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Optical identification of hemolysis and lipemia in blood serum samples:

computer vision and diffuse reflectance spectroscopy
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One of the main sources of errors when conducting biochemical analysis of blood serum in a clinical diagnostic

laboratory is the excessive concentration of hemoglobin (hemolysis) or lipids (lipemia) in the analyzed sample.

Therefore, an important step to accurately determine the concentration of the target analyte is to first classify the

sample into ”suitable” and ”unsuitable” classes for analysis. At the same time, to be used in practice, the method

of preanalytical classification of samples must be both simple to implement and reliable, from the point of view of

high sensitivity and specificity. In this work, we investigated the analytical ability of two approaches — an approach

based on diffuse reflectance spectroscopy, characterizing the parameters of diffuse reflection of blood serum in the

visible and near-IR range (500−1000 nm), and an approach based on computer vision — in classifying blood serum

samples for normal suitable for analysis, and samples with hemolysis and lipemia. Diffuse reflectance spectroscopy

has been found to demonstrate high sensitivity and specificity (more than 97%) in the classification of serum

samples, but technically this method requires the application of a measuring probe to the sample. At the same time,

computer vision methods have made it possible to determine the suitability of a sample for further analysis with

lower classification accuracy values, but in more complex conditions, in particular, in the case of a sample moving

along a conveyor line in a clinical diagnostic laboratory. The advantage of the studied methods, in addition to the

high accuracy of preanalytical classification, is the simplicity of their technical implementation, as well as the ability

to characterize samples without additional sampling of blood serum, which indicates their promise as methods for

preanalytical analysis of blood serum samples.
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Introduction

A biochemical blood analysis is one of the routine tests

done in every clinical diagnostic laboratory. Most analyses

of this kind are performed for blood serum after erythrocyte

sedimentation by centrifugation: a laboratory assistant or an

automated system take a serum from spun venous blood,

mix it with an active agent, and read out the concentrations

of analytes of interest, which is often done with the use

of a photometric approach [1,2]. The validity of the

obtained biochemical blood analysis result is crucial both

for diagnosing and patient dismissal [3,4].

The majority of errors in laboratory testing arise at

the preanalytical stage of the entire process [5]. The

primary cause of errors (both false-positive and false-

negative results) in biochemical analyses is the alteration of
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normal optical properties of blood serum due to an excess

concentration of hemoglobin (hemolysis), lipids (lipemia),
or bilirubin and products of its degradation (icterus) in

the sample. Hemolysis, lipemia, and icterus are commonly

associated with procedural factors, such as incorrect blood

sampling (e.g., non-fasting or careless sampling that leads

to hemolysis) [6–9] and improper sample transport condi-

tions [10], or individual problems of a patient (an unhealthy

diet [11] or diseases leading to hemolysis and lipemia [12]).
The average percentage of samples unsuitable for analysis

falls within the 3−5% range [13,14]. However, the number

of samples with hemolysis, lipemia, and icterus may reach

several tens of percent in certain wards or groups of patients;

for example, the highest level of hemolysis (11.6%) and

lipemia (1.6%) is observed empirically in blood samples

taken from children under the age of three years [15],
and the percentage of samples unsuitable for analysis in

emergency departments varies from 6.8 to 19.8% [16].
The primary cause of unsuitability of samples in both

outpatient and inpatient departments is hemolysis: hemolytic

blood serum samples account for 40−70% of all unsuitable

ones [17], while lipemic samples account for another

10−20% [15,18].
Hemolysis, lipemia, and icterus are easy to detect visually,

since they alter the optical properties of blood serum.

Specifically, hemoglobin features characteristic absorption

lines in the blue-green spectral region (the Soret band at

410 nm and the Q 520−580 nm band) and gives a red

color to blood serum. An increased concentration of

lipids induces the formation of lipid droplets that make

blood serum turbid and opaque, and icteric samples have

characteristic yellow coloring attributable to the absorption

of light by bilirubin (its absorption band is at 430−480 nm).
The optical properties of blood serum may be evaluated (i.e.,
hemolysis, lipemia, and icterus may be identified) visually

by a laboratory assistant, but this method is subjective

and correlates only loosely with standardized automated

preanalytical techniques; owing to this, such techniques are

being used more and more often [19–21].
Automated methods for preanalytical classification of

samples may, in turn, be split into groups of methods

requiring the use of reagents (e.g., the cyanmethemoglobin

method for measuring the hemoglobin concentration) and

”
unenhanced“ spectrophotometric methods that do not

require additional sample preparation [22–25]. For exam-

ple, an ADVIA2400 (Siemens) clinical chemistry system

uses two wavelengths (571 and 596 nm) to estimate the

hemoglobin content, two wavelengths (658 and 694 nm) to

determine the degree of lipemia, and yet another two (478
and 505 nm) to estimate the bilirubin content [26].
However, not all laboratories with a low or moderate

throughput are fitted with spectrophotometric preanalytical

instruments. A separate solution for preliminary esti-

mation of the degree of hemolysis and lipemia at the

preanalytical stage may help in this case— specifically, a

solution combining the possibility of visual inspection of a

sample by a laboratory assistant with rapid identification of

hemolysis, lipemia, and icterus performed simultaneously by

a standardized approved instrument in a manner so that the

assistant can manually lift a test tube to a scanning device

without needing to open this tube and take a sample.

