01 Излучение в графене: кинетический подход

© В.А. Церюпа, Д.В. Чурочкин, В.В. Дмитриев, С.А. Смолянский

Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского, 410012 Саратов, Россия e-mail: dmitrievvv@sgu.ru

Поступило в Редакцию 17 января 2024 г. В окончательной редакции 17 января 2024 г. Принято к публикации 17 января 2024 г.

> Кратко суммированы последние результаты кинетической теории излучения в графене, состоящего как из квазиклассической составляющей, генерируемой плазменными токами, так и квантовой компоненты, порождаемой прямым взаимодействием с носителями, возбуждение которых внешним полем описано непертурбативными методами. Достигнутый уровень развития теории позволяет говорить о качественном уровне согласия с имеющимися экспериментальными данными.

> Ключевые слова: непертурбативная кинетика, сильные поля, графен, квазиклассическое и квантовое излучения.

DOI: 10.61011/JTF.2024.03.57371.1-24

Введение

Хорошо известно, что в низкоэнергетическом пределе графен описывается D = 2 + 1 безмассовой двухскоростной квантовополевой моделью [1,2] с неаналитической зависимостью от напряженности внешнего электрического поля уже в области слабых полей (например, [3]). Это приводит к экспериментальной доступности в исследовании генерации электрондырочной плазмы (ЭДП) во внешних полях (эффект Ландау-Зинера [4,5]), аналогом которого в КЭД сильного поля является эффект Заутера-Швингера [6,7]. На этом уровне достигнуто хорошее согласие с экспериментом [8,9]. Проблемы возникают на этапе согласования D = 2 + 1 динамики графена с D = 3 + 1динамикой взаимодействия внутренних токов с плазменным квазиклассическим полем и с квантовым полем, генерируемым прямым взаимодействием с носителями. Решение этой проблемы было намечено в работе [10] путем полуфеноменологической D = 3 + 1 модификации КЭД в графене.

В настоящей работе мы реализуем этот подход в рамках непертурбативной кинетической теории как на уровне самосогласованного описания взаимодействия с плазменным полем (проблема обратной реакции (разд. 2)), так и при взаимодействии ЭДП с квантованным полем (разд. 3). Аналогичную проблему приходится рассматривать и при написании излучения (квазиклассического и квантового) во внешние области пространства по отношению к плоскости графена. Итоги работы кратко обсуждаются в Заключении.

1. Кинетическое уравнение

Основное кинетическое уравнение (КУ) в графене в приближении самосогласованного поля было получено

в непертурбативном базисе в работе [11] по аналогии с электрон-позитронной плазмой в КЭД сильного поля (например, [12]).

В этих работах эффективное электрическое поле с векторным потенциалом $A^{(k)}(t)$ (индексы k = 1, 2 соответствуют двум пространственным измерениям трехмерного евклидового пространства) и напряженностью поля $E^{(k)}(t) = -(1/c)\dot{A}^{(k)}(t)$ предполагается пространственно однородным и зависящим от времени. В общем случае оно состоит из внешнего и внутреннего (плазменного) полей,

$$A^{(k)}(t) = A^{(k)}_{ex}(t) + A^{(k)}_{in}(t).$$
(1)

Для оценки эффективности создания ЭДП достаточно использовать приближение внешнего поля $E(t) = E_{ex}(t)$, в то время как самосогласованное описание колебаний плазмы нуждается в использовании полного поля.

Основное КУ описывает возбуждения в графене в терминах квазичастиц с квазиэнергией $\varepsilon(\mathbf{p}, t) = v_F \sqrt{P^2}$ ($v_F = 10^6$ m/s — скорость Ферми, $\mathbf{p} = (p^{(1)}, p^{(2)}, 0)$ — импульс квазичастиц) и квазиимпульсом $P^{(k)} = p^{(k)} - (e/c)A^{(k)}(t)$ с помощью функции распределения $f(\mathbf{p}, t)$. Это КУ учитывает условие электронейтральности электронной и дырочной подсистем $f(\mathbf{p}, t) = f_e(\mathbf{p}, t) = f_h(-\mathbf{p}, t)$ и может быть записано либо в форме интегродифференциального уравнения немарковского типа [11]:

$$\dot{f}(\mathbf{p},t) = \frac{1}{2}\lambda(\mathbf{p},t)\int_{t_0}^t dt'\lambda(\mathbf{p},t')[1-2f(\mathbf{p},t')]\cos\theta(\mathbf{p};t,t')$$
(2)

