. Это позволяет учитывать в последнюю очередь значение B_1 при разработке прибора. Проведенные нами эксперименты показали, что при максимальной длине L_n всегда можно получить максимум S/N в сигнале ЯМР с инверсией намагниченности. Чем больше значение L_n , тем больше запас по увеличению значения B_1 (особенно с учетом того, что поле в магнитах таких приборов, где размещается катушка нутации, обладает высокой однородностью).

Во время измерения сильных неоднородных полей с использованием нутационного ЯМР-магнитометра катушка нутации 9 (рис. 1) расположена в поле с B_0 больше 1 Т. Значение неоднородности магнитного поля в месте, где располагается катушка нутации, на три порядка и более выше, чем в зонах, где она расположена в ЯМР-расходомерах-релаксометрах. При работе магнитометра в режиме измерения значение расхода жидкой среды q оптимальное [1,15–18,21–23,28–30,33]. Это значение поддерживается с высокой стабильностью. Поэтому крайне важно определить минимальное значение В1 для формирования инверсии намагниченности в потоке жидкости. Зная это значение B_1 , можно рассчитать минимальные размеры катушки нутации, которые позволят обеспечить минимальное значение величины Δf_n .

На текущей водопроводной воде при T = 291.2 К были измерены линии нутации (рис. 4). Эти измерения проводились для различных значений неоднородности ΔB_0 в месте, где располагалась катушка нутации. Значение расхода жидкой среды $q_{opt} = 2.04$ ml/s. Величина поля B_1 была установлена по максимуму, который в намагниченной текущей жидкости соответствовал макси-

Рис. 4. Зависимость изменения амплитуды сигнала ЯМР U_s для потока намагниченной жидкости (водопроводная вода) от изменения f_n (линия нутации) при индукции $B_0 = 1.13067$ Тл, $q_{opt} = 2.04$ ml/s. Кривым I-4 соответствует индукция B_{lexp} и неоднородность в μ T и сm⁻¹ соответственно: 12.78, 0.01; 14.67, 0.0296; 18.32, 0.0616; 24.21, 0.0945.

мальному значению S/N для сигнала ЯМР с инверсией намагниченности. Значение индукции B_0 в зоне расположения катушки нутации поддерживалось постоянной регулировкой тока в обмотках электромагнита. Контроль значения B_0 был реализован по частоте нутации f_n .

Анализ экспериментальных результатов показал, что увеличение неоднородности ΔB_0 приводит к уменьшению значения U_s с инверсией намагниченности. Увеличивая значение поля B_1 можно до определенного момента компенсировать уменьшение U_s по причине увеличения ΔB_0 (рис. 4, кривая 4). Это связано с тем, что для каждого интервала изменения ΔB_0 у катушки нутации существуют оптимальные значения ее параметров (длина, диаметр, число витков и т.д.). Выбор индукции B_1 также влияет на крутизну склона линии нутации. Она определяется максимальным отношением S/N при минимальном значении Δf_n . Это обеспечит погрешность измерения параметров магнитного поля не выше 1%.

Установить оптимальное значение B_1 с учетом влияния ΔB_0 по полученному соотношению (3) невозможно. Полученные результаты (см. таблицу) это подтверждают.

В ряде случаев некоторые авторы [33–36] в уравнениях (1) влияние неоднородности магнитного поля ΔB_0 на амплитуду U_s и значение Δf_n учитывали с помощью соотношения для определения T_2 [31,32]:

$$\frac{1}{T_2} + \gamma \frac{\Delta B_0}{\pi} = \frac{1}{T_2^*},$$
 (4)

где T_2^* — эффективное время поперечной релаксации.

Проведенные нами исследования (данные B_1^{2calc} представлены в таблице) показали, что значения B_1^{4calc} и B_{1exp} совпадают только при однородностях 0.0001 сm⁻¹. При малых длинах катушки нутации при такой однородности поля B_0 значение $T_2 = T_2^*$ в соответствии с (4). Далее с увеличением неоднородности до 0.001 сm⁻¹ и более разница между B_1^{2calc} и B_{1exp} увеличивается. При больших значениях ΔB_0 определить B_1^{2calc} из (1) с использованием (4) невозможно. Поэтому ряд клеток в таблице не заполнен. Это не позволяет построить линию нутации, которая наблюдается в эксперименте.

Дополнительно были проверены возможности системы уравнений (1) с использованием (4) на данных по значениям магнитных полей и их неоднородностей в ускорителях. В нутационных ЯМР-магнитометрах в этих случаях используют специальные растворы с временами релакции, в которых $T_1 \ge 5.0$ s, $T_2 \ge 0.6$ s. Полученные результаты еще раз показали, что рассмотренная теория не позволяет получить линию нутации, которая наблюдается в эксперименте.