Since hemolysis and lipemia may be identified visually,

computer vision techniques have been proposed as a means

for non-contact evaluation in a number of studies. Both

”
classical algorithms“ of machine learning and computer

vision [27] and deep learning techniques [28,29] have been

used to identify hemolysis and lipemia. These methods have

demonstrated high sensitivity and specificity in determina-

tion of the degrees of hemolysis and lipemia [28].

In the present study, we examine the possibility of pre-

analytical classification of samples into normal, hemolytic,

and lipemic ones with the use of two optical techniques:

diffuse reflectance spectroscopy, wherein a signal reflected

from blood serum is analyzed at different optical and near-

IR wavelengths, and computer vision methods (analysis of

images of test tubes containing blood serum). In addition

to requiring no sample preparation, these methods have an

advantage in the ease of their engineering implementation

and may be used both in semi-automatic (with a laboratory

assistant analyzing each sample separately, which is suitable

for small-scale laboratories) and automatic (e.g., in screening

for hemolysis and lipemia on a conveyor line in a large

clinical laboratory) modes. The obtained results indicate

that both approaches have good prospects for application in

detection of hemolysis and lipemia in samples.

1. Materials and methods

1.1. Studied samples

Venous blood samples in test tubes 4.9ml in volume

with a barrier gel (S-Monovette, Germany), which were

subjected to centrifugation to separate the erythrocyte pellet

from blood serum, were used to evaluate the analytical

ability of diffuse reflectance spectroscopy and computer

vision methods in preanalytical classification of serum

samples into normal, hemolytic, and lipemic ones.

All measurements and manipulations with samples were

performed in a certified accredited clinical diagnostic lab-

oratory (ISO 15189:2012) of the Vorohobov City Clinical

Hospital No. 67 (Moscow). Studies were approved by the

local ethics committee of the hospital.

Blood serum samples with a hemoglobin concentration

above 0.5 g/L (
”
hemolysis“) and a concentration of lipids

above 1.25 g/L (
”
lipemia“) were selected for evaluation

of the analytical performance of the examined techniques.

These concentrations correspond to
”
soft“ thresholds and

cover all semi-quantitative categories
”
+“ —

”
++++“ [15]

that are often used for characterization of hemolysis and

lipemia. The concentration of lipids and hemoglobin in

”
normal“ samples was below 1.25 and 0.5 g/L, respectively.

The concentration of lipids and hemoglobin was verified

Optics and Spectroscopy, 2023, Vol. 131, No. 9



1228 G.M. Denisenko, R.R. Fitagdinov, B.P. Yakimov, A.A. Biryukov, Yu.A. Shitova, E.N. Keruntu, A.S. Shkoda...

in a separate spectrophotometric study performed by mea-

suring the optical density of serum with a Perkin-Elmer-

25 spectrophotometer within the 300−800 nm range. No

more than 1ml of supernatant of spun blood were sampled

into a quartz cuvette with an optical path of 2mm for

this purpose, and the optical density of the sample was

determined. The hemoglobin concentration was determined

by the oxyhemoglobin absorption line at 572 nm, and

the concentration of lipids was determined at 660 nm by

comparison with the optical density of lipofundin with a

concentration of 1 g/L. Diffuse reflectance spectroscopy and

computer vision tests were performed in the initial test tubes

used for blood collection without additional sampling.

A total of 113 samples of spun blood were selected for

examination by diffuse reflectance spectroscopy and with

the use of computer vision algorithms: 33 samples of

serum suitable for further biochemical analysis (
”
normal“),

59 samples with varying degrees of lipemia, and 21 samples

with varying degrees of hemolysis. Spun blood samples

were stored in a refrigeration chamber at a temperature

of 4◦C. The measurement of spectra of diffusely reflected

light and the acquisition of images to be processed with

computer vision techniques in the manual mode were

performed within 72 h of blood sampling. This ensured

stability of whole blood samples and their validity for further

hematological analysis [30].
A separate set of data on 150 samples of different classes

was compiled for testing the computer vision algorithms in

the
”
pipeline“ mode (see below).

1.2. Measurement of diffuse reflectance spectra

A special dual-fiber diffuse reflectance detection setup

was designed for experiments with blood serum samples

in test tubes. A system of two convex lenses in this setup

collimates light from a halogen lamp with a power of 15W

(with emission wavelengths falling within the 450−2000 nm

range) on the end of an illuminating multimode silicon fiber

(IPG Photonics, Russia) with a core diameter of 550µm

and a numerical aperture of 0.22. The other end was

in contact with the measurement area of the examined

sample. Another identical fiber with one of its ends

positioned at distance d = 0.2mm from the edge of the

illuminating fiber was used to collect the diffusely reflected

signal, which was then sent to the slit of a YSM-8101

spectrometer (Yixist, China) that detects radiation within

the 200−1100 nm spectral range with a spectral resolution

of ∼ 10 nm.

