09,04

Парамагнитный резонанс центров Fe³⁺ и Cu²⁺ в легированном железом ортосиликате иттрия

© М.Ю. Артёмов¹, А.П. Потапов¹, К.А. Субботин^{2,3}, В.А. Важенин¹, А.И. Титов², А.В. Фокин¹, С.К. Павлов^{2,3}, О.Н. Лис²

 Уральский федеральный университет, (Институт естественных наук и математики), Екатеринбург, Россия
Институт общей физики им. А.М. Прохорова РАН, Москва, Россия
Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия
Е-mail: vladimir.vazhenin@urfu.ru

Поступила в Редакцию 15 февраля 2024 г. В окончательной редакции 15 февраля 2024 г. Принята к публикации 16 февраля 2024 г.

> Методом парамагнитного резонанса в специально выращенном кристалле Y_2SiO_5 : Fe исследованы два центра Fe³⁺, а также спектр неконтролируемой примеси Cu²⁺. Определены параметры спиновых гамильтонианов как в лабораторной, так и в локальной (с диагональными тензором тонкой структуры второго ранга или тензором сверхтонкого взаимодействия **A**) системах координат. Обсуждается локализация центров Fe³⁺, Cr³⁺, Gd³⁺ и Cu²⁺ в силикатах иттрия и скандия.

Ключевые слова: ортосиликаты, примесные ионы, парамагнитный резонанс.

DOI: 10.61011/FTT.2024.03.57484.27

1. Введение

В работах [1,2] обсуждается возможность при разработке материалов для квантовой электроники, квантовой кибернетики, сцинтилляторов и других применений использовать результаты электронного парамагнитного резонанса (ЭПР), позволяющего определять концентрации и зарядовые состояния парамагнитных неконтролируемых примесей при масштабе их концентраций в образце порядка единиц ррт и даже меньше. Для реализации такой деятельности с ортосиликатами иттрия и скандия необходима достоверная информация о спектрах ЭПР-центров переходных и редкоземельных примесных элементов в этих кристаллах, актуальных для вышеуказанных применений.

Кристалл Y_2SiO_5 , легированный хромом, исследуется в качестве активной среды твердотельных инфракрасных лазеров [3], а также в качестве пассивного лазерного затвора [4]. Монокристаллы Sc_2SiO_5 привлекают внимание исследователей ввиду их возможного применения в твердотельных лазерах на редкоземельных ионах.

В результате ЭПР-исследования кристаллов Y_2SiO_5 : Сг авторы [5] пришли к ошибочному выводу, что наблюдаемый ими в Х-диапазоне спектр обусловлен ионами Cr^{4+} с электронным спином S = 1, локализованными в тетраэдрической позиции кремния. Однако в работах [6,7] было убедительно показано, что ЭПР-спектр в этом диапазоне на самом деле принадлежит ионам Cr^{3+} , имеющим спин S = 3/2 и расположенным в одной из двух физически неэквивалентных позиций Y^{3+} . Вместе с тем, исследования этого кристалла методом

спектроскопии поляризованного оптического поглощения [8] показали доминирование полос поглощения ионов Cr⁴⁺, локализованных в позициях кремния.

ЭПР-спектр этого центра был обнаружен и надежно идентифицирован лишь позднее, в работе [9] при исследовании кристалла Y₂SiO₅, легированного нечетным изотопом ⁵³Cr с ненулевым ядерным спином (I = 3/2), сначала на широкополосном ЭПР-спектрометре, а затем на спектрометре Q-диапазона в широком диапазоне магнитных полей. А уменьшение расталкивания уровней энергии центров Cr⁴⁺ в ориентациях магнитного поля вблизи главной оси локальной системы координат позволило детектировать спектр этого центра и в Х-диапазоне. Концентрация ионов Cr4+ оказалась только в три раза меньше количества ионов Cr³⁺ [9]. ЭПР-исследования кристалла Sc_2SiO_5 : Cr [6,10], изоструктурного силикату иттрия, показали существование в этом кристалле двух центров Cr³⁺, локализованных в двух физически неэквивалентных позициях скандия.

В работе [8] при исследовании кристалла Y_2SiO_5 :⁵³Cr был обнаружен и описан ЭПР-спектр второго центра Cr³⁺, локализованного во второй позиции иттрия. Данный спектр демонстрирует сверхтонкую структуру, и имеет на два порядка меньшую интенсивность, чем спектр Cr³⁺ в кристалле Y_2SiO_5 : Cr, изученный в [6,10]. Кроме того, в спектрах Y_2SiO_5 было обнаружено множество узких и слабых (в сравнении с интенсивными линиями Cr³⁺) не идентифицированных на том этапе ЭПР-сигналов. Было высказано предположение, что эти сигналы принадлежат неконтролируемым примесным ионам Gd³⁺. Далее авторами [10-13] методом ЭПР-исследовались центры Cr^{3+} , Gd^{3+} , Fe^{3+} , локализованные также в позициях квазиредкоземельных ионов в кристаллах силикатов иттрия и скандия.