Теоретически этот факт можно объяснить тем, что в текущей жидкости поперечная компонента вектора намагниченности, которая сформировалась в катушке нутации, не принимает участие в формировании линии нутации, которая определяется по амплитуде сигнала ЯМР в катушке регистрации 14, размещенной в магнитеанализаторе 16. В конструкциях нутационных ЯМРмагнетометров жидкая среда протекает между катушками нутации 9 и регистрации 14 (рис. 1) за время t_c , которое составляет величину более чем 4 · T₂. За такой промежуток времени поперечные компоненты намагниченности М уменьшаются более чем в 60 раз от сформированных значений в катушке 9. Кроме того, рассеянное магнитное поле 16 расположено в одной плоскости с поперечными компонентами. Это приводит к полному их затуханию при поступлении потока жидкости с инверсией намагниченности в катушку регистрации 14. Поэтому регистрируемый сигнал ЯМР с инверсией намагниченности определяется компонентой M_z. На рис. 3 представлен один из вариантов исследований, который это подтверждает.

Анализ представленных на рис. З зависимостей показывает, что повышение температуры T текущей жидкой среды изменяет значение амплитуды ЯМР-сигнала с инверсией намагниченности (это связано с изменением значения T_1 — изменяются условия намагниченности для жидкости, а также скорость процессов релаксации). Изменение T_2 , которое также связано с изменением T, не влияет на значения частот f_1 и f_2 . При постоянном значении ΔB_0 их положение не изменяется ($\Delta f_n = \text{const}$). При этом в системе регистрации сигнала ЯМР изменяется его форма линии, по которой определяется значение T_2^* для определения T_2 с использованием (4).

Особенностью нашей разработки в экспериментальной установке является отсутствие влияния изменения *T*

Рис. 5. Расчетная зависимость изменения амплитуды сигнала ЯМР U_s от расстройки частоты f_n от частоты f_0 (линия нутации) для параметров жидкой среды $T_1 = 1.23$ s, $T_2 = 1.23$ ms и значения индукции $B_0 = 1.13067$ T, $q_{opt} = 2.04$ ml/s. Графики a-d соответствуют значениям индукции B_1 и неоднородности в μ T и cm⁻¹ соответственно: 14.52, 0.01; 16.45, 0.0296; 20.28, 0.0616; 27.25, 0.0945.

в потоке жидкости на значение ΔB_0 . Это обеспечивается следующим. Катушка регистрации размещена на трубопроводе с использованием каркаса из полимерного материала (устойчивого к нагреву). Поэтому влияние изменения температуры *T* текущей среды на температуру полюсов магнита-анализатора *16* несущественно (тепловой контакт между трубопроводом и полюсами магнита минимален).

Исследование формы линии нутации текущей жидкости с использованием новых коэффициентов в уравнениях движения вектора намагниченности

Экспериментальным и теоретическим исследованиям нутационной кинетики посвящено много работ [1,9–17,22,23,28–30]. Отдельным разделом среди них можно выделить работы, в которых представлены различные теоретические модели [31–36] для описания явления нутации. Анализ работ многих ученых, а также опыт проведения экспериментов с текущей жидкостью показал, что влияние неоднородности ΔB_0 в (1) на движение M_x , M_y и M_z надо учитывать в одном слагаемом с $\Delta \omega$. Тогда во вращающейся системе координат, в которую осуществляется переход по методу Вагнесса [37,38], система (1), в которой теперь учитывается влияние однородности поля ΔB_0 , преобразуется в следующую:

$$dM'_{x}/dt + M'_{x}/T_{2} = -(\Delta f + (\Delta B_{0}/t_{n}) \cdot \gamma \cdot t)M'_{y},$$

$$dM'_{y}/d_{t} + M'_{y}/T_{2} = (\Delta f + (\Delta B_{0}/t_{n}) \cdot \gamma \cdot t)M'_{x} - \gamma \cdot B_{1}M'_{z},$$

(5)
$$dM'_{z}/dt + M'_{z}/T_{1} = \gamma \cdot B_{1}M'_{y} + M_{0}/T_{1}.$$

В новых коэфициентах для уравнений Блоха, в которых учитывается значение ΔB_0 в (5), предлагается линейная зависимость изменения ΔB_0 по L_n . Такой поход представления зависмости ΔB_0 по L_n обосновывается

тем, что значение L_n в конструкциях нутационных ЯМРмагнитометров при работе в сильных неоднородных полях составляет 0.3 ст и менее. Значение L_n много меньше расстояний, на которых размещается катушка нутации от систем 2 и 16 (рис. 1). Эти расстояния могут достигать 100 и более метров. На таком малом отрезке по сравнению с расстояниями до систем 2 и 16 разница между апроксимационными кривыми (линейной, квадратичной и т.д.) изменения ΔB_0 по течению потока жидкости незначительны. С увеличением значения L_n и сокращением расстояния от катушки нутации до систем 2 и 16 апроксимационную зависмость для ΔB_0 можно будет пересмотреть.