The diffuse reflection signal from blood serum samples

was measured in the following way: the ends of illuminating

and collecting fibers were pressed perpendicularly against

the wall of a plastic test tube in the area corresponding to

blood serum, and the reflected signal spectrum was then

recorded.

In addition to intensity I(λ) of the signal from a blood

serum sample, response I ref(λ) of a reference Spectralon

white sample (Labsphere, United States) with a reflectance

of 99% in visible and infrared ranges and background signal

Ibg(λ), which included the detector noise, were measured

in order to calculate diffuse reflectance spectrum R(λ). This
calculation was performed in accordance with the following

formula:

R(λ) =
I(λ) − Ibg(λ)

I ref(λ) − Ibg(λ)
, (1)

and the diffuse reflectance was then converted into effective

optical density OD(λ) that was used to characterize the

samples:

OD(λ) = − lnR(λ). (2)

Since the intensity of the detected signal below

500 nm was significantly lower than the intensity in the

500−1000 nm range, the diffuse reflectance signal within

the spectral interval of 500−1000 nm was used for further

analysis.

1.3. Photographic imaging of samples with a
camera under standardized conditions

In order to perform an initial assessment of the analytical

ability of computer vision methods applied to the classifi-

cation of spun blood samples into normal, hemolytic, and

lipemic ones, these samples were photographed under fixed

lighting conditions.

A sample of spun venous blood to be photographed

was positioned on a specialized support at a distance of

∼ 20 cm from a digital camera that produces RGB images

with a resolution of1920 × 1080 pixels (Logitech C922 Pro,

China). Imaging was performed in a light box insulated

from ambient light; a LED white light source with a

luminous flux of 4880 lm and a color temperature of 6220 K

was used for illumination. The sample was positioned

so that the area corresponding to blood serum (the color

characteristics of which were to be evaluated) was within

the field of view of the camera.

1.4. Photographic imaging of samples in the
mode of operation with a conveyor line

A setup for preanalytical classification of samples with the

use of computer vision algorithms in the high throughput

mode (with blood serum samples moving along a conveyor

line in a clinical diagnostic laboratory) was designed.

This setup included four digital cameras with an image

resolution of 1920 × 1080 pixels (Logitech C922 Pro,

China) spaced ∼ 30 cm apart and positioned at an angle

of 90◦ to each other. These cameras imaged one and the

same geometrical region from different sides simultaneously

with a repetition rate of 15Hz. A LED white light source

(4880 lm and a color temperature of 6220K) was installed

above the camera mounts to provide uniform illumination

of the area. The obtained images were sent to a control

computer that stored and processed them.

The cameras were positioned in the following way: one

of them was aligned with the direction of sample movement
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along a conveyor line, another was directed oppositely, and

the remaining two were set perpendicularly to the conveyor.

Data one 150 samples of each class (
”
normal“,

”
hemol-

ysis,“ and
”
lipemia“) were collected with the use of this

setup. A total of 740 images of a test tube were selected

for each class to train the model. To make it more robust,

76 photos containing no image of a test tube were added.

1.5. Labeling of images for classification and
detection of test tubes

Manual labeling of selected images within Super-

vise.ly [31] was performed for the purpose of developing

an algorithm fro detection and classification of test tubes.

The process of manual data labeling within Supervise.ly

consisted in highlighting the needed part of a test tube

with a rectangular bounding box. In the present case, this

rectangle extended from the end of the test tube holder to

the top of blood serum. The sides of the box were snug

against the boundaries of the object. The labeling result

was a dataset containing the name of a photographic image,

its size, and the class and coordinates of boundaries of the

object in the image.

If the image area associated with blood serum was

covered with a bar code glued onto a sample, only this

bar code was highlighted, and the sample was classified as

a one with a
”
hidden area.“

1.6. Procedure of construction of classifiers and
evaluation of their accuracy

A series of classifier models predicting whether a sample

is normal, hemolytic, or lipemic were developed in order

to evaluate the analytical ability of diffuse reflectance

spectroscopy and computer vision methods in the mode

with fixed conditions and the
”
pipeline“ mode with a test

tube moving along a conveyor line. Proprietary Python 3

scripts utilizing the NumPy, Pandas, Matplotlib, PyTorch,

Ultralytics, and Scikit-Learn libraries [32–37] were used to

construct and analyze these models. Let us describe the

procedures of development and assessment of classification

performance for each algorithm in more detail.

1.6.1. Classifying and assessment of the quality
of classification based on diffuse reflectance spec-
troscopy data. The model for classification of samples

into normal, hemolytic, and lipemic ones was trained with

70% of the overall number of observations (optical density
(OD) spectra), while the remaining 30% of measurements

were used to evaluate the accuracy of the model (i.e., test it).
A total of 30 random partitions of the dataset into training

and test samples were generated to determine the errors of

classification quality metrics.