Настоящая работа представляет ЭПР-исследование центров Fe³⁺ в специально выращенном кристалле Y_2SiO_5 : Fe, а также обнаруженного в этом же кристалле спектра неконтролируемой примеси Cu²⁺, с целью установления их структуры и локализации. Кроме того, с учетом полученных результатов в работе обсуждаются также вопросы локализации ранее исследованных центров железа, хрома и гадолиния в кристаллах ортосиликатов иттрия и скандия.

2. Образцы и методика измерений

Для измерений был выращен монокристалл Y_2SiO_5 , легированный ионами железа с номинальной (шихтовой) концентрацией 1.7 at.%. Кристалл выращивался методом Чохральского на установке "Кристалл-2" (СССР) из иридиевого тигля с внутренним диаметром и высотой 30 mm в слабо-окислительной атмосфере (N₂ + 1.35 vol.% O₂). Фактическая концентрация кислорода в ростовой атмосфере измерялась анализатором АКПМ-01 (Альфа-Бассенс, Россия). "Затравление" производилось на иридиевую проволоку. Скорость вытягивания и вращения составляла на номинальной стадии роста 1 mm/h и 6 грт соответственно.

Шихта для роста готовилась из особочистых реактивов Y_2O_3 (ТУ 05-32-69, РЕАХИМ, СССР), SiO₂ (W30, Wacker Chemie AG, ФРГ) и Fe₂O₃ (ТУ 6-09-1418-78, РЕАХИМ, СССР), путем их навешивания на электронных аналитических весах после предварительной сушки. Смесь реактивов тщательно перемешивалась с помощью мультиротатора RS-60 (BioSan, Латвия) в течение 2 h и прессовалась в таблетки, которые затем обжигались на воздухе при температуре 700°С в течение 5 h в печи ЭКПС-10 (Смоленское СКТБ СПУ, Россия).

После завершения ростового процесса и отрыва выращенного кристалла от зеркала расплава охлаждение до комнатной температуры производилось со скоростью 8° С/h, во избежание растрескивания кристалла. Выращенный кристалл был почти бесцветным, но не совсем равномерно окрашенным: сверху едва угадывался голубоватый оттенок, снизу — желтоватый. После выращивания кристалл дополнительно отжигался на воздухе в муфельной печи при температуре 900°С в течение 3 недель для снятия термических напряжений и восстановления кислородной стехиометрии. После отжига кристалл приобрел равномерную, едва заметную желтоватую окраску.

Ориентация кристалла относительно осей оптической индикатрисы проводилась кристаллооптическими методами на поляризационном оптическом микроскопе "Биомед-5" (КНР). Погрешность ориентации не превышала 1°. После ориентации для ЭПР-измерений образцы вырезались в виде кубиков со стороной, равной 6 mm. Грани кубиков были перпендикулярны осям оптической индикатрисы.

Измерения ориентационного поведения спектров ЭПР-образца Y_2SiO_5 : Fe при комнатной температуре проводились на спектрометре X-диапазона EMX Plus Bruker в полях до 1.41 Т. Образец в резонаторе спектрометра крепился к держателю, закрепленному на штанге штатного автоматического гониометра и способному вращаться вокруг оси перпендикулярной штанге. Образец был вырезан из ориентированного кубика и имел размеры $6 \times 6 \times 1 \text{ mm}^3$ с кристаллографической осью **b**, лежащей в плоскости квадрата и ортогональной его стороне.

3. Центры Fe³⁺

Спектр ЭПР кристалла Y_2SiO_5 , легированного железом, в ориентации магнитного поля **B** || **b** показан на рис. 1. В спектре присутствуют узкие интенсивные сигналы случайной примеси ионов Gd^{3+} от центров Gd1 и Gd2, исследованных в работе [12]. Положения и соотношение интенсивностей этих центров аналогичны спектру, приведенному на рис. 4 в [12].