или в эквивалентной форме системы обыкновенных дифференциальных уравнений

$$\dot{f}(\mathbf{p},t) = \frac{1}{2}\lambda(\mathbf{p},t)u(\mathbf{p},t),$$

(3)

$$\dot{u}(\mathbf{p},t) = \lambda(\mathbf{p},t)[1-2f(\mathbf{p},t)] - \frac{2\varepsilon(\mathbf{p},t)}{\hbar}v(\mathbf{p},t),$$
$$\dot{v}(\mathbf{p},t) = \frac{2\varepsilon(\mathbf{p},t)}{\hbar}u(\mathbf{p},t),$$

где

352

$$\lambda(\mathbf{p},t) = \frac{ev_F^2[E^{(1)}(t)P^{(2)} - E^{(2)}(t)P^{(1)}]}{\varepsilon^2(\mathbf{p},t)},$$
 (4)

$$\theta(\mathbf{p};t,t') = \frac{2}{\hbar} \int_{t'}^{t} d\tau \varepsilon(\mathbf{p},\tau).$$
 (5)

Предполагается, что внешнее поле включается в момент времени $t = t_0$. Процедура перехода от КУ (2) к системе уравнений (3) приведена в работе [11]. Некоторые свойства КУ в форме (2) и (3) и их решения для различных моделей поля обсуждаются в работах [11,13].

Функция распределения $f(\mathbf{p}, t)$ позволяет вычислить средние значения физических величин. Например, плотность числа квазичастиц и плотность энергии равны

$$n(t) = 2N_f \int [dp] f(\mathbf{p}, t), \tag{6}$$

$$\mathscr{E}_{eh}(t) = 2N_f \int [dp] \varepsilon(\mathbf{p}, t) f(\mathbf{p}, t), \qquad (7)$$

где $[dp] = d^2 p (2\pi\hbar)^{-2}$ и $N_f = 4$ — число различных сортов квазичастиц (две точки Дирака и два псевдоспиновых состояния), факторы 2 в (6) и (7) обусловлены равенством вкладов электронов и дырок. Полная плотность энергии квазичастичных возбуждений

$$\mathscr{E}(t) = \mathscr{E}_{eh}(t) + \mathscr{E}_{pol}(t) \tag{8}$$

включает в себя также плотность энергии поляризации [11]

$$\mathscr{E}_{pol}(t) = -N_f \hbar \int [dp] \lambda(\mathbf{p}, t) \upsilon(\mathbf{p}, t).$$
(9)

Полная плотность тока $j^{(k)}(t)$ состоит из токов проводимости и поляризации [11],

$$j^{(k)}(t) = j^{(k)}_{cond}(t) + j^{(k)}_{pol}(t),$$
(10)

$$j_{cond}^{(k)}(t) = 2N_f e \int [dp] v_g^{(k)}(\mathbf{p}, t) f(\mathbf{p}, t), \qquad (11)$$

$$j_{pol}^{(k)}(t) = -N_f e \int [dp] v_{pol}^{(k)}(\mathbf{p}, t) u(\mathbf{p}, t), \qquad (12)$$

где

$$v_g^{(k)}(\mathbf{p},t) = \frac{\partial \varepsilon(\mathbf{p},t)}{\partial p^{(k)}} = \frac{v_F^2 P^{(k)}}{\varepsilon(\mathbf{p},t)},\tag{13}$$

$$v_{pol}^{(k)}(\mathbf{p},t) = \varepsilon(\mathbf{p},t) \frac{\partial \lambda(\mathbf{p},t)}{\partial E^{(k)}(t)} = \frac{v_F^2}{\varepsilon(\mathbf{p},t)} \begin{cases} P^{(2)}, & k = 1, \\ -P^{(1)}, & k = 2, \end{cases}$$
(14)