The amplitudes of decomposition of OD spectra into the

first three principal components, which were retrieved from

the decompositions of spectra from the training sample,

were used as sample classification criteria. A random

forest algorithm with 100 trees without restrictions on the

depth and the minimum number of objects in a tree leaf

and the method of support vectors with a soft margin

and a Gaussian kernel with a coefficient adjusted on the

basis of accuracy for the validation sample were used to

classify preprocessed data. The implementation of principal

components analysis (PCA), the random forest algorithm,

and support vectors from the scikit-learn library [37] was

used.

1.6.2. Classifying and assessment of the quality
of classification with the use of computer vision in
fixed sample positions. Images obtained under stan-

dardized lighting conditions in fixed test tube positions were

processed by highlighting their areas corresponding to blood

serum. The average values of intensity in R (red), G (green),
and B (blue) color channels, which correspond to the

spectral ranges of 600−680, 520−600, and 430−500 nm,

respectively, were calculated for these regions. These values

then served as predictors for classification of test tubes.

As in Section 1.6.1, random forest and support vector

methods were used for classification. It was determined

empirically that the model based on the method of support

vectors with a soft margin and a Gaussian (RBF) kernel

with a coefficient of 0.33 has the best configuration. The

cross-validation technique was used for assessment. The

training set contained 70% of data, and the remaining 30%

were included into the validation set. The training procedure

was repeated 100 times with premixing and selection of new

data for training and validation sets.

1.6.3. Assessment of the quality of detection by
the computer vision model for classification of
samples on a conveyor line. A model searching

for an object in an image (highlighting the image area

corresponding to the object) and classifying this object (i.e.,
solving the problem of detection) was needed for operation

in the high-throughput mode with a sample moving along a

conveyor line. The YOLOv5 model [36] was used for the

purpose.

The search performance was evaluated using the mean

average precision (mAP) metric with the degree of overlap

between ground-truth and predicted object areas being

above 50% (intersection over union ¿ 50%). This metric

characterizes the ratio between the number of correctly

identified objects and the overall number of detector

actuations in the case when the degree of overlap between

ground-truth and predicted areas exceeds 50%.

”
Hidden area“ (the blood serum area is covered by a bar

code glued onto the wall of a test tube) and
”
background“

(no object in the image) classes were added into the model

alongside with the
”
normal“

”
hemolysis,“ and

”
lipemia“

classes mentioned above.

Eighty percent of the sample were used for training, and

the remaining 20% served for validation. The YOLOv5

architecture was initialized with weights pretrained on the
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COCO dataset [38] for better convergence and fine-tuned

on the training dataset with the use of stochastic gradient

descent. Prior to application of the model, images were

converted to a size of 980 × 980 pixels; the model was fine-

tuned with 50 epochs of data with a batch size of 2.

1.6.4. Calculation of classification quality metrics.

Classifiers were characterized by ROC curves of the

dependence of sensitivity and specificity of a classifier on

the threshold of labeling an object as the one belonging

to a positive class. The sensitivity and specificity of joint

identification of hemolysis and lipemia were calculated in

the following way: hemolytic and lipemic samples were

assumed to belong to a positive class, normal samples

were assigned to a negative class, and the sensitivity

and specificity were then evaluated in accordance with

the standard procedure for binary classification. Metrics

were calculated with the use of scikit-learn [37] built-in

implementations.

2. Results

2.1. Assessment of diffuse reflectance
spectroscopy in preanalytical classification

of blood serum

The possibility of application of diffuse reflectance spec-

troscopy in identification of hemolysis and lipemia in blood

serum samples in the reflection geometry (using just the

diffusely reflected signal and without the need to open a

test tube) was examined first. A detection setup with two

optical fibers with a core diameter of 550µm spaced 0.2mm

apart was used for the purpose. These fibers were brought

close to a visually observable area of a blood serum sample,

and light from a broadband radiation source (halogen lamp

emitting within the 450−2000 nm range) was transmitted

along one of them. The reflected signal was collected by

the other fiber that sent it to a spectrometer operating

within the 200−1000 nm range (see the description of this

setup in Section 1.2). Figure 1, a presents the schematic

diagram of measurement of diffuse reflectance spectra from

a certain area of a blood serum sample in the dual-fiber

setup.

Samples with hemolysis and lipemia were selected for

evaluation of sensitivity of this classification approach: the

minimum concentration of hemoglobin and lipids in these

samples was 0.7 and 1.3 g/L, respectively. According to

the guidelines for preanalytical laboratory diagnostics, this

corresponds to a low degree of hemolysis and lipemia in

blood serum samples.

Diffuse reflectance spectra were measured for all samples,

and the effective OD was calculated based on the obtained

data as a negative logarithm of reflectance (see formula (2)).
Figure 1, b shows the class-averaged mean effective OD

spectra for normal, lipemic, and hemolytic samples. It can

be seen that normal samples had low OD values within

the 600−900 nm interval, while the absolute OD values of

lipemic samples in the near IR range were much higher.

