05.3;06.1 Тепловые свойства диметилсульфоксида в условиях ограниченной геометрии

© Н.Р. Григорьева¹, Н.А. Грунина², А.И. Недбай¹, А.Л. Пирозерский¹, О.И. Смирнова¹

¹ Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

² Санкт-Петербургский государственный университет гражданской авиации им. Главного маршала авиации А.А. Новикова, Санкт-Петербург, Россия

E-mail: n.r.grigorieva@spbu.ru

Поступило в Редакцию 13 декабря 2023 г. В окончательной редакции 16 января 2024 г. Принято к публикации 18 января 2024 г.

Методом дифференциальной сканирующей калориметрии проведены исследования фазовых переходов плавление—кристаллизация диметилсульфоксида в пористых стеклах с различным средним размером пор. Выявлено влияние размерных эффектов на характеристики переходов. Установлен линейный характер зависимости сдвига температуры плавления от обратного среднего радиуса пор.

Ключевые слова: диметилсульфоксид, фазовые переходы, наночастицы, размерные эффекты.

DOI: 10.61011/PJTF.2024.08.57521.19842

Диметилсульфоксид (ДМСО) широко применяется в современной науке и технике, в частности, как компонент криопротекторов в криобиологии (см. работу [1] и ссылки в ней), а также в качестве растворителя [2,3], поэтому физико-химические свойства объемного ДМСО активно исследовались. В последнее время наблюдается интерес к изучению свойств ДМСО [4-6] и ряда других материалов в условиях ограниченной геометрии, т.е. в случае, когда материал находится в порах нанопористых матриц. В работе [4] изучалось изменение свойств инвертированного фотонного кристалла при внедрении ДМСО, в [5] методами ЯМР и импеданс-спектроскопии исследовались водные растворы ДМСО, внедренные в стеклянную матрицу со средним радиусом пор порядка 1.5 nm. В работе [6] акустическими методами и методом дифференциальной сканирующей калориметрии (ДСК) изучались фазовые переходы (ФП) плавления и кристаллизации в эвтектических растворах вода-ДМСО различного состава, внедренных в пористые стекла. Наряду с размерными эффектами, характерными для однокомпонентных систем, было выявлено существенное различие интервалов ФП по данным указанных методов, что объясняется авторами в рамках феноменологической модели [7], предложенной ранее для плавления декана в порах.

В настоящей работе методом ДСК исследовались процессы плавления и кристаллизации ДМСО, внедренного в пористые матрицы с различным средним размером пор.

Матрицы изготавливались из предварительно термообработанных заготовок натрий-боросиликатных стекол двух типов: ДВ-1М и ДВ-1Ш (различаются условиями термообработки). Матрицы типа 1 изготавливались из ДВ-1М протравливанием в 3М растворе соляной кислоты в течение 120 h при температуре 50°C, затем промывались в дистиллированной воде и высушивались. Матрицы типа 2 изготавливались из ДВ-1Ш с помощью аналогичной процедуры. Для изготовления матриц типа 3 часть матриц типа 2 дополнительно обрабатывалась в 0.5M растворе КОН в течение 25 h при температуре 4-6°С. Характеристики изготовленных пористых матриц определялись методом сорбциидесорбции азота на приборе Quadrasorb SI. Пористые матрицы типа 1 имели бимодальное распределение пор с основным максимумом, соответствующим радиусу пор 3.2 ± 0.3 nm, и дополнительным пиком при 5.5 ± 0.5 nm (около 10% пор по объему). Матрицы типа 2 имели одномодовое, но достаточно широкое распределение пор со средним радиусом 6.4 ± 0.6 nm. Для обоих типов матриц удельная пористость (т.е. отношение объема пор к объему образца) составляла 26 ± 1%. Для матриц типа 3 на изотермах сорбции-десорбции отсутствовала область капиллярной конденсации. Радиус пор для них можно рассчитать в приближении цилиндрических пор по формуле r = 2V/S, где V и S — удельный объем и удельная площадь поверхности пор соответственно. Удельная площадь определялась по ВЕТ-участку изотермы и составляла $6.8 \pm 0.7 \, \text{m}^2$ /g. Удельный объем пор определялся путем взвешивания пустой и заполненной водой матрицы и составлял $0.168 \pm 0.005 \, \text{cm}^3/\text{g}$, пористость 27 ± 0.5%. Рассчитанный эффективный радиус пор для матриц типа 3 оказался равным 50 ± 5 nm.

Образцы для измерений приготавливались путем замачивания пористых матриц в чистом ДМСО. Образцы № 1-3 обозначаются по типу соответствующей матрицы. Степень заполнения пор (в предположении постоянства плотности ДМСО) была близка к 100%. Образец № 4 представлял собой объемный ДМСО. Необходимость его исследования связана с тем, что

Рис. 1. Температурные зависимости удельной теплоемкости ДМСО в условиях ограниченной геометрии и объемного ДМСО, измеренные при нагреве (1-4) и охлаждении (1'-4'). Номера кривых соответствуют номерам образцов. Для наглядности кривые сдвинуты относительно друг друга вдоль оси ординат.