при этом $\mathbf{v}_g \mathbf{v}_{pol} = \mathbf{0}$. Токи (11), (12) определяются эффективным полем (1). Из формул (12) и (9) следует, что вспомогательные функции $u(\mathbf{p}, t)$ и $v(\mathbf{p}, t)$ в системе (3) описывают поляризационные эффекты в плотностях тока и энергии соответственно. Знак в правой части поляризационного тока (12) обусловливает подавление тока проводимости (11) (см. ниже).

2. Проблема обратной реакции

Следующий уровень описания учитывает обратную реакцию (OP), связанную с генерацией внутренних плазменных токов и полей $E_{in}^{(k)}(t) = -(1/c)\dot{A}_{in}^{(k)}$ (k = 1, 2). Проблема возникает на этапе формулирования уравнения Максвелла, где напряженность электрического поля $E_{in}^{(k)}$ сопоставляется с плотностью плазменного тока. Предположение о фундаментальности природы стандартной D = 3 + 1 КЭД заставляет ввести некоторую размерную модификацию в динамику графена.

Такого рода видоизменения были предложены в работе [10]. Волновая функция носителей $\psi(\mathbf{x}, t)$ $(\mathbf{x} = (x^{(1)}, x^{(2)}))$ размерности D = 2 + 1 модифицировалась до случая D = 3 + 1 пространства-времени по определению как

$$\psi(\mathbf{x}, z; t) = \psi(\mathbf{x}, t) \frac{1}{\sqrt{d}} \varphi(z) e^{i p^{(3)} z/\hbar}, \ z = x^{(3)},$$
 (15)

где $d \simeq 10^{-8}$ ст — толщина графенового слоя. Безразмерная функция $\varphi(z)$ описывает распределение носителей в поперечном направлении и удовлетворяет условиям нормировки и конфаймента ($\varphi(z = 0, d) = 0$). В дальнейшем детали этого распределения игнорируются, так что $\varphi(z)e^{ip^{(3)}z/\hbar} \rightarrow 1$, что приводит к D = 3 + 1 модифицированной волновой функции

$$\tilde{\psi}(\mathbf{x},t) = d^{-1/2}\psi(\mathbf{x},t).$$
(16)

Этот результат приводит к следующему правилу размерной модификации средних величин типа *a*:

$$\langle \tilde{a} \rangle = d^{-1} \langle a \rangle, \tag{17}$$

где $\langle a \rangle$ соответствует D = 2 + 1 теории.

Теперь можно написать уравнение Максвелла для ОР в графене:

$$\dot{E}_{in}^{(k)}(t) = -4\pi \tilde{j}^{(k)}(t) = -4\pi d^{-1} j^{(k)}(t), \qquad (18)$$

где D = 2 + 1 плотности токов проводимости и поляризации определены уравнениями (10)-(12).

Система КУ (2) (или (3)) и уравнение Максвелла (18) описывает самосогласованную эволюцию ЭДП и внутреннего поля. Здесь можно выделить две стадии процессов обратной реакции: возбуждение ЭДП, которое ограничено периодом действия внешнего поля, и период свободной эволюцией системы, которая имеет вид периодических самосогласованных плазменных колебаний [11]. Ниже мы исследуем ОР графена в модели поля одиночного гауссовского импульса.

$$E_{ex}(t) = E_0 e^{-t^2/2\tau^2}.$$
 (19)

В случае электрон-позитронной и партонной плазмы механизм ОР был хорошо изучен на основе непертурбативной кинетической теории в большом числе работ, начиная с работы [14]. Принципиальная особенность графена — это безмассовость теории. Это приводит к практически безынерционному ответу системы и резкому ослаблению эффекта памяти в кинетическом описании. В результате, внутреннее плазменное поле сильно растет и почти компенсирует внешнее поле, так что эффективное поле оказывается сильно подавленным. Это ведет к подавлению образования ЭДП.