This behavior of optical density is attributable to the fact that

samples with marked lipemia have an enhanced scattering

factor due to the presence of lipid droplets in the solution

(Fig. 1, b). At the same time, samples with hemolysis did

not feature high OD values in the IR range, but lines typical

of oxyhemoglobin absorption were observed within the

500−600 nm interval in the visible range. The low intensity

of the radiation source at wavelengths below 500 nm and a

strong hemoglobin absorption in certain samples interfered

with the detection of the diffuse reflectance signal in this

spectral region. Such features of effective OD spectra

allow one to group samples easily into normal, lipemic,

and hemolytic classes. It was found that the samples of

different classes are easy to distinguish by applying PCA

to OD spectra in planes corresponding to the first three

components (Fig. 1, c).

A simple classification algorithm was constructed for

quantitative evaluation of the accuracy of classification of

samples into normal, hemolytic, and lipemic ones. Effective

OD spectra within the 500−1000 nm range served as the

input data for this algorithm, which then transformed them

via PCA in such a way that amplitudes of the first three

principal components of OD spectra were used as feature

vectors of samples instead of the initial spectral data.

Following dimensionality reduction, a random forest model

or a model based on the method of support vectors were

used to classify samples in accordance with their spectral

features (amplitudes of three principal components). Since
the random forest model was found to be the most accurate

in an evaluation performed using a validation sample, the

results for this algorithm are reported below.

The classification accuracy was evaluated in a standard

way: 70% of objects from the entire sample were used to

train the model (both to select principal components and

train the classification algorithm), and the remaining 30%

were used to evaluate the accuracy of the classifier. A

total of 30 random partitions of the dataset into training

and test samples were generated to determine the errors of

classification quality metrics.

Sensitivity and specificity metrics (the proportions of

correctly identified truly positive samples and correctly iden-

tified truly negative samples) are often used in classification

problems. However, the values of sensitivity and specificity

may depend on the threshold at which the probability of

belonging to a certain class is converted into a predicted

class label. In view of this, the performance of a classifier

is evaluated with the use of a ROC curve (dependence of

the sensitivity on specificity at each value of the mentioned

classification threshold). The area under a ROC curve

(AUC-ROC) may act as an
”
integral estimate“ of a classifier.

This area may actually be interpreted as an average value of

classification sensitivity at all levels of specificity. Figure 1, d

presents the ROC curves for the problem of identification

of lipemic, hemolytic, and normal samples. It can be

Optics and Spectroscopy, 2023, Vol. 131, No. 9
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Figure 1. (a) Schematic diagram of the method for diffuse reflectance measurements for a sample of spun blood serum in the dual-fiber

setup. (b) Mean and intragroup mean-square deviation for effective OD spectra of blood serum with marked lipemia, samples with

hemolysis, and samples suitable for biochemical analysis (
”
normal“). (c) Result of application of PCA to OD spectra dimensionality

reduction (amplitudes of the first three principal components are indicated) in testing of blood serum samples. (d) ROC curves for

classification of samples into lipemic, hemolytic, and normal ones plotted with the use of cross-validation. (e) Cross-validation data on the

sensitivity and specificity in identification of lipemia and hemolysis in samples with the use of the constructed classifier.

seen that the classification accuracy is close to unity for

all classes.

The sensitivity and specificity in detection of hemolysis

and lipemia among all samples have also been evaluated

(Fig. 1, e). It was found that the discussed classifier has a

sensitivity of 99% at a specificity above 99.4% (according to

cross-validation data). The obtained results suggest that this

method has good prospects for application in detection of

hemolysis and lipemia in blood serum. It is also conceivable

that this approach will be used for quantitative and semi-

quantitative characterization of samples: determination of

the range of concentrations of hemoglobin and lipids in

blood serum.

Since three diffuse reflection parameters (amplitudes of

three principal components) were found to be sufficient

for classification, we decided to examine the possibility of

classification of samples based on reflection data with the

use of computer vision algorithms. Experiments in
”
ideal

conditions“ with images of fixed test tubes under constant

illumination were performed first in order to evaluate the

classification accuracy, and the accuracy of the computer

vision model in
”
real-world conditions“ (in classification of

samples moving along a conveyor line in a clinical diagnostic

laboratory) was investigated after that.

2.2. Assessment of accuracy of preanalytical
classification of samples with the use of
computer vision: model conditions

It was proposed to examine the color contrast of images

obtained under fixed lighting conditions in order to evaluate

the accuracy of preanalytical classification of test tubes with

samples of spun blood serum studied by diffuse reflectance

spectroscopy (Section 2.1). In addition to fixed lighting

conditions, the test tube was always positioned in the same

area of obtained images, simplifying significantly the task

of highlighting the area corresponding to blood serum.

These experiments were aimed at determining the
”
upper

limit“ of accuracy of preanalytical classification of samples

based on color characteristics of blood serum with the

use of computer vision under such conditions when all

external factors (first and foremost, illumination and test

tube position) remain unchanged. An example labeled

image of a test tube with spun blood is presented in Fig. 2, a.

