18

Исследование спектральных свойств хиральных углеродных наночастиц на основе глутатиона

© Е.А. Степаниденко¹, М.Д. Мирущенко¹, А.В. Королева², Е.В. Жижин², А.М. Митрошин^{1,3}, П.С. Парфенов¹, С.А. Черевков^{1,*}, Е.В. Ушакова¹

1 Международный научно-образовательный центр физики наноструктур, Университет ИТМО,

197101 Санкт-Петербург, Россия

² Научный парк, Санкт-Петербургский государственный университет,

199034 Санкт-Петербург, Россия

³ Институт высокомолекулярных соединений РАН,

199004 Санкт-Петербург, Россия

e-mail: s.cherevkov@itmo.ru

Поступила в редакцию 06.12.2023 г. В окончательной редакции 06.12.2023 г. Принята к публикации 11.12.2023 г.

Получены углеродные наночастицы (С-точки) из хиральных молекул L-глутатиона в формамиде. С-точки обладают фотолюминесценцией (ФЛ) в красной области спектра на 690 nm и высоким для данной полосы квантовым выходом, достигающим 10.8%. Кроме того, в спектрах кругового дихроизма С-точек наблюдается сигнал в области 370–470 nm, где находится оптический переход, связанный с легированными атомами азота и кислорода $s p^2$ -гибридизованными углеродными доменами.

Ключевые слова: углеродные наночастицы, длинноволновая фотолюминесценция, круговой дихроизм, хиральность, глутатион.

DOI: 10.61011/OS.2023.12.57409.5833-23

Введение

В последнее десятилетие люминесцентные углеродные наночастицы (С-точки) привлекают все большее внимание благодаря своим уникальным свойствам, таким как низкая токсичность, высокие значения квантового выхода (КВ) фотолюминесценции (ФЛ), возможность настройки положения оптических переходов во всем видимом диапазоне спектра [1]. Простота и низкая стоимость синтеза, а также возможность получения стабильных коллоидных растворов в различных средах делают С-точки привлекательными для применения в качестве активных материалов устройств оптоэлектроники [2,3], фотовольтаики [4], сенсорики [5], для каталитических систем [6], а также для биомедицинских приложений [7,8]. Для последней области применений, в частности биовизуализации, особый интерес вызывают наночастицы с оптическими переходами в областях прозрачностей тканей — в красной и ближней инфракрасной (БИК) спектральных областях [9]. Для того, чтобы получить С-точки с переходами в интересующих спектральных диапазонах, были разработаны методы синтеза с использованием органических красителей [10], смесей лимонной кислоты и мочевины в диметилформамиде [11,12], лимонной кислоты в формамиде [13,14] и др. Другим важным параметром наночастиц при взаимодействии с биологическими объектами является наличие хиральности [15,16]. Получение хиральных С-точек можно

разделить на два подхода: одностадийный, при котором используются хиральные молекулы в качестве прекурсоров в сольвотермальном или микроволновом нагреве [17]; двухстадийный, при котором хиральные молекулы ковалентно присоединяются к поверхности Сточек в результате их химической обработки в растворе [18].

Принимая выше сказанное во внимание, для биологических применений наиболее привлекательными объектами будут С-точки, обладающие как оптическими переходами в красной/БИК области спектра, так и хиральной поверхностью для управляемого взаимодействия с биологическими объектами. Для получения таких наночастиц одним из самых подходящих прекурсоров является глутатион — органическая молекула с хиральными группами. Было показано, что нагрев глутатиона в растворе формамида в автоклаве приводит к формированию Сточек с положением полосы фотолюминесценции в области 650-710 nm [19,20]. Однако хиральные свойства таких С-точек до сих пор не были изучены. Целью настоящей работы стало исследование спектральных характеристики С-точек, полученных сольвотермально из глутатиона в формамиде. Такие наночастицы размером 4 nm обладают яркой фотолюминесценцией с максимумом полосы на 690 nm и сигналом кругового дихроизма в области 370-470 nm, где находится оптический переход ядра С-точек.