имеющиеся в литературе данные о теплоте плавления противоречивы [8–11].

Исследования методом ДСК осуществлялись на микрокалориметре DSC-111 (Setaram). Чувствительность прибора составляет ~ $3 \cdot 10^{-5}$ J/s. Калибровка прибора и коррекция систематических ошибок проводились в соответствии с методикой, описанной в работе [12]. Калибровка выполнялась таким образом, чтобы температуры максимумов (минимумов) пиков на кривых теплоемкости соответствовали температурам T_m (T_c) ФП плавления (кристаллизации). Температуры ФП определялись с точностью ± 2 К. Теплоты Q_m (Q_c) плавления (кристаллизации) рассчитывались путем интегрирования соответствующих пиков. Скорость сканирования для образца № 1–2 К/min.

На рис. 1 приведены температурные зависимости удельной теплоемкости образцов ДМСО, полученные в режимах нагревания и охлаждения.

В режиме охлаждения на температурных зависимостях теплоемкости наблюдаются экзотермические пики, соответствующие ФП кристаллизации. Пики имеют асимметричную форму. При уменьшении радиуса пор максимумы пиков смещаются в область низких темпе-

Параметры фазовых переходов плавления и кристаллизации для системы ДМСО-пористая матрица

Номер образца	T_m, \mathbf{K}	T_c , K	Q_m , kJ/mol	Q_c , kJ/mol
1	261, 276	228	6.3	6.2
2	274	262	5.3	3.7
3	289	274	9.9	9.6
4	291	279	12.8	12.7

ратур, их амплитуда уменьшается, а ширина увеличивается. В режиме нагревания наблюдаются эндотермические пики, соответствующие плавлению. Их форма также является асимметричной. С уменьшением радиуса пор амплитуда, ширина и положение максимума пиков изменяются аналогично тому, как это имело место при кристаллизации. Отметим, что на кривой 1 имеются два пика. В общем случае это может быть связано как с бимодальным распределением радиусов пор и соответственно наночастиц, так и с наличием нескольких кристаллических фаз вещества, как это наблюдалось, например, в галлиевых сплавах [13]. Поскольку в матрице типа 1 наблюдается бимодальное распределение пор, а наличие у ДМСО полиморфов неизвестно, для изучаемой системы более вероятно первое предположение. Наличие только одного пика на кривой кристаллизации можно объяснить тем, что, поскольку кристаллизация происходит в условиях сильного переохлаждения, фронт кристаллизации, возникнув в некоторой части образца, быстро распространяется на все поры независимо от их размера.

Рис. 1 показывает наличие выраженного гистерезиса между процессами кристаллизации и плавления, причем его температурный интервал $(T_m - T_c)$ увеличивается с уменьшением среднего радиуса пор.

В таблице приведены значения параметров ФП для всех исследованных образцов.

Отметим, что измеренная в настоящей работе теплота плавления для объемного образца составила 12.8 kJ/mol, что хорошо согласуется со значением, приведенным в [9]. В случае нанокомпозитов полученные теплоты плавления и кристаллизации оказались существенно ниже, чем в объемном образце.

Указанные выше проявления размерных эффектов при агрегатных ФП достаточно хорошо известны. Для изолированных малых частиц размерный сдвиг температуры перехода можно описать простыми термодинамическими моделями [14], значительная часть которых основана на уравнении Гиббса-Томсона

$$\frac{\Delta T}{T_m^{bulk}} = \frac{CM\sigma_{sl}}{r\rho Q_{bulk}},\tag{1}$$

где $\Delta T = T_m^{grain} - T_m^{bulk}$ — отклонение температуры фазового перехода частицы радиуса $r(T_m^{grain})$ от ее значения для объемного материала (T_m^{bulk}) , ρ — плотность, σ_{sl} — поверхностное натяжение на границе твердое

Рис. 2. Зависимость относительного изменения *T_m* ДМСО в нанопорах от обратного среднего радиуса пор.

тело/жидкость, Q_{bulk} — удельная теплота перехода, M — молярная масса, C — безразмерный коэффициент, зависящий от формы частицы. Таким образом, уравнение Гиббса—Томсона предсказывает линейную зависимость сдвига температуры перехода от обратного размера частицы, который в нашем случае определяется размером пор матрицы.

В отличие от случая изолированных частиц в условиях ограниченной геометрии необходимо учитывать взаимодействие частиц с матрицей и между собой, поэтому простейшие термодинамические модели могут рассматриваться лишь как довольно грубое приближение. Вопрос о его точности и применимости уравнения Гиббса—Томсона нужно рассматривать отдельно в каждом конкретном случае.