В исследуемом образце Y_2SiO_5 : Fe наблюдаются два неэквивалентных центра трехзарядного железа, аналогичные ранее описанным центрам железа в силикате скандия [2]. Далее по тексту будем называть их Fe³⁺-1 и Fe³⁺-2. Пиковые интенсивности первых производных спектра поглощения лишь двух переходов приведенного на рис. 1 центра Fe³⁺-1 сравнимы с таковыми для сигналов Gd1 и Gd2, однако из-за большой ширины их интегральные интенсивности в десятки раз превышают аналогичные значения для Gd1 и Gd2. Отношение концентраций центров Fe³⁺-1/Fe³⁺-2 в образцах Y₂SiO₅: Fe, полученное при учете вероятностей переходов, примерно 500 : 1, тогда как количество центров Fe-1 и Fe-2 в ранее изученном кристалле Sc₂SiO₅ вполне сопоставимо (табл. 1, 2).

Учет вероятностей переходов Gd1 и Gd2 с использованием интегральных интенсивностей показал, что концентрации Gd1 и Gd2 в Y_2SiO_5 примерно одинаковы. Интегральная интенсивность, оцененная как произведение пиковой интенсивности первой производной на квадрат ширины линии, давала близкое значение к результату двойного интегрирования.

Структура кристаллов Y_2SiO_5 согласно работам [14–16] принадлежит к моноклинной сингонии, пространственная группа C2/c (C_{2h}^6) . Все атомы в структуре имеют триклинную локальную симметрию 1 (C_1) : кремний находится в искаженном кислородном тетраэдре, ионы Y^{3+} занимают две неэквивалентные позиции с координационными числами 6 (M1) и 7 (M2). Каждая атомная позиция размножается элементами симметрии ячейки (центр инверсии и ось $C_2 \parallel \mathbf{b}$) до четырех. В связи с этим при локализации парамагнитного иона в любой из трех позиций (M1, M2, Si) в ЭПР будет наблюдаться два магнитно поля **В** лежит в кристаллографической

Рис. 1. $a - ЭПР-спектр Y_2SiO_5$ с примесью железа в ориентации **В** || **b** (**B** - индукция магнитного поля) при комнатной температуре на частоте 9813 MHz, верхние стрелки указывают на переходы Fe³⁺-1, нижние — на сигналы Fe³⁺-2. *b* — расчетные положения и интегральные интенсивности центров Gd1 (синие сплошные линии) и Gd2 (красные штриховые).

Рис. 2. Полярные зависимости положений переходов центров Fe^{3+} -1 при $\varphi = 23^{\circ}$ на частоте 9812 MHz. Расчетные кривые разного цвета и типа (solid, dash) соответствуют наборам параметров спинового гамильтониана с противоположными знаками b_{nm} , c_{nm} с нечетными *m* и описывают поведение двух центров, связанных поворотом $C_2 \parallel \mathbf{b}$.

плоскости **ас** или параллелен кристаллографической оси **b**, то эти два спектра становятся эквивалентными.

Ориентационное поведение положений ЭПР-переходов измерялось при вращении магнитного поля в плоскости ас (азимутальная зависимость) и от $\mathbf{B} \parallel \mathbf{b}$ до \mathbf{B} в плоскости ас (полярная зависимость). Использовалась ортогональная лабораторная система координат хуz [12]. В этой системе $\mathbf{z} \parallel \mathbf{b}$, а оси х и у лежат в плоскости ас.

Рис. 3. Полярные зависимости положений переходов центров Fe^{3+} -2 при $\varphi = 23^{\circ}$ на частоте 9812 MHz. Расчетные кривые разного цвета и типа (solid, dash) соответствуют наборам параметров спинового гамильтониана с противоположными знаками b_{nm} , c_{nm} с нечетными *m* и описывают поведение двух центров, связанных поворотом $C_2 \parallel \mathbf{b}$.

Рис. 4. Ориентационное поведение положений переходов центра Fe³⁺-1 в азимутальной плоскости на частоте 9812 MHz. Точки — эксперимент, кривые — расчет с параметрами табл. 1 при **z** || **b**.

Рис. 5. Ориентационное поведение положений переходов центра Fe^{3+} -2 в азимутальной плоскости на частоте 9812 MHz. Точки — эксперимент, кривые — расчет с параметрами табл. 1 при $\mathbf{z} \parallel \mathbf{b}$.

Угол между осями x и a^* (a^* — проекция оси a на плоскость, ортогональную оси c) составляет около 6.5° [12].

Полярные угловые зависимости экспериментальных положений сигналов центров Fe^{3+} -1, Fe^{3+} -2 приведены на рис. 2–3, а азимутальные на рис. 4–5.

При измерении азимутальных зависимостей при некоторых углах наблюдалось небольшое расщепление сигналов центров железа, обусловленное выходом магнитного поля из плоскости **ac**. Более существенное расщепление, при этом детектировалось у сигналов центра Gd2 (переходы 6–7 и 7–8) [12], которые также наблюдались в этом образце. Наибольший эффект наблюдался вблизи $\varphi = 20^{\circ}$. Расчет полярной зависимости этих переходов с параметрами [12] при указанном φ показал, что отклонение **B** от плоскости **ac** составляет примерно 0.15°.