Материалы и методы исследований

Материалы

В работе были использованы формамид (≥ 99.0%), L-глутатион (≥ 98.5%), полиэтиленгликоль (молекулярный вес 2000, PEG-2000). Все химические реагенты были использованы без дополнительной очистки. В ходе экспериментов была использована деионизированная (DI) вода (вода Milli-Q).

Синтез углеродных наночастиц

С-точки были синтезированы одностадийным сольвотермальным методом из L-глутатиона (94 mg) в формамиде (10 mL) в закрытом автоклаве из нержавеющей стали и при температуре 160°С в течение 6 h. После реакции смесь была охлаждена до комнатной температуры естественным путем и диализирована в DI воде с помощью диализных мешков с порогом отсечения по молекулярной массе (Molecular weight cut-off, MWCO), равным 3.5 kDa в течение 4 дней. Полученный образец был отфильтрован с помощью шприцевого фильтра с размерами пор $0.22 \,\mu$ m, лиофилизирован, в результате чего был получен зеленый порошок С-точек CD-Glu-Ref.

Для получения С-точек с более стабильными свойствами обычно в процессе синтеза добавляют полимер в реакционную смесь. Для того, чтобы проверить данное утверждение, в данной работе к исходным прекурсорам было добавлено еще 13 mg PEG-2000. Далее синтез был проведен аналогично предыдущему образцу, полученные С-точки обозначены в работе как CD-Glu-PEG.

Методы исследования

Анализ размеров образцов был проведен методом атомно-силовой микроскопии (АСМ) на микроскопе Solver PRO-M (NT-MDT, Москва, Россия) в полуконтактном режиме. Инфракрасные (ИК) спектры были получены на спектрофотометре Tenzor II (Bruker, Billerica, США). Для элементного анализа полученных наночастиц был применен метод рентгеновской фотоэлектронной спектроскопии (РФС), спектры были измерены с помощью фотоэлектронного спектрометра ESCALAB 250Xi (Thermo Fisher Scientific, Waltham, CША) (излучение AlKa, энергия фотонов 1486.6 eV). Спектры поглощения растворов были получены на спектрофотометре UV-3600 (Shimadzu, Kyoto, Япония); карты распределения интенсивности фотолюминесценции (ФЛ) в зависимости от длины волны возбуждения образца (PL-PLE карты) были зарегистрированы на спектрофлуориметре Cary Eclipse (Agilent, Santa Clara, CIIIA). Спектры поглощения кругового дихроизма (КД) были зарегистрированы на спектрофотометре J-1500 (Jasco, Tokyo, Япония).

Результаты и обсуждение

Для исследования химической структуры С-точек на основе глутатиона и формамида были зарегистрированы РФС спектры. Из обзорного спектра РФС было установлено, что CD-Glu-Ref состоит из основных элементов: углерода (C1s, 55.28%), кислорода (O1s, 24.97%), азота (N1s, 19.61%) с небольшим содержанием серы (S2p, 0.14%). Спектры высокого разрешения для полос C1s, N1s, O1s, S2p и их разложение на пики, соответствующие различным связям, представлены на рис. 1. На основе анализа полосы C1s было установлено присутствие связей С-С/С-Н (285.2 eV), С-ОН/С-О-С (286.7 eV) и C-N/R-C=O (288.8 eV) (рис. 1, *a*). С-точки содержат большое количество азота (19.61%), который в основном находится в формах пиррола / пиридона (400.7 eV), пиридина и в составе амидов и аминов (399.1 eV), также в образце присутствует небольшое количество графитоподобного нитрида углерода (401.8 eV) (рис. 1, *b*). Из РФС спектра для полосы O1s видно, что преобладают C=O связи в составе амидов и карбоксильных групп (пики на 531.3, 532.2 и 533.6 eV рис. 1, c). В образце также было зарегистрировано небольшое содержание серы в форме тиола (164.4 eV, рис. 1, *d*).