Введенное в уравнения (5) время t_n позволяет учесть, как в катушке 9 (рис. 1) по течению потока жидкости с намагниченностью изменяется действие на него поля B_1 . Из соотношений для нутационной кинетики [22,23,28–30,33–36] нами было получено выражение для определения t_n в катушке нутации:

$$t_n = \pi d_p(k)^{1/2} / (\gamma B_0 \Delta B_n q)^{1/2}, \tag{6}$$

где ΔB_n — неоднородность поля в секторе расположения катушки 9 (рис. 1), k — корень характеристического уравнения. Данное уравнение позволяет учитывать изменение Δf_n для случая изменения значения ΔB_0 .

Характерестическое уравнение является результатом математического решения (1) относительно компонент намагниченности M_z , M_y , M_x . Это решение получено для $\Delta f = 0$, когда $M_z = 1$ и для $\Delta f = \gamma \Delta B_0$, когда $M_z = 0$ в виде тригонометрической функции:

$$\cos\left(\pi(1+k^2)^{1/2}\right) = -k^2.$$
 (7)

Решение этого уравнения содержит два корня $k_{1,2} = \pm 0.81$. Для вычисления t_n используют корень $k_1 = 0.81$. С использованием экспериментально измеренных значений T_1 , $T_2\Delta B_0$ и t_a были рассчитаны линии нутации на основе решений уравнений (5) для водопроводной воды при T = 291.1 К. В качестве примера на рис. 5 представлены линии нутации для различных значений неоднородности ΔB_0 . Расчет выполнялся для значений B_1 , при которых экспериментально был получен сигнал ЯМР с инверсией намагниченности. В подписи к рис. 5 все значения полей для сравнения величин представлены в еденицах индукции магнитного поля.

Анализ полученных данных показал, что увеличение значения неоднородности ΔB_0 приводит к увеличению ширины линии нутации Δf_n . Так же, как и в эксперименте, можно в некотором интервале увеличения ΔB_0 получить для сигнала ЯМР с инверсией намагниченности компенсацию уменьшения амплитуды, изменяя B_1 . Необходимо отметить, что в случае создания в катушке нутации оптимальных значений поля B_1 , соответствующих максимуму отношения S/N, амплитуды сигналов ЯМР почти не изменяются. Данная ситуация наблюдается при проведении экспериментов.

Результаты расчета оптимальных значений В₁ с использованием (5) представлены таблице (это столбец со значениями B₁^{3calc}). Анализ результатов расчета значений поля B_1 (рис. 5) с измеренными экспериментальными данными (рис. 4), а также другими данными, представленными в таблице, показывает, что различие между величинами $B_{1 \exp}$ и $B_1^{3 \operatorname{calc}}$ не превышает 20%. Полученные нами оптимальные значения В₁ с помощью (5) являются ориентировочными для разработчиков нутационных ЯМР-магнитометров и полностью удовлетворяют их требованиям. В соответствии с ними при изготовлении катушки нутации необходимо предусмотреть возможность увеличения B_1 от оптимального значения на 20-50% в зависимости от решаемых задач и условий эксплуатации нутационного ЯМР-магнетометра. Это позволяет избежать различных сбоев как при длительной работе прибора, так при изменении внешних факторов (например, повышение температуры и т.д.). Поэтому расхождение в B_1 между результатами расчета и эксперимента в действующей конструкции нутационного ЯМР-магнитометра может быть легко компенсировано.

Заключение

Анализ экспериментальных и расчетных данных, а также их сопоставление, показал, что предложенные авторами новые коэффициенты, которые учитывают влияние неоднородности в уравнениях Блоха, позволяют корректно представить процесс образования линии нутации в нутационных ЯМР-магнитометрах с текущей средой. Результаты моделирования процессов нутационной кинетики показали, что система уравнений (5) позволяет рассматривать задачи и получать их решения для любой величины однородности ΔB_0 в секторе размещения катушки нутации.