Физика твердого тела, 2024, том 66, вып. 3

Описание спектров Fe^{3+} проводилось с помощью спинового гамильтониана (СГ) триклинной симметрии с электронным спином S = 5/2 [17]:

$$H_{sp} = \beta(\mathbf{BgS}) + 1/3 \sum_{m} (b_{2m}O_{2m} + c_{2m}\Omega_{2m}) + 1/60 \sum_{m} (b_{4m}O_{4m} + c_{4m}\Omega_{4m}),$$

где **g** — **g**-тензор, β — магнетон Бора, O_{nm} , Ω_{nm} — спиновые операторы Стивенса, b_{nm} , c_{nm} — параметры тонкой структуры. Идентификация номеров уровней энергии, между которыми наблюдаются переходы, проводилась с учетом процедур, описанных в работе [12]. Минимизацией среднеквадратичного отклонения расчетных (путем диагонализации комплексной матрицы шестого порядка) от измеренных резонансных частот переходов получены параметры СГ, приведенные в табл. 1. Как обычно бывает, **g**-тензор центров Fe³⁺ оказался практически изотропным.

В этой же таблице приводятся параметры тензоров тонкой структуры второго ранга двух центров Fe³⁺ в локальных (главных) системах координат (CK) XYZ, становящимися диагональными с максимальными $|D \equiv b_{20}| > |b_{22}|$. Главные оси получены путем вращения

Таблица 1. Параметры СГ двух центров Fe³⁺ в Y₂SiO₅ в системе координат **z** || **b** и в главных осях тензора тонкой структуры второго ранга. (Двойные знаки у b_{nm} , c_{nm} с нечетными *m* соответствуют двум центрам, связанным операцией $C_2 ||$ **b**. Абсолютные знаки параметров не определялись. b_{nm} , c_{nm} и среднеквадратичное отклонение F(N) приведены в MHz, N — количество экспериментальных значений, использованных в процедуре оптимизации, расщепления в нулевом магнитном поле (РНП) — в GHz)

Пала	$Fe^{3+}-1$	Fe ³⁺ -1	$Fe^{3+}-2$	Fe^{3+} -2
Параметры	Z D	в главных	Z D	в главных
		осях		осях
g_x	2.041		2.043	
g_y	2.018		2.019	
g_z	2.010		2.010	
b_{20}	-5746	-6239	-1915	5936
b_{21}	∓6792	0	∓3409	0
b_{22}	-1823	2412	-4010	1897
C21	∓5291	0	∓14263	0
c 22	1303	0	5338	0
b_{40}	-65	—	15	—
b_{41}	± 170	—	∓317	—
b_{42}	-15	—	162	—
b_{43}	153	—	± 30	—
b_{44}	4	—	322	—
C41	116	—	214	—
C 42	80	_	134	_
C43	±91	—	∓331	—
C 44	642	—	-92	—
F(N)	20.4 (903)		11.9 (418)	
РНП	24.4 и 14.1		13.3 и 23.1	

Кристалл	Цег	Отношение концентраций центров 1/2	
Y ₂ SiO ₅	Fe ³⁺ -1 (РНП = 38 GHz, $\lambda = 13^{\circ}$) эта работа	Fe ³⁺ -2 (РНП = 36 GHz, $\lambda = 65^{\circ}$) эта работа	500
	Cr I (53, 51°) [8]	Cr II (52, 30°) [8]	700
	Gd1 (25, 66°) [12]	Gd2 (40, 19°) [12]	1
Sc ₂ SiO ₅	Fe1 (46, 45°) [2]	Fe2 (59, 75°) [2]	1
	Cr1 (67, 54°) [13]	Cr2 (43, 68°) [13]	10
	_	Gd (47, 22°) [2,13]	-

Таблица 2. Отношение концентраций центров Fe^{3+} , Cr^{3+} , Gd^{3+} с номерами 1 и 2 в кристаллах Y_2SiO_5 и Sc_2SiO_5 . (Обозначения центров согласно работам [2,8,12,13], в круглых скобках приведено полное начальное расщепление соответствующего центра и минимальный угол между его главной осью и осью z)