На рис. 2, *a*-*d* представлены типичные АСМ изображения и соответствующие диаграммы распределения частиц по высотам. Средняя высота частиц CD-Glu-Ref была оценена как 4.1-1.5 nm (рис. 2, a,b). При добавлении полиэтиленгликоля в реакционную смесь формируются наночастицы большего размера, так, для образца CD-Glu-PEG наблюдается широкое распределение со средним значением 6 ± 3 nm, в образце присутствовали агрегаты до 15 nm (рис. 2, c, d). Анализ ИК спектров показал, что добавление полимера в синтез практически не влияет на формирование связей в С-точках: все характерные полосы в ИК спектрах повторяются для обоих образцов (рис. 2, е). Было обнаружено небольшое количество S-H=связей, о чем свидетельствует пик на 2535 cm⁻¹. Широкая полоса поглощения на $3000-3400 \text{ cm}^{-1}$ относится к колебаниям Н-связей, пики на $3200 \,\mathrm{cm}^{-1}$ относятся к валентным колебаниям N–H. Пики на 2848 и 2930 cm⁻¹ относятся к связям С-Н алифатических групп, и они являются более интенсивными в образце CD-Glu-PEG, что говорит о присутствии полимерной алифатической цепочки. Пики на 1346 и 3040 cm⁻¹ соответствуют валентным колебаниям C-N и С-Н связей в ароматическом кольце. Пики на 1295, 1230 и 1085 cm⁻¹ могут свидетельствовать о наличии групп (NH)-C=О и колебаниях С-О внутри С-точек соответственно. Узкие интенсивные пики на 1667, 1590 и 1530 cm⁻¹ относятся к валентным колебаниям С=О и деформационным N-H в амидах. Кроме того, в данной области $1660 - 1550 \,\mathrm{cm}^{-1}$ могут присутствовать колебания С=С ароматических колец. Поглощение около 1150 и 1134 cm⁻¹ можно объяснить колебаниями С-О-С, а пик на $1150 \,\mathrm{cm}^{-1}$ может быть связан с деформационными колебаниями N-H в (NH₂)-C=O. Следовательно, в

Рис. 1. Спектры РФС высокого разрешения образца CD-Glu-Ref: (*a*) C1s, (*b*) N1s, (*c*) O1s, (*d*) S2p. Экспериментальные данные (exp., черные линии), аппроксимация (fit, цветные линии), с указанием в легенде полос, характерных для различных химических групп.

образцах присутствуют ароматические домены, легированные азотом и кислородом, а на поверхности С-точек присутствует множество аминогрупп, что соотносится с результатами РФС. В образце CD-Glu-PEG наблюдается значительное количество алифатических углеродных групп из-за присутствия полимера, что также соотносится с результатами ACM и объясняет больший размер CD-Glu-PEG по сравнению с CD-Glu-Ref.

Анализ спектральных характеристик образцов показал, что добавление полимера не приводит к формированию новых оптических центров, как видно из рис. 3. В спектре поглощения обоих образцов наблюдается слабоинтенсивный пик на 260 nm, который можно связать с присутствием бензола и его производных (рис. 3, *a*). Наиболее интенсивный пик поглощения наблюдается на

Квантовый выход ФЛ образцов водных растворов С-точек

Образец	Квантовый выход, %	
	$\lambda_{ex} = 400nm$	$\lambda_{ex} = 620 nm$
CD-Glu-Ref CD-Glu-PEG	9.5 8.4	10.8 10.2

405–417 nm, а в длинноволновой полосе ярко выражена колебательная структура с пиками на 578, 603, 627, 675 и 734 nm. Оптические переходы в области 400–415 nm и в области 600–690 nm отвечают за длинноволновую полосу ФЛ с максимумом на 690 nm (рис. 3, *b*, *c*). КВ ФЛ составил 8-11%, его значение зависит от длины волны

Рис. 2. АСМ изображения (*a*, *c*) и соответствующие распределения высот (*b*, *d*) образцов CD-Glu-Ref (*a*, *b*) и CD-Glu-PEG (*c*, *d*). ИК спектры образцов с отмеченными областями, типичными для колебания различных связей (*e*).