Figure 2, b presents the examples of highlighted areas of

blood serum of various classes (
”
normal“,

”
lipemia,

”
and

”
hemolysis“). Following the discussed segmentation proce-

dure, the average values of intensity in the red (R), green
(G), and blue (B) image channels were calculated for areas

of blood serum. Figure 2, c shows the scatter diagrams

for average intensity values in different color channels for
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Figure 2. (a) Example image of a test tube with blood serum with marked hemolysis. The red rectangle highlights the area corresponding

to blood serum. (b) Examples of highlighted blood serum areas in samples belonging to different classes (normal, lipemia, and hemolysis).
(c) Scatter diagrams for average signal intensity values in the R, G, and B image channels for segmented areas of blood serum. (d) ROC

curves for the classification of samples into lipemic, hemolytic, and normal ones based on the RGB values of blood serum with the use of

a support vector classifier. (e) Sensitivity and specificity of identification of hemolysis or lipemia. The classification threshold was chosen

in such a way as to maximize the classification sensitivity.

these areas. It can be seen that dots corresponding to

different classes (normal, lipemia, and hemolysis) occupy

non-overlapping domains. Therefore, a high accuracy of

preanalytical classification based on the average intensity

values in the R, G, and B image channels is to be expected.

Several classification algorithms based on the random

forest and support vectors methods, which accepted average

intensity values in the R, G, and B channels as features

and predicted whether a sample belongs to
”
normal“,

”
lipemia,

”
or

”
hemolysis“ classes, were then developed.

It was found empirically that a support vector machine

model with a soft margin and a Gaussian kernel produced

the most accurate results for the validation sample. The

sensitivity and specificity of classification were evaluated for

this classifier at all threshold levels (see the ROC curves

in Fig. 2, d). The areas under ROC curves for all three

classes fell within the range of 0.96−0.99 (a unit area

corresponds to an
”
ideal“ classifier). The sensitivity and

specificity of identification of hemolysis and lipemia with

the use of color characteristics of blood serum were also

determined: the maximum sensitivity was 90.9 ± 7.5% at

a specificity of identification of hemolysis and lipemia of

84± 15%. It is evident that the sensitivity and specificity

values fluctuate significantly between different partitions of

the dataset. This may be attributed to the presence of

”
outliers“ in the training sample in certain partitions. That

said, the average values of sensitivity and specificity of

preanalytical classification with the use of computer vision

are also high, although diffuse reflectance spectroscopy has

an advantage in this regard.

2.3. Assessment of accuracy of preanalytical

classification of samples with the use of

computer vision: testing in the pipeline mode

Imaging and image analysis have an advantage in im-

posing potentially less strict requirements regarding the

positioning of an object relative to a camera than other

methods (specifically, diffuse reflectance spectroscopy) that

produce accurate results only if the experimenter mounts

the probe in direct proximity to analyzed blood serum.

Owing to this, computer vision methods may be applied in

certain advanced cases (e.g., when the position of a test tube

in an image is not fixed or when a test tube moves relative

to the camera). This formulation of the problem may be

relevant to large laboratories where samples move along a

conveyor line: having installed a preanalytical analyzer on a

conveyor line, one may screen the samples additionally for

hemolysis and lipemia and discard unsuitable ones.
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A setup designed for a conveyor line was constructed

in order to apply computer vision algorithms in this

formulation of the problem. The setup included four digital

cameras spaced ∼ 30 cm apart and positioned at an angle

of 90◦ to each other. These cameras imaged one and the

same geometrical region from different sides simultaneously

with a frame rate of 20 fr/s. Four cameras were needed

because of the fact that a test tube with a sample may

have an adhesive label with an identification bar code

covering the
”
useful“ part of blood serum within the field

of view of a single camera. Cameras were positioned

in immediate proximity to an additional LED white light

source that established uniform illumination conditions for

samples moving along the conveyor line. The obtained

images were sent to a control computer that processed them.

A photographic image of the discussed module mounted

on the conveyor line is shown in Fig. 3, a. The cameras

of this module were positioned in the following way: two

oppositely directed cameras were mounted parallel to the

trajectory of test tube movement along the conveyor line,

while the remaining two were set perpendicularly to the

conveyor. Example images made by a camera aligned

with the movement of a sample and a camera directed

perpendicularly to the conveyor are shown in Fig. 3, b. This

prototype unit was used to compile a dataset for samples of

spun blood.

Images from four cameras were recorded for blood serum

samples, and several frames for each test tube were selected

to be used in the development of computer vision models

for preanalytical classification of test tubes. A total of

3 776 images taken by different cameras were collected for

training of the developed algorithm. The training sample

was balanced so as to include 185 images of each class

(normal, hemolysis, and lipemia) taken from four different

angles, 185 images of test tubes with the blood serum

region covered by an identification bar code (additional class

”
hidden area“), and 76 additional images without test tubes,

which are needed to enhance the accuracy of operation of

the computer vision model. Images of test tubes in the

database compiled for training of the model were labeled:

the image area occupied by a test tube was highlighted

(rectangles in Fig. 3, b), and the class of a test tube

was indicated. Examples of segmented areas belonging to

different classes are presented in Fig. 3, c.