Эти особенности очень хорошо раскрываются при численном исследовании проблемы ОР в графене. Напряженности электрических полей (внешнего (E_{ex}) , внутреннего (E_{in}) и эффективного (E)) показана на рис. 1,2: суммарное поле $E = E_{ex} + E_{in}$ сильно подавлено. После выключения внешнего поля появляются колебания плазмы, но они слабо выражены.

Рис. 1. Эволюция электрических полей в графене.

Рис. 2. Эволюция результирующего поля в графене.

Рис. 3. Коэффициент истощения плотности частиц.

Рис. 4. Коэффициент истощения плотности токов.

Это приводит к истощению ЭДП. Для характеристики эффективности этого процесса введем коэффициент истощения по плотностям частиц в аут-состоянии и коэффициент истощения амплитуды токов:

$$\xi^{(n)} = \frac{n_{BR}^{out}}{n^{out}}, \quad \xi^{(j)} = \frac{j_{BR}^{\max}}{j^{\max}},$$
 (20)

где n_{BR}^{out} и j_{BR}^{max} вычисляются с учетом OP, а в n^{out} и j^{max} OP не учитывается (рис. 3, 4). На этих рисунках видно, что оба коэффициента истощения (20) очень малы при широком изменении параметров внешнего поля (19). Вывод об истощении ЭДП вследствие действия OP находится в качественном согласии с результатами полуфеноменологической теории каскадных процессов в электрон-позитронной плазме (обзор [15]), подтверждающий идею Н. Бора о невозможности достижения критической напряженности поля $E_c = m^2/e$ в полях, способных рождать электрон-позитронную плазму.

Удается восстановить на качественном уровне E_0 - и τ -зависимости в определениях (20) плотностей:

354

$$n^{out} \propto E_0^{3/2} \tau, \quad n_{BR}^{out} \propto E_0^2, \tag{21}$$

$$j^{\max} \propto E_0^{3/2} \tau, \quad j_{BR}^{\max} \propto E_0 \tau^{-1}.$$
 (22)

Эти оценки приводят к следующим результатам для коэффициентов истощения

$$\xi^{(n)} \propto E_0^{1/2} \tau^{-1}, \quad \xi^{(j)} \propto E_0^{-1/2} \tau^{-2}.$$
 (23)

3. Квазиклассическое и квантовое излучения

Квазиклассическое излучение (ККИ) во внешних областях относительно плоскости графена определяется внутренними плазменными токами. Плотность энергии этого излучения на большом расстоянии от плоскости графена равна (см. Приложение)

$$\mathscr{E}_{QCR}(t,z) = \frac{\pi}{c^2} j^2(t_{ret}), \qquad (24)$$

где $t_{ret} = t - z/c$ — время запаздывания и $\mathbf{j}(t)$ — это D = 2 + 1 плотность тока в графене. Как и следовало ожидать, ККИ является относительно слабым (рис. 5).

Взаимодействие ЭДП с фотонным полем генерирует квантовое излучение (КИ). Соответствующая система КУ для ЭДП и подсистемы фотонов в графене была получена в работе [16] на динамической основе по аналогии с кинетической теорией электрон-позитронно-фотонной плазмы в сильном внешнем поле [17,18].

Ниже мы рассмотрим только аннигиляционный канал в интеграле столкновений фотонного КУ, пренебрегая обратным влиянием рождения электрон-дырочных пар в результате поглощения фотона [16],

$$\dot{F}(\mathbf{K},t) = 2 \int \frac{d^2 p}{(2\pi\hbar)^2} \int_{t_0}^t dt' K_{\gamma}(\mathbf{p},\mathbf{p}+\hbar\mathbf{k};t,t')$$

$$\times \left\{ f(\mathbf{p},t') f(\mathbf{p}+\hbar\mathbf{k},t') + \left[f(\mathbf{p},t') + f(\mathbf{p}+\hbar\mathbf{k},t') - 1 \right] \right\}$$

$$\times F(\mathbf{K},t')$$
(25)

