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Effect of van Hove singularities on thermoelectric properties of graphene
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Using the model density of states of free-standing graphene single-sheet graphene, it is shown that van Hove

singularities cause divergences of the Seebeck coefficient and the thermoelectric power factor. The results obtained

for free-standing graphene are generalized to the case of epitaxial (encapsulated) graphene. Numerical estimates

are given for substrates (plates) representing SiC polytypes.
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1. Introduction

Thermoelectric (TE) properties of materials are charac-

terized by the thermoelectric power factor PF = σ S2 and

the dimensionless product ZT = (PF/κ)T , referred to as

figure of merit in the English literature, where σ is electrical

conductivity, S is Seebeck coefficient, T is temperature, κ is

total (electron κel plus phonon κph) thermal conductivity.

The goal of modern research of bulk (3D) [1] and two-

dimensional (2D) [2] materials, their composites, interfaces

and nanostructures is to search for objects that have ZT > 2.

There are no all-purpose methods for such a search, because

the values of σ, κ and

S = −CS [d ln σ (µ, T = 0)/dµ], CS = π2k2
BT/3e, (1)

where e being elementary charge, kB being Boltzmann

constant, µ being chemical potential (Mott formula), are

interdependent. Among 2D structures, the most studied,

naturally, are the TE properties of graphene (see review

in [2] and numerous references given there). Most theore-

tical studies devoted to TE properties of free-standing

graphene single-sheet graphene consider the energy region

close to the Dirac point. In this region, the electronic

spectrum is quite adequately described by the low-energy

approximation of εG(κ) = εD ± ~νF|κ|, and the correspon-

ding density of states is ρG(ω) ∝ |ω−εD|, where εD is

Dirac point energy, νF = 3ta/2~ is Fermi velocity, ~ is

reduced Planck’s constant, ω is energy variable, t ∼ 3 eV is

electron hopping energy between pz -orbitals of neighboring

graphene atoms, κ is wave vector for electron motion in

the graphene plane (x , y), counted from the vector K

of the Dirac point, a = 1.42 Å is distance between the

nearest neighbors [3]. With the publication of [4], where

low-dimensional semiconductor structures with a parabolic

electronic spectrum were considered, it became clear that

extreme values of the Seebeck coefficient and PF are

achieved in cases where the chemical potential falls into the

region, where the density of states of the structure under

study depends sharply on energy. This statement is also

true for graphene. For example, in [5], for graphene with a

gap in the interval of (εD−1, εD + 1) (gapped graphene) it

is shown that the extrema PF occur when µ → εD−1,

εD + 1. In the case of epitaxial gapless graphene on a

semiconductor substrate, the same effect is observed as the

chemical potential approaches the bottom of the conduction

band and the top of the valence band [6]. Similar effects are

also realized in the case of gapless encapsulated graphene,

where at least one of the coating layers is semiconductor [7].
In [5–7] a low-energy approximation was used. Mean-

while, in the density of states of free single-layer

graphene there are van Hove singularities: ρG(ω) → ∞ at

ω± = εD ± t . Therefore, at µ → ω± TE characteristics of

graphene should have special features. This study is devoted

to the investigation of such features in free, epitaxial, and

encapsulated graphene.

2. Free graphene

Let us consider free-standing single-sheet graphene with

the electronic spectrum of the following form

εG(k) = ±t f (k),

f (k) =

√

3+2 cos(ky a
√
3)+4 cos(ky a

√
3/2) cos(3kx a/2),

(2)
where k = (kx , ky) is measured from the point Ŵ of the

Brillouin zone [3] and it is assumed that εD = 0. To describe

the TE characteristics of free-standing graphene, we use the

following model density of states [3]:

ρG(x) =
4|x |

π2 t
√

Z0

K
(

π/2, k̄(x)
)

, (3)

where x = ω/t, K(π/2, k̄) is complete elliptic integral of

the first kind,

k̄(x) =
√

Z1(x)/Z0(x),

1942
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Z0(x) =

{

(1 + |x |)2 − (x2 − 1)2/4, −1 ≤ x ≤ 1;

4|x |, −3 ≤ x < −1, 1 < x ≤ 3;

Z1(x)=

{

4|x |, −1 ≤ x ≤ 1;

(1+|x |)2−(x2−1)2/4, −3 ≤ x < 1, 1 < x ≤ 3.