Рис. 3. (a) Спектры поглощения и (b, c) PL-PLE карты водных растворов CD-Glu-Ref (b) и CD-Glu-PEG (c).

возбуждения λ_{ex} и образца (таблица). Как предполагалось, использование полимера в ходе синтеза позволит усилить КВ ФЛ, однако, как видно из таблицы, интенсивность ФЛ образца без модификации немного выше, что говорит о том, что в данном случае PEG-2000 не взаимодействует с центрами ФЛ С-точек.

Анализ литературы показал, что полоса ФЛ С-точек на основе глутатиона практически всегда имеет максимум на 690 nm и не зависит от длины волны возбуждения, что типично для органических люминофоров. В работе [21] Y. Ganjkhanlou и др. показали, что такая полоса ФЛ имеет схожую природу с излучением Q-полосы макромолекул — производных порфирина. Авторами работы было показано, что макромолекулы формируют аморфные агрегаты при высыхании на подложках. В наших экспериментах не наблюдалось никаких крупных агрегатов, напротив, распределение высот наночастиц в обоих образцах не превышало 10 nm. В результате проведения тонкослойной хроматографии мы не обнаружили разделения образца на несколько фракций наночастиц, т.е. в результате проведенного синтеза формируется один тип С-точек. Таким образом, можно предположить, что наблюдаемая длинноволновая ФЛ обусловлена оптическими центрами, схожими с производными порфирина, внедренных в аморфную углеродную матрицу С-точек.

Так как L-глутатион является хиральной молекулой, мы предполагали, что в результате синтеза будут фор-

Рис. 4. Спектр поглощения (серая линия), усредненный сигнал кругового дихроизма (черные квадраты и синяя линия) для образца CD-Glu-Ref в воде.

мироваться либо полностью хиральные наночастицы, либо С-точки с хиральными группами на поверхности. Измерение сигнала кругового дихроизма показало, что в области 300-500 nm есть низкоинтенсивный сигнал, спектр которого представлен на рис. 4. В спектральных областях 200-300 и 500-800 nm отношение сигнал-шум было слишком низким, что свидетельствует об отсутствии сигнала кругового дихроизма в данных диапазонах спектра. Из рис. 4 видно, что в области 350-450 nm, которая соответствует поглощению N, O — легированных *s p*²-доменов С-точек, наблюдается отрицательный эффект Коттона с максимумом на 386 nm и минимумом на 432 nm и величиной кругового дихроизма +0.5 и -0.5 mdeg соответственно. Фактор дисимметрии g составил +0.8 и $-1.2 \cdot 10^{-5}$ для положительного и отрицательного пиков соответственно. Такое значение на 1-2 порядка меньше опубликованных ранее значений для С-точек, полученных одностадийным методом $(1.6 \cdot 10^{-3} [17]$ и $1.5 \cdot 10^{-3} [22]$). Мы предполагаем, что наличие данного сигнала связано с декомпозицией молекулы глутатиона в процессе сольвотермального синтеза в присутствии формамида и формировании N, О-легированных $s p^2$ -доменов с малым количеством хиральных центров из-за возможной рацемизации при высоких температурах синтеза. В большинстве опубликованных работ по синтезу хиральных С-точек сигналы кругового дихроизма наблюдаются в области до 350 nm и больше связаны с исходными хиральными молекуламипрекурсорами или их агрегатами, ковалентно связанными с поверхностью С-точек [23-26]. Регистрация сигналов кругового дихроизма, обусловленных именно внутренней структурой С-точек, в области более 350 nm является редким наблюдением и требует дальнейших исследований. Также следует отметить, что синтезированные в данной работе хиральные С-точки обладают самой длинноволновой полосой ФЛ по сравнению с ранее опубликованными данными, где полоса ФЛ наблюдалась на 601 [24], 620 [25] и 630 nm [26] с квантовым выходом 10.8, 6.8 и 16.2% соответственно.