системы координат в процедуре поиска наибольшего значения $|D \equiv b_{20}|$. Заметим, что этому критерию удовлетворяют несколько локальных СК. Переход из лабораторной СК в одну из систем главных осей осуществляется последовательными поворотами (zyz) на углы Эйлера: 31; 13; 35.4° для Fe³⁺-1 и 246; 65.3; 295.3° для Fe³⁺-2. При этом минимальные углы между главными осями Z этих тензоров и осью z лабораторной СК имеют следующие значения: $\sim 13^\circ$ для ${\rm Fe}^{3+-1}$ и $\sim 65^\circ$ для Fe³⁺-2. Множество локальных систем обусловлено существованием для иона иттрия двух позиций, связанных операцией $C_2 \parallel \mathbf{b}$. Кроме того соотношению $|\mathbf{b}_{20}| > |\mathbf{b}_{22}|$ удовлетворяют и СК, повернутые вокруг Z выше указанных систем на углы 90 и 180°, а также вокруг X и Y на 180°. Тензор четвертого ранга не анализировался в связи с большой погрешностью его компонент, показавших очевидную неустойчивость в процедуре оптимизации.

В работе [2] сделано осторожное предположение, что минимальные углы (λ) между главными осями Z тонкой структуры второго ранга центров Fe³⁺, Cr³⁺, Gd³⁺ и осью z лабораторной СК могут служить критерием для определения локализации примесных центров в позиции М1 или М2. В табл. 2 кроме указанных углов между Zz, приведены отношение концентраций центров Fe^{3+} , Cr^{3+} , Gd^{3+} , локализованных в позициях M1и М2 силикатов иттрия и скандия, полученное оценкой интегральных интенсивностей ЭПР-сигналов с учетом вероятностей переходов, а также полное расщепление в нулевом поле для данного центра. При этом надо учитывать, что значения компонент тензора второго ранга СГ и его главные оси определяются ромбической частью кристаллического поля, сильно зависящей от релаксации окружения примесного иона.

Центры Fe³⁺-1 и Cr I, демонстрирующие в Y₂SiO₅ высокую концентрацию и имеющие небольшие ионные радиусы ($R_i = 0.55$ и 0.615 Å [18]) определенно занимают позицию Y³⁺ в M1 с координационным числом 6 ($R_i = 0.90$ Å). В аналогичной позиции силиката скандия (0.745 Å [18]) следует ожидать центр Cr1, также имеющий большую концентрацию.

Большой ион Gd³⁺, имеющий в семикратном окружении ионный радиус 1 Å, очевидно занимает в Sc₂SiO₅ более просторную позицию скандия M_2 (среднее расстояние до лигандов 0.88 Å). Что-то определенное сказать о локализации центров Gd1 и Gd2 в Y₂SiO₅, а также Fe1 и Fe2 в Sc₂SiO₅, имеющих сравнимые концентрации, затруднительно.

4. Центры Cu²⁺

В спектре ЭПР исследованного образцаY₂SiO₅: Fe в произвольной ориентации магнитного поля присутствует до ~ 14 сигналов от каждого из центров Gd1 и Gd2, а также по ~ 10 линий от центров Fe³⁺-1 и Fe³⁺-2. Кроме того наблюдается множество слабых сигналов, многие из которых идентифицировать так и не удалось. Вместе с тем, среди них нами уверенно были идентифицированы слабые сигналы центров случайной примеси меди, хотя в условиях наличия большого количества других сигналов получить данные об ориентационном поведении положений слабых сигналов центров Cu²⁺ было не просто.

На рис. 6 приведены сверхтонкие квартеты ЭПРспектра центра меди с изотопами 63 Cu²⁺ (S = 1/2, ядерный спин I = 3/2, естественная распространенность 69%) и 65 Cu²⁺ (S = 1/2, I = 3/2, 31%), детектированных нами в Y₂SiO₅. Здесь же можно увидеть аналогичные квартеты заметно меньшей интенсивности. Показать все сигналы меди на рис. 1 невозможно из-за их малой (~ 10⁻³) интенсивности относительно окружающих линий центров Gd1, Gd2 и Fe³⁺-1.

Полярная и азимутальная зависимости положений компонент сверхтонкой структуры указанных центров приведены на рис. 7–8. Спектры двух центров меди и их ориентационное поведение описывались триклинным спиновым гамильтонианом

$$H_{sp} = \beta(\mathbf{BgS}) + \mathbf{SAI} + g_N \beta_N \mathbf{BI},$$

где **g** — электронный **g**-тензор, **A** — тензор сверхтонкого взаимодействия, β — магнетон Бора. В рас-

Рис. 6. ЭПР-спектр центров ${}^{63}Cu^{2+}$ и ${}^{65}Cu^{2+}$ (интенсивные сигналы) в Y₂SiO₅ при $\theta = 90^{\circ}$ и $\varphi = 180^{\circ}$. Стрелками помечены переходы сверхтонкой структуры неисследованных центров ${}^{63}Cu^{2+}$.