Let us describe the procedure of development of a

computer vision model in more detail. In the current

configuration of the detection setup, a test tube with a

sample may be positioned anywhere within the image.

Therefore, additional models
”
searching for“ a test tube and

classifying it were needed to detect objects and perform

their preanalytical classification. This problem may be

solved in two stages: the position of an object (test tube)
in an image is identified first, and analysis is performed

after that (e.g., analysis of the color of blood serum; see

Section 2.2. above). However, a single-stage detection

approach, wherein the same model is used to search for

an object in an image and classify it, is more robust

and was proven useful in such applications. This is the

reason why we chose this approach implemented with the

use of a YOLOv5 [36] convolutional neural network that

identifies the indicated four classes of samples (
”
normal“,

”
hemolysis“,

”
lipemia,“ and

”
hidden area“) and indicates

the position of objects in an image with rectangular

bounding boxes. Training and test samples did not include

images corresponding to one and the same test tube.

Twenty percent of images from the conveyor line were used

for validation, and the other 80% were used for training.

The quality of detection of an object in an image

was characterized with a common mean average precision

(mAP) metric [39]. It characterizes the ratio between

the number of correctly identified objects and the overall

number of detector actuations in the correct area. A value

of mAP@IoU=0.5 = 0.984 was obtained in the case when the

degree of overlap between ground-truth and predicted areas

was 50% (IoU= 0.5). Thus, it may be concluded that the

model identified fairly accurately the position of a test tube

in photographic images.

The average values of sensitivity and accuracy of the

classifier were monitored in order to examine the variation

of accuracy of classification with model parameters. It was

found that the average classification accuracy is 0.964 at a

class determination sensitivity of 0.972. Figure 3, d shows

the confusion matrix of the classifier: the distribution of true

class labels over classes predicted by the developed model.

The prediction thresholds were set so as to maximize the

sensitivity of detection of hemolytic and lipemic samples.

It follows from the confusion matrix that the model

adjusted this way identifies hemolytic samples with a unit

accuracy and identifies lipemic samples with an accuracy

of 0.94, but occasionally (in 23% of cases) produces false-

positive identifications of hemolysis in normal samples. If

the blood serum area is not visible in an image (
”
hidden

area“ class), a sample is never classified as a normal,

hemolytic, or lipemic one. When a test tube was not

highlighted during labeling (
”
background“ class), the model

distributed objects evenly among all classes. However,

according to the mAP= 0.984 metric, such images were

produced rarely (their occurrence rate was less than

2%) when test tubes were imaged by a camera from a

considerable distance.

The overall sensitivity and specificity of identification of

hemolysis and lipemia among samples with visible blood

serum (i.e., among
”
normal“,

”
hemolysis“, and

”
lipemia“

classes only) were also evaluated: the sensitivity of identi-

fication of hemolysis and lipemia was 97% at a specificity

of 74% (Fig. 3, e). Low specificity levels are attributable

primarily to those cases when the algorithm erroneously

classified samples with normal blood serum as hemolytic

ones. The algorithm may be improved further by compiling

a larger observation dataset, optimizing the parameters of

the algorithm, and including images taken from different

angles under various lighting conditions into the training

sample.
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Figure 3. (a) Photographic image of the prototype setup that takes images of samples on the conveyor line in a clinical diagnostic

laboratory. (b) Example images from cameras aligned with the movement of a test tube (top) and directed perpendicularly to the

conveyor (bottom). (c) Examples of segmented areas of images of different sample classes (
”
normal“,

”
hemolysis“,

”
lipemia,“ and

”
hidden area“). (d) Confusion matrix for the problem of preanalytical classification with the use of the developed computer vision model.

Numbers denote the proportion of objects with the corresponding true class value. (e) Sensitivity and specificity in identification of

hemolysis and lipemia among samples.

3. Discussion

The performance of two methods for preanalytical clas-

sification of venous blood serum (diffuse reflectance spec-

troscopy and computer vision) applied to the problem of

classification of samples into normal, hemolytic, and lipemic

ones was evaluated. These methods have an advantage in

being contactless: measurements may be performed directly

through the glass wall of a test tube if blood serum is clearly

visible.