где вектор **k** принадлежит плоскости графена, $\mathbf{K} = (\mathbf{k}, k^{(3)})$ — трехмерный волновой вектор с компонентой $k^{(3)}$, ортогональной плоскости графена; $K = |\mathbf{K}|$. Здесь ядро фотонного интеграла столкновений равно

$$K_{\gamma}(\mathbf{p}, \mathbf{p}'; t, t') = \frac{(ev_F)^2}{2\hbar c K d} \Gamma^{\alpha}_{uv}(\mathbf{p}, \mathbf{p}'; t) \Gamma^{\alpha*}_{uv}(\mathbf{p}, \mathbf{p}'; t')$$
$$\times \cos \Theta^{(+)}(\mathbf{p}, \mathbf{p}'; t, t'). \tag{26}$$

Рис. 5. Спектральные плотности мощности излучения при $E_0 = 250 \, \text{kV/cm}, \tau = 2.46 \cdot 10^{-13} \, \text{c}.$

Фаза $\Theta^{(+)}(\mathbf{p}, \mathbf{p}'; t, t')$ соответствует однофотонной аннигиляционной диаграмме

$$\Theta^{(+)}(\mathbf{p},\mathbf{p}';t,t') = \frac{1}{\hbar} \int_{t'}^{t} d\tau \left[\varepsilon(\mathbf{p},\tau) + \varepsilon(\mathbf{p}',t) - c\hbar K \right].$$
(27)

В случае достаточно медленного процесса можно пренебречь запаздыванием в произведении вершинных функций в (26) и воспользоваться соотношением [16]:

$$\sum_{\alpha} |\Gamma^{\alpha}_{uv}(\mathbf{p}, \mathbf{p}'; t)| = 1.$$
(28)

Интеграл по времени в (25) приводит тогда к закону сохранения энергии в элементарном акте аннигиляции (аналогичная ситуация встречается при выводе кинетического уравнения Больцмана [19]). В рассматриваемом случае процесс является неупругим и закон сохранения энергии в интеграл столкновений (25) не выполняется. В приближении (28) ядро интеграла столкновений в КУ (25) будет равно

$$K_{\gamma}(\mathbf{p},\mathbf{p}';t,t') = \frac{(ev_F)^2}{2\hbar c K d} \cos \Theta^{(+)}(\mathbf{p},\mathbf{p}';t,t').$$
(29)

Появление здесь толщины d образца графена в полученном ИС вызвано использованием того же нормировочного объема V = Sd в разложении векторного потенциала по плоским волнам

$$\hat{A}^{(\pm)\alpha}(\mathbf{x},t) = \sqrt{\frac{\hbar c}{V}} \sum_{\mathbf{K}} \frac{1}{2\sqrt{2K}} \epsilon_i^{\alpha}(\pm \mathbf{K}) \hat{A}^{(\pm)}(\pm \mathbf{K},t) e^{-i\mathbf{k}\mathbf{x}}.$$
(30)

Журнал технической физики, 2024, том 94, вып. 3

Здесь α , i = 1, 2, а ϵ_i^{α} — поляризационная тетрада, поперечная к вектору **К**. Итоговая система КУ в электрондырочном и фотонном секторах записана в термодинамическом пределе $V \to \infty$ при фиксированной толщине образца. В итоге фотонное КУ в аннигиляционном канале (25) принимает вид

$$\dot{F}(\mathbf{K},t) = \Lambda(K) \int \frac{d^2 p}{(2\pi\hbar)^2} \int_{t_0}^t dt' \cos \Theta^{(+)}(\mathbf{p}, \mathbf{p} + \hbar \mathbf{k}; t, t')$$

$$\times \{f(\mathbf{p}, t')f(\mathbf{p} + \hbar \mathbf{k}, t') + [f(\mathbf{p}, t') + f(\mathbf{p} + \hbar \mathbf{k}, t') - 1]$$
$$\times F(\mathbf{K}, t')\} = C(\mathbf{K}, t),$$