По результатам расчетов с использованием (5) можно определить оптимальное значение поля B_1 (максимальное значение S/N), что позволит рассчитать параметры катушки нутации и электронных схем, которые к ней подключаются. Это необходимо для случаев модернизации действующих конструкций нутационных ЯМРмагнитометров или при разработке новых моделей, чтобы выполнять измерения с погрешностью не более, чем 1%. Такое раньше реализовать было крайне сложно. Параметры катушки нутации ранее подбирались в основном опытным путем, что значительно затрудняло решение многих задач.

Наибольший интерес для читателей представлял бы вывод аналитического выражения для B_1 при решении предложенных нами уравнений (5), как это сделано в [31–36] для случая размещения катушки нутации в однородном магнитном поле B_0 , так как компьютерные методы, которые мы применили для расчета линии нутации, не могут заменить в полном объеме аналитическое выражение для *B*₁. Поиск решения этой задачи будет нами продолжен в дальнейших исследованиях.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- В.В. Давыдов, В.И. Дудкин, А.Ю. Карсеев. Письма в ЖТФ, 41 (7), 103 (2015). [V.V. Davydov, V.I. Dudkin, A.Yu. Karseev. Tech. Phys. Lett., 41 (4), 355 (2015). DOI: 10.1134/S1063785015040057]
- M.S. Mazing, A.Y. Zaitceva, Y.Y. Kislyakov, S.A. Avdyushenko. Intern. J. Pharmaceutical Research, 12, 1974 (2020). DOI: 10.31838/iipr/2020.SP2.355
- [3] A.S. Grevtseva, K.J. Smirnov, K.V. Greshnevikov, V.Yu. Rud,
 A.P. Glinushkin. J. Phys.: Conf. Series, **1368** (2), 022072 (2019). DOI: 10.1088/1742-6596/1368/2/022072
- [4] А.И. Жерновой, А.А. Комлев, С.В. Дьяченко. ЖТФ, 86 (2), 146 (2016). [А.І. Zhernovoi, А.А. Komlev, S.V. D'yachenko. Tech. Phys., 61 (2), 302 (2016). DOI: 10.1134/S1063784216020274]
- [5] В. Антонов, П. Ефремов. ЖТФ, 90 (9), 1506 (2020). DOI:10.21883/JTF.2020.09.49683.24-20
 [V. Antonov, P. Efremov. Tech. Phys., 65 (9), 1446 (2020). DOI: 10.1134/S1063784220090042]
- [6] M.S. Kuzmin, S.A. Rogov. Quant. Electron., 48 (11), 1048 (2018). DOI: 10.1070/QEL16751
- B. Gizatullin, M. Gafurov, A. Vakhin, A. Rodionov, G. Mamin,
 S. Orlinskii, C. Mattea, S. Stapf. Energy Fuels, 33 (11), 10923 (2019). DOI: 10.1021/acs.energyfuels.9b03049
- [8] M.Y. Marusina, E.A. Karaseva. Asian Pacific J. Cancer Prevention, 19 (10), 2771 (2018).
 DOI: 10.22034/APJCP.2018.19.10.2771
- [9] M.Y. Marusina, B.A. Bazarov, P.A. Galaidin, A.A. Silaev, M.P. Marusin, E.Y. Zakemovskaya, A.G. Gilev, A.V. Alekseev. Measurement Techniques, 57 (5), 461 (2014). DOI: 10.1007/s11018-014-0478-0
- B. Gizatullin, M. Gafurov, A. Rodionov, S. Stapf, S. Orlinskii. Energy Fuels, 32, 11261 (2018).
 DOI: 10.1021/acs.energyfuels.8b02507
- [11] M.Y. Marusina, B.A. Bazarov, P.A. Galaidin, M.P. Marusin, A.A. Silaev, E.Y. Zakemovskaya, Y.N. Mustafaev. Measurement Techniques, 57 (6), 580 (2014). DOI: 10.1007/s11018-014-0501-5
- [12] K.T. O'Neill, L. Brancato, P.L. Stanwix, E.O. Fridjonsson, M.L. Johns. Chem. Eng. Sci., 202, 222 (2019).
 DOI: 10.1016/j.ces.2019.03.018
- [13] В.В. Давыдов. Опт. и спектр., 121 (1), 18 (2016).
 [V.V. Davydov. Opt. Spectr., 121 (1), 18 (2016).
 DOI: 10.1134/S0030400X16070092]
- [14] F. Deng, L. Xiao, M. Wang, Ye Tao, L. Kong, X. Zhang, X. Liu, D. Geng. Appl. Magn. Resonance, 47 (10), 1239 (2016). DOI: 10.1007/s00723-016-0832-2
- [15] С.В. Дьяченко, А.И. Жерновой. ЖТФ, 86 (12), 78 (2016).
 [S.V. D'yachenko, А.І. Zhernovoi. Tech. Phys., 61 (11), 1835 (2016). DOI: 10.1134/S1063784216120112]
- [16] V.V. Davydov, E.N. Velichko, V.I. Dudkin, A.Y. Karseev. Measurement Techniques, 57 (6), 684 (2014).
 DOI: 10.1007/s11018-014-0519-8