четах использовалось табличные значения ядерных g_N -факторов изотопов меди (β_N — ядерный магнетон), ядерное квадрупольное взаимодействие не учитывалось ввиду малости. Оптимизация параметров СГ центров 63 Cu²⁺ и 65 Cu²⁺ проводилась путем минимизации среднеквадратичного отклонения F расчетных (диагонализация комплексной матрицы восьмого порядка $\{2S + 1\} \times \{2I + 1\}$) от измеренных резонансных частот переходов.

Попытка описать угловые зависимости, приведенные на рис. 7–8, g- и A-тензорами диагонального вида привели к значению F порядка трех сотен MHz, что никак не соответствовало погрешности в измерении положений сигналов. В связи с этим в повторной процедуре оптимизации были использованы g- и A-тензоры общего вида, поскольку для центров триклинной симметрии, тем более не в главных осях, ограничений на структуру g и A не существует [19–22]. Результаты оптимизации приведены в табл. 3.

Только при наличии всех приведенных компонент тензоров **g** и **A** удалось достаточно хорошо описать экспериментальные зависимости положений сверхтонкой структуры. Об этом говорит тот факт, что при учете только симметричной части **A**-тензора среднеквадратичное отклонение F увеличивается до 72 MHz (см. табл. 3).

В этой же таблице приведены параметры СГ, полученные диагонализацией тензоров g^2 и A^2 [19–20]. Матрицы направляющих косинусов, связывающие лабораторную СК и системы главных осей, оказались для двух изотопов практически одинаковыми и имеют следующие значения: для **g**-тензора

$$\begin{pmatrix} 0.672 & -0.122 & 0.731 \\ -0.458 & -0.844 & 0.280 \\ -0.582 & 0.523 & 0.623 \end{pmatrix},$$

для А-тензоров ⁶³Cu²⁺ и ⁶⁵Cu²⁺

$$\begin{pmatrix} -0.754 & -0.128 & 0.645 \\ 0.493 & -0.759 & 0.426 \\ 0.435 & 0.639 & 0.635 \end{pmatrix}.$$

Позднее было обнаружено, что процедура оптимизации при использовании разных стартовых значений A_{ij} (компоненты g_{ij} для ${}^{63}Cu^{2+}$ были взяты из табл. 3 и не варьировались) дает существенно разные наборы A_{ij} , но

Рис. 7. Полярная угловая зависимость компонент сверхтонкой структуры центров 63 Cu²⁺ и 65 Cu²⁺ в Y₂SiO₅ при $\varphi = 23^{\circ}$. Точки — эксперимент, кривые — расчет с параметрами табл. 3: синие штриховые — 63 Cu²⁺, красные сплошные — 65 Cu²⁺. Группа сигналов, демонстрирующих минимумы положений, принадлежат центрам, связанным с остальными операцией $C_2 \parallel \mathbf{b}$. Участки расчетных зависимостей без экспериментальных точек возникают вследствие перекрывания сигналов меди интенсивными линиями других центров.

Рис. 8. Азимутальная угловая зависимость компонент сверхтонкой структуры центров 63 Cu²⁺ и 65 Cu²⁺ в Y₂SiO₅. Точки эксперимент, кривые — расчет с параметрами табл. 3: синие штриховые — 63 Cu²⁺, красные сплошные — 65 Cu²⁺.

	⁶³ Cu ²⁺	$^{63}Cu^{2+}$	⁶⁵ Cu ²⁺	⁶⁵ Cu ²⁺
Параметры	$\mathbf{z}\parallel\mathbf{b}$	в главных осях	z b	в главных осях
g_{xx}	2.151	2.000	2.151	2.000
g_{xy}	0.14		0.14	
g_{xz}	± 0.23		± 0.24	
g_{yx}	0.01		0.01	
<i>gyy</i>	2.09	2.092	2.09	2.092
<i>gyz</i>	∓0.04		± 0.04	
g_{zx}	± 0.03		± 0.03	
g_{zy}	± 0.07		± 0.07	
8zz	2.145	2.302	2.145	2.302
A_{xx}	-187	28.2	-217	16.3
A_{xy}	-198		-196	
A_{xz}	= 3.5		∓ 10	
A_{yx}	-167		-173	
A_{yy}	-90	81.2	-99	85.3
A_{yz}	± 12.7		± 31.2	
A_{zx}	〒162			
A_{zy}	208		∓203	
A_{zz}	-69	421.0	-78	451.7
F(N)	2 MHz (500)		2.6 MHz (500)	

Таблица 3. Параметры спинового гамильтониана центров ⁶³Cu²⁺ и ⁶⁵Cu²⁺ в Y₂SiO₅. (Двойные знаки соответствуют центрам, связанным операцией C₂ || **b**. Значения компонент тензора A и среднеквадратичное отклонение F(N) приведены в MHz, N — количество экспериментальных значений, использованных в процедуре оптимизации)

с минимальными значениями F ($\approx 2 \,\text{MHz}$). Два примера таких наборов A_{ij} для ⁶³Cu²⁺ можно увидеть в табл. 4, где также приводятся результаты диагонализации A² с похожими матрицами направляющих косинусов.