где $C(\mathbf{K}, t)$ — интеграл столкновений и

$$\Lambda(K) = \frac{(ev_F)^2}{\hbar c K d}.$$
(32)

Учитывая сходство математических структур интегродифференциальных КУ (2) и (31), нетрудно записать фотонное КУ (31) в форме системы интегродифференциальных уравнений, аналогичной (3):

$$\dot{F}(\mathbf{K},t) = \Lambda(K) \int \frac{d^2 p}{(2\pi\hbar)^2} U(\mathbf{p},\mathbf{K},t),$$

$$\dot{U}(\mathbf{p}, \mathbf{K}, t) = [f(\mathbf{p}, t') + f(\mathbf{p} + \hbar \mathbf{k}, t') - 1]F(\mathbf{K}, t') + f(\mathbf{p}, t')$$

×
$$f(\mathbf{p} + \hbar \mathbf{k}, t') - \frac{1}{\hbar} \left[\varepsilon(\mathbf{p}, \tau) + \varepsilon(\mathbf{p}', t) - c\hbar K \right] V(\mathbf{p}, \mathbf{K}, t),$$

$$\dot{V}(\mathbf{p}, \mathbf{K}, t) = \frac{1}{\hbar} \left[\varepsilon(\mathbf{p}, \tau) + \varepsilon(\mathbf{p}', t) - c\hbar K \right] U(\mathbf{p}, \mathbf{K}, t).$$
(33)

Эта система удобна для численного изучения проблемы квантового излучения. Функция распределения носителей $f(\mathbf{p}, t)$ рассматривается здесь как решение КУ (2) (или системы (3)).

Для сравнения полученных результатов характеристик ККИ и КИ на основе кинетической теории с экспериментальными результатами [20] выберем параметры внешнего поля в модели (19) как $E_0 = 250$ kV/сm и $\tau = 246$ fs, которые близки к параметрам поля работы [20].

Спектральные плотности мощности ККИ $(Q_{QCR} = \mathscr{E}_{QCR}, (24))$ и КИ

$$Q_{QR}(\nu) = \frac{4\pi\hbar}{c^3}\nu^3 \dot{F}(\nu) \tag{34}$$

представлены на рис. 5. Поле ККИ имеет узкий спектр с резкой границей в высокочастотной области, тогда как спектр КИ гораздо более широкий и достигает ультрафиолетовой спектральной области. В рассмотренной ситуации диапазон видимого света достигает только КИ. Этот результат близок к экспериментально наблюдаемому [20].

Излучение направлено в обе стороны от поверхности графена и ортогонально к ней.

Рис. 6. Спектральные плотности мощности излучения при $E_0 = 100 \, \text{kV/cm}, \tau = 1.23 \cdot 10^{-15} \, \text{c}.$

Ситуация, изображенная на рис. 5, не является универсальной и может быть очень различной в зависимости от параметров внешнего поля (рис. 6). Представленная теория позволяет делать необходимые предсказания в этих случаях.

Нужно заметить, что излучение (квазиклассическое и квантовое) приводит к невосполнимым потерям энергии, привносимой внешним полем. В настоящей работе эти потери не учитываются.

Заключение

Работа кратко суммирует результаты развития последовательной кинетической теории процессов излучения в графене, включающей непертурбативное описание рождения ЭДП, механизм обратной реакции при генерации внутренних токов и квазиклассического плазменного поля, а также квантового поля, возбуждаемого прямым взаимодействием с носителями в аннигиляционном канале. Существенным элементом такого описания является использование методов КЭД [10], позволяющими совместить D = 2 + 1 динамику графена с D = 3 + 1 динамикой ККИ и КИ. Достигнутый уровень описания излучения в графене позволяет говорить о качественном согласии с экспериментами [20]. Можно ожидать, что дальнейшее развитие кинетической теории (например, учет процесса обратной реакции фотонной подсистемы в аннигиляционном канале) позволит выйти на количественный уровень описания процессов излучения в графене. В частности, было бы интересно сравнить механизмы истощения внешнего поля в графене и простейшей модели полупроводника, где также возможно непертурбативное кинетическое описание электрондырочных возбуждений [21,22].