According to [8], K ≈ (π/2)(1 + k̄2/4) with k̄2 ≪ 1

(or |x | ≪ 1) and K ≈ ln(4/
√
1−k̄2) with k̄2 → 1 (or

|x | → 1), where values of x± = ±1 determine the positions

of the van Hove singularities (graph of the ρG(ω) function

is shown in Figure 5 of the review in [3]).
The van Hove feature corresponds to the point M

(2π/3a, 0) of the Brillouin zone of graphene. Assu-

ming kx = κx + 2π/3a and ky = κy , for small κ we

have f (κ) ≈ 1 + 9κ2x a2/2−κ2y a2/2. Thus, point M of the

Brillouin zone is a saddle point. With κy = 0 we have

εG(κx) ≈ ±t(1 + ~
2κ2x /2mx t), mx = ~

2/9a2t, (4)

so the reduced effective mass is m∗
x = mx/me

≈ 0.15, where me being mass of a free electron. Electron

group velocity v = ~
−1∇κεG(κ) in the direction of x

(armchair direction) is equal to νx = ±~κx/mx . Below

we will consider the movement of the electron only in

the x -direction and will omit the corresponding subscripts

of νx and mx .

For further analysis, we will use the Boltzmann kinetic

equation in the approximation of relaxation time τ (ω) (see,
for example, [9]) and introduce the differential conductivity:

σ (ω) = e2ρG(ω)ν2(ω)τ (ω)/Au.c., (5)

where e is elementary charge, Au.c. = 3
√
3a2/2 is area of

the lattice cell of graphene [10,11]. It should be noted that,

unlike [10,11], where conductivity was measured in S/m

(see [12,13]), here σ (ω) is measured in Siemens, S .

Assume τ (ω) = τ0 = const for simplicity

(option 1) [10–13], which models short-range scattering

on uncharged impurities [14]. Due to the fact that

ν2(µ) = 2m(|µ|−t) and ρG(µ) ≈ (8/π2t) ln[t/(|µ|−t)],
where |µ| > t, with |µ| → t + 0+ |µ| → t + 0+ we get

σ (µ) ≈ 2e2mτ0

π2tAu.c.

(|µ| − t) ln
t

|µ| − t
,

S ≈ −sgn(µ)
CS

|µ| − t
, PF ≈ C1C2

S

|µ| − t
ln

t
|µ| − t

, (6)

where C1 = 16e2mτ0/π
2tAu.c. .

Now assume τ (ω) = Cτ /ρG(ω) (option 2) [10–13]. Then
we find that:

σ (µ) ≈ 2e2mCτ

Au.c.

(|µ| − t),

S ≈ −sgn(µ)
2CS

|µ| − t
, PF ≈ C2Cτ C2

S

|µ| − t
, (7)

where C2 = 8e2m/Au.c.. Thus, both approximations for

the relaxation time lead to a divergence of the Seebeck

coefficient and the TE power factor at |µ| → t + 0+ .

3. Epitaxial and encapsulated graphene

Let us now consider epitaxial graphene (epigraphene),
assuming that the substrate is a semiconductor. The

Green’s function of free graphene G(ω, k) has the following

form: G−1(ω, k) = ω−εG(k) + i0+ . Then for the Green’s

function of epigraphene G̃(ω, k) we get

G̃−1(ω, k) = ω − εG(k) − 3sub(ω) + iŴsub(ω). (8)

Here, the half-width and shift of states of free-standing

graphene induced by the substrate are equal to, respectively

Ŵsub(ω) = πV 2ρsub(ω),

3sub(ω) = V 2P

∞
∫

−∞

ρsub(ω
′)dω′

ω − ω
, (9)

where V is matrix element of the graphene−substrate

interaction, P is symbol of the main value of the inte-

gral [7,8]. Returning to the counting of wave vectors

from point M (2π/3a, 0) of the Brillouin zone of graphene

and taking as a guide the scheme of [15,16], for κx a ≪ 1

and κy = 0 instead of (4) we get

ε̃G(κx ) ≈ ±t(1 + ~
2κ2x /2m̃±t),

ν̃± = νη±, m̃±η± = m, (10)

where the coefficient is as follows

η± ≡ η(±t) = [1− (d3sub(ω)/dω)ω=±t ]
−1.

To find the Ŵsub(ω) and 3sub(ω) functions, it is

necessary to specify the density of states of the

semiconductor substrate ρsub(ω). In the simplest Haldane–
Anderson model [17] we have ρsub(ω) = ρsc = const for

|ω−ω0| ≥ Eg/2 and ρsub(ω) = 0 for |ω−ω0| ≤ Eg/2,

where ω0 is energy of the center of the band gap with

a width of Eg . Then for the half-width function we

get Ŵsub(ω) = πV 2ρsc for |ω−ω0| ≥ Eg/2, Ŵsub(ω) = 0

for |ω−ω0| ≤ Eg/2, and the shift function is equal to

3sub(ω) = ρscV 2 ln |(ω−ω0−Eg/2)/(ω−ω0 + Eg/2)|.
Hence we get

η± =

(

1 +
ρscV 2Eg

(±t − ω0)2 − (Eg/2)2

)−1

. (11)

Neglecting the broadening of states (see, for example, [18])
and taking into account only their shift, instead of energy ω

we get ω′ = ω−3sub(ω). Thus, the renormalized energy

of the Dirac point is ε′D = −3sub(0), and positions of the

van Hove singularities are ω′
± = ±t−3sub(±t).