Скорее всего эффект неоднозначности параметров СГ обусловлен недостатком экспериментальных данных, например, отсутствием положений запрещенных сверх-тонких переходов с $\Delta m_I \neq 0$, которые при таких концентрациях примеси меди детектировать невозможно.

Заметное отличие зарядов ионов Cu²⁺ и Si⁴⁺, а также их ионных радиусов (в тетраэдре 0.57 и 0.26 Å [18] соответственно) делают очень маловероятным вхождение иона меди в позиции кремния. В шестикратном окружении Cu²⁺ имеет ионный радиус 0.73 Å, что гораздо более благоприятно для его локализации в позиции Y³⁺ в *M1* (0.9 Å [18]) с точки зрения разницы как в ионных радиусах, так и в формальных зарядах. Следует заметить, что минимальные углы между главными осями Z g-, А-тензоров и осью z лабораторной CK (51.5°, 50.6°) отличаются всего на ~ 1°. Указанные углы неплохо согласуются с аналогичным углом в табл. 2 для Cr I в кристалле Y₂SiO₅, что говорит в пользу нашего предположения о локализации иона меди. Компенсация заряда может происходить как локально, так и удаленно.

Отметим также, что на рис. 6 кроме двух квартетов изотопов Cu^{2+} видна также слабая (на порядок меньшей интенсивности) группа сигналов, очевидно принадлежащая другому центру Cu^{2+} . Эти сигналы могут быть обусловлены ионами Cu^{2+} в позиции *M1* с альтернативной компенсацией заряда, либо ионами меди в позиции *M2*. Измерить угловые зависимости положений

Таблица 4. Два набора компонент тензоров **A**, полученных для ${}^{63}Cu^{2+}$, в лабораторной СК и в главных осях. Компоненты g_{ij} из табл. 3

	Первый набор		Второй набор	
Параметры	z b	в главных осях	z∥b	в главных осях
A _{xx}	-240	24	-208	47
A_{xy}	-129	0	-176	0
A_{xz}	-3	0	-3	0
A_{yx}	-130	0	-96	0
A_{yy}	-137	82	-164	72
A_{yz}	12	0	12	0
A_{zx}	-248	0	-187	0
A_{zy}	-95	0	-180	0
A_{zz}	-62	421	-82	421
F(N)	2 MHz		1.9 MHz	

этих сигналов крайне малой интенсивности в плотном спектре Y_2SiO_5 и, следовательно, определить для них параметры СГ не удалось.

5. Заключение

Методом Чохральского выращен легированный железом монокристалл ортосиликата иттрия. В этом образце в двух плоскостях измерено ориентационное поведение положений ЭПР-сигналов двух триклинных центров Fe³⁺, локализованных в двух неэквивалентных позициях ионов иттрия. Проведена идентификация переходов указанных центров. Путем минимизации разности экспериментальных и расчетных частот переходов определены параметры их триклинных спиновых гамильтонианов в лабораторной системе координат.

Найдены системы главных осей тензоров тонкой структуры второго ранга, в которых параметры b_{20} имеют максимумы, а тензоры **D** становятся диагональными. Используя значения углов между главной осью и осью **z**, отношение концентраций, величины расщеплений в нулевом поле и ионные радиусы пар центров Fe³⁺, Cr³⁺, Gd³⁺ делается попытка определить локализацию этих примесей в силикатах иттрия и скандия.

В этом же кристалле обнаружены слабые ЭПРсигналы неконтролируемой примеси Cu^{2+} . Измерены полярные и азимутальные угловые зависимости положений компонент сверхтонкой структуры изотопов $^{63}Cu^{2+}$ и $^{65}Cu^{2+}$, определены все компоненты несимметричных тензоров **g** и **A**. Показано, что описать угловые зависимости симметричным тензором **A** с точностью, сравнимой с погрешностью измерения положений переходов, невозможно.