Приложение

Плазменные токи в графене генерируют квазиклассическое излучение во внешние, по отношению к плоскости *S* графена, области пространства. Характеристики этого излучения можно найти, используя модель пространственно однородных токов в бесконечной проводящей плоскости [23].

Исходным является выражение для запаздывающего векторного потенциала $A_{ret}^k(r, t)$ поля излучения в точке z, расположенной на расстоянии z от плоскости графена [24].

$$A_{ret}^{k}(r,t) = \frac{1}{c} \int_{S_d} \frac{d^3x}{\rho} \, \tilde{j}^{(k)}(t-\rho/c) = \frac{1}{c} \int_{S} j^{(k)}(t-\rho/c).$$
(II1)

где $\rho = \sqrt{r^2 + z^2}$, $r^2 = x^2 + y^2$, а d — толщина образца графена. Последнее равенство (П1) записано с учетом правила соответствия (17). Поскольку теперь $rdr = \rho d\rho$, из (П1) получаем

$$A_{ret}^{k}(r,t) = \frac{2\pi}{c} \int_{z}^{\infty} j^{(k)}(t-\rho/c).$$
(II2)

Вводя единичный вектор $e^{(3)}$ в направлении, перпендикулярном плоскости *S*, можно получить из (П2) напряженность электрического и магнитного полей в точке наблюдения *z*

$$\mathbf{E}_{rad}(t_0) = -\frac{2\pi}{c}\mathbf{j}(t_0),\tag{\Pi3}$$

$$\mathbf{B}_{rad}(t_0) = -\frac{2\pi}{c} \left[\mathbf{e}^{(3)}, \mathbf{j}(t_0) \right], \tag{II4}$$

где $t_0 = t - z/c$ — время запаздывания. Отсюда следует выражение для вектора Пойнтинга

$$\mathbf{S}_{rad}(t_0) = c \mathscr{E}_{rad}(t_0) \mathbf{e}^{(3)},\tag{\Pi5}$$

где плотность энергии квазиклассического излучения равна

$$\mathscr{E}_{rad}(t_0) = \frac{\pi}{c^2} \, j^2(t_0). \tag{\Pi6}$$

Рассмотрим теперь КИ во внешних областях пространства ("вверх" и "вниз") относительно плоскости графена S.

Поскольку речь идет о том, чтобы распространить кинетическое описание фотонного излучения во внешние области, целесообразно воспользоваться методом функции Грина математической физики, рассматривая плоскость графена как активную зону излучения, описываемую фотонным КУ (31). Фотонное КУ (31) с интегралом столкновений $C(\mathbf{K}, t)$:

$$\dot{F}(\mathbf{K},t) = C(\mathbf{K},t),\tag{\Pi7}$$

справедливое на плоскости графена S, продолжим в обе области свободного пространства ($\mathbf{X} = \mathbf{x}, x^{(3)} = z$),

$$\hat{L}(\mathbf{X},t)F(\mathbf{X},\mathbf{K},t) \equiv \left(\frac{\partial}{\partial t} + c \,\mathbf{e} \,\frac{\partial}{\partial \mathbf{X}}\right)F(\mathbf{X},\mathbf{K},t)$$
$$= Q(\mathbf{X},\mathbf{K},t) \equiv C(\mathbf{K},t)\delta(z/d), \quad (\Pi 8)$$

где $\mathbf{e} = \mathbf{K}/K$. Определим теперь функцию Грина уравнения (П8)

$$\hat{L}(\mathbf{X},t)G(\mathbf{X}-\mathbf{X}',t-t') = \delta(\mathbf{X}-\mathbf{X}')\delta(t-t').$$
(II9)

Отсюда можно найти фурье-образ функции Грина уравнения ($\varepsilon > 0$):

$$G(\mathbf{K},\omega) = \frac{-i}{\omega + i\varepsilon - cK}.$$
 (II10)