- [17] ГОСТ 8.095–73. Государственный первичный эталон и общесоюзная поверочная схема для средств измерения магнитной индукции.
- [18] ГОСТ 8.144–75. Государственный специальный эталон и общесоюзная поверочная схема для средств измерения магнитной индукции в диапазоне 0.05–2 Тл.
- [19] В.М. Симонов, В.К. Ягола. Измерительная техника, 10, 76 (1975).
- [20] Г.К. Ягола, Ю.И. Казанцев, В.М. Симонов. Измерительная техника, **3**, 52 (1976).
- [21] В.В. Давыдов, В.И. Дудкин, А.Ю. Карсеев. Письма в ЖТФ,
 41 (7), 103 (2015). [V.V. Davydov, V.I. Dudkin, A.Y. Karseev. Tech. Phys. Lett., 41 (4), 355 (2015).
 DOI: 10.1134/S1063785015040057
- [22] V.V. Davydov, V.I. Dudkin, E.N. Velichko. Measurement Techniques, 59 (2), 176 (2016).
 DOI: 10.1007/s11018-016-0938-9
- [23] V.V. Davydov, V.I. Dudkin, A.Y. Karseev. Instrum.
 Experimental Techniques, 58 (6), 787 (2015).
 DOI: 10.1134/S0020441215060056
- S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, Y.A. Boukenter, C. Marcandella. IEEE Transactions Nucl. Sci., 60 (3), 2015 (2013). DOI: 10.1109/TNS.2012.2235464
- [25] П.Ф. Кашайкин, А.Л. Томашук, М.Ю. Салганский, И.С. Азанова, М.К. Цибиногина, Т.В. Димакова, А.Н. Гурьянов, Е.М. Дианов. ЖТФ, 89 (5), 752 (2019).
- [26] D.S. Dmitrieva, V.M. Pilipova, V.Y. Rud. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), **12526 LNCS**, 348 (2020). DOI: 10.1007/978-3-030-65729-1 30
- [27] V.A. Sapunov, J. Rasson, A.V. Sergeev, B.Y. Rubinstein, A.V. Sapunov. Magnetic Resonance in Solids, 18 (2), 16210 (2016).
- [28] V.V. Davydov, V.I. Dudkin, E.N. Velichko, A.Y. Karseev. Measurement Techniques, 58 (5), 556 (2015). DOI: 10.1007/s11018-015-0753-8
- [29] А.И. Жерновой, С.В. Дьяченко. ЖТФ, 85 (4), 118 (2015).
 [А.І. Zhernovoi, S.V. D'yachenko. Tech. Phys., 60 (4), 595 (2015). DOI: 10.1134/S1063784215040325]
- [30] В.В. Давыдов, В.И. Дудкин, А.А. Петров, Н.С. Мязин. Письма в ЖТФ, 42 (13), 64 (2016). [V.V. Davydov, V.I. Dudkin, A.A. Petrov, N.S. Myazin. Tech. Phys. Lett., 42 (7), 692 (2016). DOI: 10.1134/S1063785016070051]
- [31] A. Leshe. Nuclear Induction (Veb Deustscher Verlag Der Wissenschaften, Berlin, 1963)
- [32] A. Abragam. *The Principles of Nuclear Magnetism* (Qxford at the Clarendon Press, Oxford UK, 1961)
- [33] А.И. Жерновой. Измерение магнитных полей методом нутации (Энергия, Л., 1979)
- [34] П.М. Бородин, М.И. Володичев, В.В. Москалев, А.А. Морозов. *Ядерный магнитный резонанс* (Изд-во Ленинградского ун-та, Л., 1982)
- [35] А.Е. Мефед. ЖЭТФ, 86 (1), 302 (1984).
- [36] В.И. Чижик. Ядерная магнитная релаксация (Изд-во Ленинградского ун-та, Л., 1991)
- [37] F. Bloch, R.K. Wangsness. Phys. Rev., 78 (1), 82 (1950).
- [38] B.A. Jacobsohn, R.K. Wangsness. Phys. Revi., 73 (9), 942 (1948).