Для исследованных в настоящей работе нанокомпозитов зависимость сдвига ΔT температуры плавления от обратного среднего радиуса пор представлена на рис. 2. Как видно из рисунка, эта зависимость с хорошей точностью является линейной:

$$\Delta T = Ar^{-1}.$$
 (2)

Коэффициент пропорциональности составляет $A = 96 \pm 5 \,\mathrm{K} \cdot \mathrm{nm}$. Таким образом, можно говорить о применимости уравнения Гиббса-Томсона в случае ДМСО в порах стеклянных матриц. В соответствии с уравнением (1) $A = CT_m^{bulk} M\sigma_{sl} / \rho Q_{bulk}$. Пренебрегая размерной зависимостью плотности, находим, что $C\sigma_{sl} = 59 \pm 3 \,\mathrm{mN/m}$.

Отметим, что основанные на уравнении Гиббса– Томсона модели предполагают, что теплота перехода не зависит от радиуса нанокристалла и имеет постоянное значение, характерное для объемного материала. В то же время, как следует из литературы [15,16] и полученных нами данных, с уменьшением среднего размера пор происходит существенное уменьшение теплоты фазового перехода. Можно предположить, что постоянство коэффициента A в уравнении (2) обусловлено одновременным изменением теплоты плавления и поверхностной энергии наночастиц, при этом $C\sigma_{sl}/Q_{bulck} = 0.466 \pm 0.002$.

Таким образом, проведенные исследования процессов плавления и кристаллизации ДМСО в пористых стеклах выявили понижение температур фазовых переходов, их размытие, уменьшение теплот переходов. Установлен линейный характер зависимости сдвига температуры плавления от обратного среднего радиуса пор.

Финансирование работы

Исследования выполнены в рамках инициативной НИР Санкт-Петербургского государственного университета INI_2023 (проекты 2309-010 и 127-35289) в Научном парке Санкт-Петербургского государственного университета.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- K.A. Murray, M.I. Gibson, Nat. Rev. Chem., 6, 579 (2022). DOI: 10.1038/s41570-022-00407-4
- [2] H.D. Martin, A. Weise, H.-J. Niclas, Angew. Chem., 6, 318 (1967). DOI: 10.1002/anie.196703181
- [3] C. Di Mino, A.J. Clancy, A. Sella, C.A. Howard, T.F. Headen, A.G. Seel, N.T. Skipper, J. Phys. Chem. B, 127, 1357 (2023).
 DOI: 10.1021/acs.jpcb.2c07155
- [4] J. Yang, Z. Zhu, J. Feng, M. Xue, Z. Meng, L. Qiu, N. Mondele Mbola, Microchem. J., 157, 105074 (2020). DOI: 10.1016/j.microc.2020.105074
- [5] D. Demuth, M. Reuhl, M. Hopfenmüller, N. Karabas, S. Schoner, M. Vogel, Molecules, 25, 4127 (2020). DOI: 10.3390/molecules25184127
- [6] А.Л. Пирозерский, О.И. Смирнова, А.И. Недбай, О.Д. Шевцова, в сб. *Тр. Всероссийской акустической конференции* (ПОЛИТЕХ-ПРЕСС, СПб., 2020), с. 67–72.
- [7] A.L. Pirozerski, O.I. Smirnova, A.I. Nedbai, O.L. Pirozerskaya, N.A. Grunina, V.M. Mikushev, Phys. Lett. A, 383, 125872 (2019). DOI: 10.1016/j.physleta.2019.125872
- [8] H.L. Schlafer, W. Schaffernicht, Angew. Chem., 72, 618 (1960). DOI: 10.1002/anie.196703181
- [9] J.N. Butler, J. Electroanal. Chem., 14, 89 (1967).
 DOI: 10.1016/0022-0728(67)80136-0
- [10] E.E. Weaver, W. Keim, Proc. Indian Acad. Sci., 70, 123 (1960).
- https://journals.iupui.edu/index.php/ias/article/view/5473/5826
 [11] H.L. Clever, E.F. Westrum, Jr., J. Phys. Chem., 74, 1309 (1970). DOI: 10.1021/j100701a027
- [12] N.A. Grunina, G.I. Tsereteli, T.V. Belopolskaya, O.I. Smirnova, Carbohydr. Polym., **132**, 499 (2015).
 DOI: 10.1016/j.carbpol.2015.05.086

- [13] А.Л. Пирозерский, Е.В. Чарная, Х.А. Абдуламонов, А.И. Недбай, Ю.А. Кумзеров, А.В. Фокин, А.С. Хомутова, Акуст. журн., 69 (4), 446 (2023). DOI: 10.31857/S0320791923600014 [А.L. Pirozerski, E.V. Charnaya, Kh.A. Abdulamonov, A.I. Nedbai, Yu.A. Kumzerov, A.V. Fokin, A.S. Khomutova, Acoust. Phys., 69, 510 (2023). DOI: 10.1134/S106377102360002X].
- [14] P. Pawlow, Z. Phys. Chem., 74, 562 (1910).DOI: 10.1515/zpch-1910-7424
- [15] C.L. Jackson, G.B. McKenna, J. Chem. Phys., 93, 9002 (1990). DOI: 10.1063/1.459240
- [16] D. Shekhawat, M. Vauth, J. Pezoldt, Inorganics, 10, 56 (2022).
 DOI: 10.3390/inorganics10040056