06

Об усилении интенсивности спектров поглощения фуллерена C60 в длинноволновой области

© Г.Н. Тен

Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского, 410026 Саратов, Россия e-mail: tengn@yandex.ru

Поступило в Редакцию 25 декабря 2023 г. В окончательной редакции 25 декабря 2023 г. Принято к публикации 25 декабря 2023 г.

Изучены электронные спектры поглощения фуллерена C60 и его двух димеров в области 200-800 nm. Расчет электронных и электронно-колебательных спектров фуллерена в области 350-400 nm в приближении Франка-Кондона, а также сравнение с экспериментальными спектрами показал, что спектры в области 200-400 nm отвечают структуре только мономера фуллерена C60 независимо от концентрации раствора. В области 400-800 nm экспериментальный спектр поглощения фуллерена C60, измеренный в растворе *n*-гексана, хорошо согласуется с вычисленным электронным спектром поглощения одного из димеров фуллерена, что указывает на самопроизвольное образование этого димера в концентрированных растворах фуллерена C60. Интенсивность полос поглощения другого димера в этой области значительно повышается, что позволяет использовать электронные спектры фуллерена C60 для решения практических задач, например, в медицине.

Ключевые слова: электронные и вибронные спектры, интерпретация, димеры фуллерена С60, интенсивность.

DOI: 10.61011/JTF.2024.03.57377.313-23

Введение

Фуллерены, из которых наиболее изученным является фуллерен С60, обладают уникальным строением и биологической активностью. Хорошо известно, что липофильность фуллеренов определяет их мембранотропные свойства, а электронодефицитность приводит к способности взаимодействовать со свободными радикалами, что позволяет фуллеренам проявлять как оксидантные, так антиоксидантные свойства [1,2]. Кроме того, востребованность в медицине фуллерена С60, а также его производных, позволяет не только создавать на их основе эффективные лекарственные препараты, но и адресно доставлять активные соединения непосредственно в клетку [3-5]. При этом для наблюдения и контроля за процессом доставки успешно используют метод гигантское комбинационное рассеяние (ΓKP, SERS (Surface Enhanced Raman Spectroscopy)) [6]. Применение в данном случае традиционного и хорошо зарекомендовавшего себя метода электронной спектроскопии осложняется тем, что фуллерены имеют слабое поглощение в видимой и ближней УФ областях спектра и практически не обладают флуоресценцией.

Отметим, что электронным спектрам фуллерена C60 посвящено большое число теоретических и экспериментальных исследований [7–9]. Во-первых, спектры поглощения были рассмотрены в разных фазовых состояниях: в изолирующей матрице при T = 4.2 K [10], в газовой фазе, в пленке и жидком состоянии [11,12]. Во-вторых, исследуется влияние растворителей, главным образом неполярных, на электронные спектры фуллеренов — толуола, полистирола, полиметилметакрилата и др. [13,14]. Поскольку фуллерены практически нерастворимы или малорастворимы в полярных растворителях, а применение фуллеренов в медицине предполагает их хорошую растворимость в воде, особое внимание уделяется растворимости фуллерена именно в воде, которое обычно достигается функционализацией фуллеренов, например, аминокислотными остатками глицина или фенилаланина [15]. Кроме того, было изучено несколько спектральных диапазонов спектров поглощения С60 — это области ~ 200-400 и ~ 400-800 nm. Авторы работы [14] объяснили поглощение в области 700-800 nm для концентрированных растворов в *n*-гексане при 292 К образованием (С60)*n*-кластеров.

Цель настоящей работы — выполнить теоретический анализ электронных спектров в области 200-800 nm с целью определения их принадлежности мономеру фуллерена C60 или димеру, а также определения условий, при которых происходит увеличение интенсивности длинноволновой полосы поглощения.

Для этого были решены следующие задачи:

1. Выполнен расчет электронных и вибронных спектров поглощения фуллерена C60 и проведено сравнение их с экспериментальными спектрами поглощения в области 200-400 nm. Определено влияние воды как растворителя на интенсивность электронных спектров поглощения C60.