Заключение

В работе были исследованы хиральные С-точки на основе глутатиона и формамида, излучающие в красной области спектра с относительно высоким КВ. Использование полимера в синтезе не повлияло на формирование оптических центров С-точек, но поспособствовало увеличению размера и количества алифатических цепочек на поверхности. С-точки обладают собственной хиральностью, которая обусловлена формированием хиральных центров внутри N, О-легированных ароматических доменов при взаимодействии глутатиона с формамидом. Природа люминесценции связана с формированием оптических центров, схожих с макромолекулами — производными порфиринов, которые внедрены в матрицу Сточки. Таким образом, синтезированные в данной работе наночастицы являются перспективными для дальнейших исследований и применении их в биологии и медицине в качестве люминесцентного маркера.

Благодарности

Авторы выражают благодарность ЦКП "Нанотехнологии" Университета ИТМО. РФС исследования проводились на оборудовании Ресурсного центра "Физические методы исследования поверхности" Научного парка СПбГУ.

Финансирование работы

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 22-13-00294).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- B. Wang, G.I.N. Waterhouse, S. Lu. Trends Chem., 5 (1), 76 (2023). DOI: 10.1016/j.trechm.2022.10.005
- [2] E.A. Stepanidenko, E.V. Ushakova, A.V. Fedorov, A.L. Rogach. Nanomaterials, 11 (2), 364 (2021).
 DOI: 10.3390/nano11020364
- [3] R. Fu, H. Song, X. Liu, Y. Zhang, G. Xiao, B. Zou, G.I.N. Waterhouse, S. Lu. Chinese J. Chem., 41 (9), 1007 (2023). DOI: 10.1002/CJOC.202200736
- [4] N. Gao, L. Huang, T. Li, J. Song, H. Hu, Y. Liu, S. Ramakrishna. J. Appl. Polym. Sci., (2020). DOI: 10.1002/app.48443