Найдены матрицы направляющих косинусов, связывающие лабораторную СК и системы главных осей \mathbf{g}^2 и \mathbf{A}^2 , в которых эти тензоры становятся диагональными. Предполагается, что ион меди занимает позицию Y^{3+} в M1 с шестикратным кислородным окружением, а компенсация заряда может происходить как локально, так и удаленно. Детектированы сигналы еще одного центра Cu^{2+} (на порядок более слабые), который может быть обусловлен ионами Cu^{2+} в позиции M1 с альтернативной компенсацией заряда, либо ионами меди в позиции M2.

Финансирование работы

Работа выполнена при финансовой поддержке Минобрнауки Российской Федерации, тема № FEUZ-2023-0017 с использованием оборудования УЦКП "Современные нанотехнологии" УрФУ (рег. № 2968).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Д.Д. Крамущенко, И.В. Ильин, В.А. Солтамов, П.Г. Баранов, В.П. Калинушкин, М.И. Студеникин, В.П. Данилов, Н.Н. Ильичев, П.В. Шапкин. ФТТ 55, 234 (2013).
- [2] В.А. Важенин, А.П. Потапов, К.А. Субботин, А.В. Фокин, М.Ю. Артёмов, А.И. Титов, С.К. Павлов. ФТТ 65, 773 (2023).
- [3] B.H.T. Chai, Y. Simony, C. Deka, X.X. Zhang, E. Munin, M. Bass. OSA Proc. ASSL 13, 28 (1992).
- [4] Chih-Kang Chang, Jih-Yuan Chang, Yen-Kuang Kuo. Proc. SPIE 4914, 498 (2002).

- [5] R.R. Rakhimov, H.D. Horton, D.E. Jones, G.B. Loutts, H.R. Ries. Chem. Phys. Lett. **319**, 639 (2000).
- [6] В.А. Важенин, А.П. Потапов, Г.С. Шакуров, А.В. Фокин, М.Ю. Артёмов, В.А. Исаев. ФТТ 60, 1995 (2018).
- [7] V.F. Tarasov, I.V. Yatsyk, R.F. Likerov, A.V. Shestakov, R.M. Eremina, Y.D. Zavartsev, S.A. Kutovoi. Opt. Mater. 105, 109913 (2020).
- [8] V. Vazhenin, A. Potapov, K. Subbotin, D. Lis, M. Artyomov, V. Sanina, E. Chernova, A. Fokin. Opt. Mater. 117, 111107 (2021).
- [9] A.P. Potapov, V.A. Vazhenin, M.Yu. Artyomov, G.S. Shakurov, R.B. Zaripov, K.A. Subbotin, A.V. Shestakov. Opt. Mater. 143, 114149 (2023).
- [10] V. Tarasov, R. Eremina, K. Konov, R. Likerov, A. Shestakov, Y. Zavartsev, S. Kutovoi. Appl. Magn. Res. 52, 5 (2021).
- [11] A.A. Sukhanov, V.F. Tarasov, R.M. Eremina, I.V. Yatsyk, R.F. Likerov, A. V. Shestakov, Y.D. Zavartsev, A.I. Zagumennyi, S.A. Kutovoi. Appl. Magn. Res. 52, 1175 (2021).
- [12] A.V. Fokin, V.A. Vazhenin, A.P. Potapov, M.Yu. Artyomov, K.A. Subbotin, A.I. Titov. Opt. Mater. **132**, 112741 (2022).
- [13] В.А. Важенин, А.П. Потапов, А.В. Фокин, М.Ю. Артёмов, В.А. Исаев. ФТТ 64, 967 (2022).
- [14] Б.А Максимов. В.В. Илюхин, Ю.А. Харитонов, Н.В. Белов. Кристаллография 15, 926 (1970).
- [15] G. Anan'eva, A. Korovkin, T. Merkulyaeva, A. Morozova, M. Petrov, I. Savinova, V. Startsev, P. Feofilov. Inorg. Mater. 17, 754 (1981).
- [16] N.I. Leonyuk, E.L. Belokoneva, G. Bocelli, L. Righi, E.V. Shvanskii, R.V. Henrykhson, N.V. Kulman, D.E. Kozhbakhteeva. Cryst. Res. Technol. 34, 1175 (1999).
- [17] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс соединений элементов промежуточных групп. Наука, М. (1972). С. 121.
- [18] R.D. Shannon. Acta Crystallogr. Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).
- [19] Дж. Вертц, Дж. Болтон. Теория и практические приложения метода ЭПР. Мир, М. (1975). 548 с.
- [20] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Мир, М. (1973). Т. 2. 347 с.
- [21] F.K. Kneubühl. Helv. Phys. Acta. 35, 259 (1962).
- [22] F.S. Ham. J. Phys. Chem. Solid 24, 1165 (1963).

Редактор Т.Н. Василевская