2. Выполнен расчет электронных спектров поглощения димеров C60 в области 400-800 nm и сделан сравнительный анализ с экспериментом. Определено влияние двух разных структурных димеров на интенсивность длинноволновой полосы поглощения.

Сравнительный анализ вычисленных спектров проводился с экспериментальными спектрами поглощения, измеренными для концентрированных растворов C60 в гексане [14].

Электронные и колебательные спектры основного и электронно-возбужденных состояний были вычислены с помощью метода DFT/B3LYP/6-31g(d,p), реализованного в программе Gaussian-09 [16]. Вибронная структура электронных спектров поглощения была рассчитана в приближении Франка–Кондона.

1. Результаты и обсуждение

1.1. Спектральная область 200-400 nm

На рис. 1 приведены результаты расчета электронного спектра C60 в изолированном состоянии. В теоретическом спектре наблюдаются три широкие полосы поглощения с максимумами при 203, 244 и 315 nm (рис. 1, *a*). Влияние воды приводит к батохромному сдвигу максимумов полос поглощения на $\sim 3-5$ nm, а интенсивность полос поглощения увеличивается на $\sim 5-15\%$ (рис. 1, *b*). Для учета влияния водного окружения был использован метод SCRF (диэлектрическая проницаемость воды 78.39). Сравнение вычисленных и экспериментальных спектров поглощения C60, измеренных в растворе *n*-гексана, показывает их полное согласие — значения максимум поглощения в растворе *n*-гексана проявляются при 208, 256 и 328 nm [14].

Длинноволновая полоса поглощения содержит два электронных перехода слабой интенсивности — это переходы при 357 (1) и 392 nm (2) (рис. 2), обладающие тонкой колебательной структурой [9,14]. Вычисленные вибронные спектры переходов 1 и 2 в приближении Франка–Кондона приведены ниже.

Рис. 1. Вычисленные электронные спектры C60 для изолированного состояния (*a*) и водного раствора (*b*) (ε — коэффициент молярной экстинкции; λ — длина волны).

Рис. 2. Интенсивности *1* и *2* полос поглощения (вертикальные линии) С60 в длинноволновой спектральной области 300-400 nm.

Рис. 3. Молекулярные диаграммы с обозначением длин связей двух сочлененных колец C60 для основного (*a*) и второго (*b*) электронных состояний.

Таблица 1. Вычисленные значения длин связей изолированного фуллерена C60 в основном состоянии l_{basic} (Å) и электронно-возбужденных состояний первого $(l_1, Å)$ и второго $(l_2, Å)$ переходов

Номер связи	l _{basic}	l_1	l_2	Номер связи	l _{basic}	l_1	l_2
1	1.40	1.39	1.45	6	1.45	1.46	1.45
2	1.45	1.45	1.47	7	1.45	1.45	1.39
3	1.40	1.39	1.40	8	1.45	1.45	1.42
4	1.45	1.45	1.40	9	1.45	1.45	1.44
5	1.40	1.41	1.39	10	1.45	1.44	1.39

Очевидно, что результаты расчета тонкой структуры электронных спектров будут зависеть от структурнодинамических моделей молекулы в комбинирующих электронных состояниях. Молекулярная структура двух сочлененных колец фуллерена С60 с нумерацией длин связей приведена на рис. 3, а результаты расчета длин связей в основном и электронно-колебательных состояниях рассматриваемых переходов *1* и 2 — в табл. 1.

Отметим, что, хотя изменения длин связей при переходе в электронно-возбужденные состояния не пре-

402

Рис. 4. Вычисленные электронно-колебательные спектры поглощения 1 (*a*) и 2 (*b*) электронных переходов; экспериментальные вибронные спектры (*c*) (на основе [9,14]).

вышают 0.06 Å, во втором электронно-возбужденном состоянии они приводят к изменению кратности связей в обоих кольцах (рис. 3).

Вычисленные в приближении Франка–Кондона вибронные спектры поглощения для обоих электронноколебательных переходов приведены на рис. 4. Сравнение колебательной структуры экспериментального спектра в области 390–410 nm с вычисленными вибронными спектрами показывает, что в электронноколебательных спектрах проявляются полносимметричные колебания, отвечающие колебаниям неассоциированного фуллерена C60 [14].