Теперь можно записать решение КУ (П8) через функцию источника $Q(\mathbf{X}, \mathbf{K}, t)$,

$$F(\mathbf{X}, \mathbf{K}, t) = \int d^3 X dt' G(\mathbf{X} - \mathbf{X}', t - t') Q(\mathbf{X}', \mathbf{K}, t').$$
(II11)

Используя определение $Q(\mathbf{X}, \mathbf{K}, t)$ (П8) и формулу (П10), отсюда получим

$$F(\mathbf{X}, \mathbf{K}, t) = \frac{d}{2c} C(\mathbf{K}, t_{ret}), \qquad (\Pi 12)$$

где $t_{ret} = t - z/c$ — время запаздывания.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. Rev. Mod. Phys., 81, 109 (2009).
- [2] A.K. Geim, K.S. Novoselov. Nat. Mater, 6, 183 (2007).
- [3] B. Dora, R. Moessner. Phys. Rev. B, 81, 165431 (2010).
- [4] L.D. Landau. Phys. Z. Sowjetunion, 2, 46 (1932).
- [5] C. Zener, Proc. R. Soc. A, **137** 696 (1932).
- [6] F. Sauter. Z. Physik, 73, 547 (1932).
- [7] J. Schwinger. Phys. Rev., 82, 664 (1951).
- [8] A. Scmitt et al. Nature Phys., 19, 830 (2023).
- [9] A.I. Berdyugin et al. Science, **375**, 430 (2022).
- [10] S.P. Gavrilov, D.M. Gitman. Eur. Phys. J. Plus, 138, 171 (2023).
- [11] S.A. Smolyansky, A.D. Panferov, D.B. Blaschke, N.T. Gevorgyan. Particles, 3, 456 (2020).
- [12] I.A. Aleksandrov, V.V. Dmitriev, D.G. Sevostyanov, S.A. Smolyansky. Eur. Phys. J. Special Topics, 229, 3469 (2020).
- [13] D.B. Blaschke, V.V. Dmitriev, N.T. Gevorgyan, B. Mahato, A.D. Panferov, S.A. Smolyansky, V.A. Tseryupa. Springer Proc. Phys., 281, 187 (2022).

- [14] J.C.R. Bloch, V.A. Mizerny, A.V. Prozorkevich, C.D. Roberts, S.M. Schmidt, S.A. Smolyansky, D.V. Vinnik. Phys. Rev. D, 60, 116011 (1999).
- [15] Н.Б. Нарожный, А.М. Федотов. УФН, 185, 103 (2015).
- [16] S. Gavrilov, D. Gitman, V. Dmitriev, A. Panferov, S. Smolyansky. Universe, 6, 205 (2020).
- [17] D.B. Blaschke, V.V. Dmitriev, G. Roepke, S.A. Smolyansky. Phys. Rev. D, 84, 085028 (2011).
- [18] S.A. Smolyansky, A.D. Panferov, S.O. Pirogov, A.M. Fedotov. arXiv:1901.02305v1 (2019).
- [19] L.P. Kadanoff, G. Baym. *Quantum Statistical Mechanics*; Pines, D. eds. W.A. Benjamin (NY., USA, 1962).
- [20] I.V. Oladyshkin, S.B. Bodrov, A.V. Korzhimanov, A.A. Murzanev, Yu.A. Sergeev, A.I. Korytin, M.D. Tokman, A.N. Stepanov. Phys. Rev. B, 106, 205407 (2022).
- [21] S.A. Smolyansky, A.V. Tarakaniv, M. Bonitz. Contrib. Plasma Phys., 49, 575 (2009).
- [22] M.F. Linder, A. Lorke, R. Schützhold. Phys. Rev. B, 97, 035203 (2018).
- [23] T.A. Abbott, D.J. Griffiths. Am. J. Phys. 53, 1203 (1985).
- [24] Л.Д. Ландау, Е.М. Лифшиц. *Теория поля* (Физматлит, М., 2006)