Diffuse reflectance spectroscopy turned out to be the

most accurate of the examined methods. Data for

113 samples of blood serum with varying degrees of

hemolysis and lipemia and normal samples were processed,

and a high sensitivity (above 99%) at an average specificity

of 99.4% was determined for the classifier that uses the

spectra of effective optical density (negative logarithm of

diffuse reflectance) within the 500−1000 nm interval as

features. Note that the method of principal components,

which converts the initial OD spectra into amplitudes of

the first three principal components, was applied to the

input spectral data for dimensionality reduction. In other

words, the constructed classifier used only three
”
spectral“

features within the indicated wavelength range to classify

samples. Therefore, instead of recording broadband diffuse

reflectance spectra, one may isolate a small number of wave-

lengths (3−4 spectral bands) for measurement of diffuse

reflectance and classify samples with the same efficiency,

eventually making it unnecessary to use a spectrometer. The

addition of measurements performed at shorter wavelengths

(400−500 nm) may help make the method more robust

in regard to identification of samples with an elevated

hemoglobin concentration and to detection of an elevated

bilirubin concentration based on its absorption band with a
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maximum at ∼ 460 nm. It is also worth mentioning that

samples were classified into normal, hemolytic, and lipemic

ones at low thresholds of concentration of lipids (1.25 g/L)
and hemoglobin (0.5 g/L) in blood serum. Setting several

thresholds for these concentrations, one may perform semi-

quantitative characterization of the degree of lipemia and

hemolysis of a sample.

However, the proposed fiber method for measurement

of diffuse reflectance spectra requires that a probe be

positioned in direct proximity to the sample area containing

blood serum. This makes the method ill-suited for automa-

tization. Therefore, in our view, this technique has niche

applications in small-scale laboratories where automated

preanalytical studies are not performed and samples are

examined manually. Diffuse reflectance spectroscopy then

helps eliminate subjectivity and the factor of human error

in evaluation of the properties of blood serum.

The accuracy of preanalytical classification of blood

serum samples with the use of computer vision algorithms

was evaluated next. The results of classification of samples

into normal, hemolytic, and lipemic ones with the test

tube position and the level of illumination being fixed were

reported in Section 2.2, and Section 2.3 is focused on a more

complex model that simultaneously searches for a sample

and classifies it in the case when this sample is moving

along a conveyor line in a medical laboratory.

It was found that average values of intensity in the R,

G, and B channels for images areas corresponding to blood

serum provide an opportunity to perform accurate classi-

fication with a hemolysis and lipemia detection sensitivity

of 91± 7.5% at a specificity of 84± 15% in the first

case (with the sample position fixed and under constant

illumination). False-positive identifications of hemolysis or

lipemia in normal samples were distributed uniformly over

the
”
hemolysis“ and

”
lipemia“ classes. These false positives

may be excluded by adjusting the probability threshold at

which the classifier labels a sample as the one belonging to

a certain class.

A more complex model based on a YOLOv5 neural

network was developed for detection and classification of

samples in a more advanced case (when they move along

a conveyor line). It was found that this model has a low

proportion of false positives in searching for samples within

an image: mAP50= 0.984, which corresponds to 1.6% of

false positives). If the test tube area corresponding to blood

serum was visible, the maximum hemolysis and lipemia

identification sensitivity for samples detected in an image

was 97% at a specificity of 74%. The majority of false

positives were those occurring when a normal sample was

classified as a hemolytic one. This is presumably attributable

to the fact that when samples move along a conveyor line,

the level of illumination of the field within which test tubes

are detected is less uniform, affecting the reproduction of

color of blood serum.

This hypothesis is supported, e.g., by the observation

that the model is sensitive to the level of illumination of

the fields of view of cameras and the field of view of

a camera: when these parameters changed, the accuracy

of detection of objects and their classification decreased.

Owing to this, the final data were collected in the same

measurement configuration. The model may be made more

robust in regard to illumination levels by fine-tuning it with

images corresponding to various illumination conditions

and different camera positions; however, this requires a

proportionally greater number of images to be included into

the training dataset. In spite of its mentioned shortcomings,

the computer vision approach is potentially applicable in

preanalytical classification of blood serum. More specifi-

cally, the applicability of this method in identification of

samples with hemolysis and lipemia on a conveyor line in a

medical laboratory was demonstrated.

Conclusion

Preanalytical screening of blood serum samples for

suitability for further biochemical analysis is a crucial step

in establishing a correct diagnosis. In the present study,

the analytical ability of diffuse reflectance spectroscopy

and computer vision algorithms in preanalytical screening

of samples for hemolysis and lipemia, which are major

causes of errors in biochemical analyses, were examined.

It was found that diffuse reflectance spectroscopy in a

dual-fiber setup with measurements performed without

additional sampling directly through the wall of a test

tube provides high (above 99%) levels of sensitivity and

specificity in identification of samples with hemolysis (with

a hemoglobin concentration above 0.7 g/L) and lipemia

(with a concentration of lipids above 1.3 g/L). Computer

vision methods may also be used to identify hemolysis and

lipemia. Specifically, the analysis of color characteristics

(intensity levels in standard color channels) of blood serum

imaged with a camera under fixed lighting conditions offers

a selectivity in excess of 97 ± 2.5% at a specificity of iden-

tification of hemolysis and lipemia of 89± 8%.
”
Advanced“

computer vision techniques (convolutional neural networks)

are applicable in real-time analysis of images of test tubes

moving relative to a detector. However, the sensitivity of a

model depends strongly in this case on lighting conditions,

the positioning of a test tube with respect to a detector, and

the quality of obtained images.
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