Таким образом, теоретический расчет и интерпретация электронного и вибронных спектров фуллерена С60, а также сравнение с соответствующими экспериментальными спектрами фуллерена С60, измеренными в *n*-гексане при 292 К, показало, что в области 200–400 nm электронный спектр является спектром поглощения мономера фуллерена С60 независимо от концентрации раствора.

1.2. Спектральная область 400-800 nm

Интенсивность экспериментальных полос поглощения С60 в области выше 400 nm существенно меньше интенсивности полос поглощения в области 200-400 nm. В то же время измерения, выполненные авторами работы [14] для концентрированных растворов фуллерена С60, показывают в области 400-800 nm хорошо структурированный спектр поглощения и спектр флуоресценции слабой интенсивности. С учетом того что эти спектры могут быть вызваны образованием (С60)*n*-кластеров [14], были вычислены электронные спектры поглощения для двух типов димеров I и II. При образовании димера I короткие связи между шестиугольниками на соседних молекулах разрываются и превращаются в четырехчленное кольцо (симметрия D_{2h}); в случае димера II образуется только одна межмолекулярная ковалентная связь СС (симметрия C_{2h}) (рис. 5).

На рис. 6 приведены экспериментальный спектр и вычисленные спектры поглощения димеров I и II фуллерена С60.

Сравнение экспериментального (рис. 6, a) и вычисленных спектров (рис. 6, b, c) показывает, во-первых, хорошее совпадение экспериментального спектра поглощения с вычисленным спектром димера I (при использовании масштабируемого множителя 1.15). В табл. 2 и на рис. 6, b приведены соответствующие значения длин волн максимумов экспериментального и теоретического

Рис. 5. Молекулярные диаграммы двух димеров фуллерена C60 I и II.

Рис. 6. Экспериментальный спектры поглощения фуллерена C60 в концентрированном растворе в области 400-800 nm (*a*). Вычисленные спектры поглощения димеров I (*b*) и II (*c*).

Таблица 2. Экспериментальные (λ_{exper} , nm) и вычисленные (λ_{calc} , nm) значения длин волн максимумов полос поглощения и силы осцилляторов (f_{osc}) для димера I фуллерена C60

λ_{exper}	λ^*_{calc}	f_{osc}	λ_{exper}	λ^*_{calc}	f_{osc}
760.6	890.1	0.0002	569	651.83	0.0016
745.9	843.95	0.0008		633.99	0.0008
620.2	762.55	0.0013		623.34	0.0001
609	723.22	0.0003		621.07	0.0006
597.6	702.61	0.0021		617.28	0.0001
	676.87	0.0001		609.20	0.0004
	670.14	0.0004	541	602.17	0.0020
	653.98	0.0001	529	599.74	0.0013
590	653.08	0.0013		597.79	0.0011

спектров поглощения, а также силы осцилляторов.

Во-вторых, для димера II типа наблюдается увеличение интенсивности полос поглощения электронного спектра по сравнению с интенсивностью полос поглощения димера I в ~ 2 раза.

Выводы

В работе с целью определения условий, при которых возможно увеличение интенсивности длинноволновой полосы поглощения и соответственно флуоресценции, что важно для применения фуллеренов и их диагностики в медицине, был выполнен расчет и анализ электронных спектров поглощения C60 и его димеров в области 200-800 nm.

Было показано, что в области 200-400 nm наблюдается незначительное увеличение интенсивности полос поглощения в водном растворе, а расчет электронного и вибронных спектров подтверждает их соответствие экспериментальным электронно-колебательным спектрам мономера фуллерена С60.