To be specific, we present numerical estimates for the

graphene formed on polytypes of silicon carbide. For the

bands of allowed states containing 4 electrons, we obtain

ρsc = 4/W ∼ 0.3 eV−1, where widths of these bands are

W ∼ 12 eV [19,20]. Considering the limit of weak coupling

between the graphene and the substrate, assume V = 1 eV,
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Parameters of SiC and epigraphene polytype: degree of hexagonal-

ity D, band gap Eg , electron affinity χ; energy of the center of the

band gap ω0, boundaries of the valence band EV and conduction

band EC , Dirac point ε
′
D and singularities of van Hove ω′

± (relative
to the Dirac point of free-standing graphene εD); factor η±. All

energy quantities are given in eV

Polytype →
8H 21R 6H 15R 27R 4H

Parameter ↓

D 0.25 0.29 0.33 0.40 0.44 0.50

Eg 2.86 2.96 3.00 3.06 3.13 3.23

χ 3.58 3.52 3.45 3.33 3.27 3.17

−ω0 0.51 0.50 0.45 0.37 0.34 0.29

−EV 0.92 0.98 1.05 1.16 1.23 1.33

EC 1.94 1.98 1.95 1.90 1.90 1.90

ε′D 0.75 0.70 0.62 0.49 0.44 0.36

−ω′
− 3.86 3.90 3.93 3.98 4.02 4.08

ω′
+ 4.31 4.36 4.35 4.35 4.36 4.38

η− 0.86 0.85 0.86 0.86 0.86 0.86

η+ 0.88 0.88 0.88 0.87 0.87 0.87

so that ρscV 2 ∼ 1 eV. Then, we take into account that

ω0 = χ + Eg/2−φG, where χ is electronic affinity, Eg is

band gap of the SiC polytype [21], φG = 4.5 eV is work

function of free-standing graphene [22]. The calculation

results are presented in the table, from which it follows,

first, that in the series of polytypes considered, arranged

in increasing order of the degree of hexagonality D,

equal to the relative number of SiC atoms located in

hexagonal positions, significantly changing are only the

values of ω0 and ε′D. Second, the energies of ω′
− and ω′

+

are quite far from the energies of the band gap edges

EV = −ω0−Eg/2 and EC = −ω0 + Eg/2. In other words,

van Hove singularities do not overlap with the divergences

arising at the boundaries of the band gap [7,8]. And finally,

the coefficients η± are almost the same for all polytypes.

Thus, for epigraphene, formulae (6) and (7) are valid,

with m replaced by m±.

Let us now turn to the single-layer graphene encapsulated

between coating layers 1 and 2. It is easy to show

(see, for example, [7,8]) that the Green’s function of

the encapsulated layer Ĝ(ω, k) can be represented as

expression (8), where the Ŵsub(ω) and 3sub(ω) functions

describing the effect of the presence of a substrate, are

replaced by the Ŵ1(ω) + Ŵ2(ω) and 31(ω) + 32(ω) sums

describing the resulting effect of coating layers 1 and 2,

and introduce the parameters Eg1,2 and ω01,2 of the coating

layers. In the simplest case of identical coating layers, when

Ŵ1(ω) = Ŵ2(ω) ≡ Ŵ(ω) and 31(ω) = 32(ω) ≡ 3(ω), the

results obtained can be used for epigraphene by assuming

Ŵsub(ω) = 2Ŵ(ω) and 3sub(ω) = 23(ω).

4. Conclusion

In this study, we have shown that van Hove singu-

larities are manifested at |µ| → t as divergences in the

S(µ) and PF(µ) dependences, whereas σ (µ) → 0 (this
is referred to the Drude conductivity, not the quantum

conductivity). It should be noted that in the case of

epigraphene it is more correct to talk about van Hove

special features rather than singularities, because consistent

consideration of the Ŵsub(ω) broadening leads to extrema

rather than divergences. Further, it is demonstrated that

both relaxation time approximations (τ (ω) = τ0 = const

and τ (ω) ∝ ρ−1
G (ω)) give the same divergences. It should

be emphasized that a high level of electronic doping,

meeting the condition of µ → ω′
+ and corresponding to

the charge carrier density of 5.5 · 1014 cm−2, was really

achieved for the graphene formed on 6H−SiC(0001) by

ytterbium intercalation and potassium adsorption [23]. Also,
it should be noted that there is growing interest in the role

of van Hove singularities in the physics of twisted two-

layer graphene [24,25], three-layer graphene [26] and the

graphene/h-BN superlattice [27].
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