- [5] A.A. Vedernikova, M.D. Miruschenko, I.A. Arefina, A.A. Babaev, E.A. Stepanidenko, S.A. Cherevkov, I.G. Spiridonov, D.V. Danilov, A.V. Koroleva, E.V. Zhizhin, E.V. Ushakova. Nanomaterials, **12** (19), 3314 (2022). DOI: 10.3390/NANO12193314/S1
- [6] M. Sbacchi, M. Mamone, L. Morbiato, P. Gobbo, G. Filippini, M. Prato. ChemCatChem, 15 (16), e202300667 (2023).
 DOI: 10.1002/CCTC.202300667
- [7] E. Liu, T. Liang, E.V. Ushakova, B. Wang, B. Zhang, H. Zhou,
 G. Xing, C. Wang, Z. Tang, S. Qu, A.L. Rogach. J. Phys. Chem. Lett., **12** (1), 604 (2020).
 DOI: 10.1021/ACSJPCLETT.0C03383
- [8] J. Wang, Y. Fu, Z. Gu, H. Pan, P. Zhou, Q. Gan, Y. Yuan, C. Liu. Small, (2023). DOI: 10.1002/smll.202303773
- [9] D. Li, E. V. Ushakova, A.L. Rogach, S. Qu. Small, 17 (43), 2102325 (2021). DOI: 10.1002/smll.202102325
- [10] E.A. Stepanidenko, I.D. Skurlov, P.D. Khavlyuk, D.A. Onishchuk, A.V. Koroleva, E.V. Zhizhin, I.A. Arefina, D.A. Kurdyukov, D.A. Eurov, V.G. Golubev, A.V. Baranov, A.V. Fedorov, E.V. Ushakova, A.L. Rogach. Nanomaterials, **12** (3), (2022). DOI: 10.3390/nano12030543
- [11] D. Chen, M. Xu, W. Wu, S. Li. J. Alloys Compd., 701, 75 (2017). DOI: 10.1016/j.jallcom.2017.01.124
- [12] J. Zhu, X. Bai, J. Bai, G. Pan, Y. Zhu, Y. Zhai, H. Shao,
 X. Chen, B. Dong, H. Zhang, H. Song. Nanotechnology, 29 (8), 085705 (2018). DOI: 10.1088/1361-6528/aaa321
- [13] S. Sun, L. Zhang, K. Jiang, A. Wu, H. Lin. Chem. Mater., 28 (23), 8659 (2016). DOI: 10.1021/acs.chemmater.6b03695
- [14] S. Zhou, Y. Sui, X. Zhu, X. Sun, S. Zhuo,
 H.Li. Chem. An Asian J., 16 (4), 348 (2021).
 DOI: 10.1002/asia.202001352
- [15] A. Dö ring, E. Ushakova, A.L. Rogach. Light Sci. Appl., 11, 75 (2022). DOI: 10.1038/s41377-022-00764-1
- B. Bartolomei, A. Bogo, F. Amato, G. Ragazzon, M. Prato.
 Angew. Chemie Int. Ed., 61 (20), e202200038 (2022).
 DOI: 10.1002/ANIE.202200038
- [17] A. Das, E. V. Kundelev, A.A. Vedernikova, S.A. Cherevkov, D. V. Danilov, A. V. Koroleva, E. V. Zhizhin, A.N. Tsypkin, A.P. Litvin, A. V. Baranov, A. V. Fedorov, E. V. Ushakova, A.L. Rogach. Light Sci. Appl., **11**, 92 (2022). DOI: 10.1038/s41377-022-00778-9
- [18] A. Das, I.A. Arefina, D.V. Danilov, A.V. Koroleva, E. V. Zhizhin, P.S. Parfenov, V.A. Kuznetsova, A.O. Ismagilov, A.P. Litvin, A.V. Fedorov, E.V. Ushakova, A.L. Rogach. Nanoscale, 13 (17), (2021). DOI: 10.1039/d1nr01693h
- J.R. Macairan, I. Zhang, A. Clermont-Paquette, R. Naccache, D. Maysinger. Part. Part. Syst. Charact., 37 (1), (2020). DOI: 10.1002/ppsc.201900430
- [20] P. Gao, H. Hui, C. Guo, Y. Liu, Y. Su, X. Huang, K. Guo,
 W. Shang, J. Jiang, J. Tian. Carbon NY., 201, (2023).
 DOI: 10.1016/j.carbon.2022.09.052
- [21] Y. Ganjkhanlou, J.J.E. Maris, J. Koek, R. Riemersma, B.M. Weckhuysen, F. Meirer. J. Phys. Chem. C, **126** (5), (2022). DOI: 10.1021/acs.jpcc.1c10478
- [22] A.Visheratina, L. Hesami, A. K. Wilson, N. Baalbaki, N. Noginova, M. A. Noginov, N.A. Kotov. Chirality, 34 (12), (2022). DOI: 10.1002/chir.23509
- [23] F. Li, Y. Li, X. Yang, X. Han, Y. Jiao, T. Wei, D. Yang,
 H. Xu, G. Nie. Angewandte Chemie, 130 (9), (2018).
 DOI: 10.1002/ange.201712453

- [24] Y.Y. Wei, L. Chen, X. Zhang, J.L. Du, Q. Li, J. Luo, X.G. Liu,
 Y.Z. Yang, S.P. Yu, Y.D. Gao. Biomater. Sci., 10 (15), (2022).
 DOI: 10.1039/d2bm00429a
- [25] S. Wei, B. Wang, H. Zhang, C. Wang, S. Cui, X. Yin, C. Jiang,
 G. Sun. Chem. Engineering J., 466, (2023).
 DOI: 10.1016/j.cej.2023.143103
- [26] Z. Hallaji, Z. Bagheri, B. Ranjbar. ACS Appl Nano Mater, 6 (5), (2023). DOI: 10.1021/acsanm.2c04466