Выполненный расчет электронных спектров поглощения двух типов димеров C60 в области 400-800 nm показал хорошее согласие с экспериментальным спектром только для одного из димеров. Определено влияние димеров на интенсивность длинноволновой полосы поглощения. Показано, что интенсивность полос поглощения для димера II увеличивается в ~ 2 раза по сравнению с интенсивностью спектра поглощения димера I. Таким образом, димеры II фуллерена C60 могут быть успешно использованы для контроля и диагностики в медицине.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- Л.Б. Пиотровский. Российские нанотехнологии, 2 (7-8), 6 (2007).
- [2] Л.Б. Пиотровский, М.Ю. Еропкин, Е.М. Еропкина, М.А. Думпис, О.И. Киселев. Психофармакология и биологическая наркология, 7 (2), 1548 (2007).
- [3] Z.P. Xu, Q.H. Zeng, G.Q. Lu, A.B. Yu. Chem. Eng. Sci., 61, 1027 (2006). DOI: 10.1016/j.ces.2005.06.019
- [4] S. Foley, C. Crowley, M. Smaihi, C. Bonfils, B.F. Erlanger, P. Seta, C. Larroque. Biochem. Biophys. Res. Commun., 294, 116 (2002). DOI: 10.1016/S0006-291X(02)00445-X
- [5] E. Nakamura, H. Isobe. Acc. Chem. Res., 36, 807 (2003). DOI: 10.1021/ar030027y
- Полетаева, [6] Д.А. E.A. Хакина, В.И. Кукушкин. А.Ю. Рыбкин, Н.С. Горячев, А.Ю. Белик, А.В. Жиленков, П.А. Трошин, Р.А. Котельникова, А.И. Котельников. ДАН, 460 (1), 52 (2015). [D.A. Poletaeva, E.A. Khakina, A.Y. Rybkin, N.S. Goryachev, A.V. Zhilenkov, P.A. Troshin, A.I. Kotelnikov, V.I. Kukushkin, R.A. Kotelnikova, A.Y. Belik. Dokl. Phys. Chem., 460 (1), 1 (2015). DOI: 10.1134/S0012501615010017]

403

- [7] Г.И. Миронов, А.И. Мурзашев. ФТТ, 53 (11), 2273 (2011).
 [G.I. Mironov, А.I. Murzashev. Phys. Solid State, 53 (11), 2393 (2009). DOI: 10.1134/S1063783411110199]
- [8] J. Tamuliene. Fullerenes, Nanotubes and Carbon Nanostructures, 23, 187 (2014).
 DOI: 10.1080/1536383X.2014.926330
- [9] S. Leach, M. Vervloet, A. Desprks, E. BrCheret, J.P. Hare, T.J. Dennis, H.W. Kroto, R. Taylor, D.R.M. Walton. Chem. Phys., 160, 451 (1992).
- [10] A. Sassara, G. Zerza, M. Chergui, F. Negri, G. Orland. J. Chem. Phys., 107 (21), 8731 (1997).
- [11] И.Б. Захарова, О.Е. Квятковский, Е.Г. Доненко, Ю.Ф. Бирюлин. ФТТ, **51**(9), 1860 (2009). [I.B. Zakharova, E.G. Donenko, O.E. Kvyatkovskii, Y.F. Biryulin. Phys. Solid State, **51**(9), 1976 (2009).
 DOI: 10.1134/S1063783409090340]
- S.H. Cuylle, H. Linnartz, J.D. Thrower. Chem. Phys. Lett., 550, 79 (2012). DOI: 10.1016/j.cplett.2012.08.072
- [13] В.Н. Целуйкин, О.А. Канафьева, О.Г. Неверная. Конденсированные среды и межфазные границы, 14 (3), 390 (2012).
- [14] В.С. Павлович, Э.М. Шпилевский. ЖПС, 77 (3), 362 (2010).
 [V.S. Pavlovich, Е.М. Shpilevsky. J. Appl. Spectr., 77 (3), 335 (2010). DOI: 10.1007/s10812-010-9336-2]
- [15] N.E. Shcherbakova, G.N. Ten, V.I. Baranov. B c6. Progress in Biomedical Optics and Imaging — Proceedings of SPIE. Laser Physics, Photonic Technologies and Molecular Modeling. 2019. C. 110661F.
- [16] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox. Gaussian 09 (Gaussian Inc., Wallingford CT, 2009)