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Collisions of spin-polarized alkali Na and Cs atoms in the ground state
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Introduction

In recent years, the interest in studying the interactions

between alkali metal atoms in the ground state has been

renewed. This is true for the study of both homonuclear [1]
and heteronuclear dimers of alkali metals [2]. The growth

of the number of such studies is due to various factors, in

particular, the interest in the properties of cold and ultracold

collisions in gases of alkali metals in various types of

traps [2,3], as well as the possibility of polarization transfer

during collisions of spin-polarized alkali atoms with atoms

of nuclear paramagnetic materials [4] with their subsequent

use as working media in quantum magnetometers [5,6] and
gyroscopes [7]. The interactions with spin-polarized alkali

atoms involvement can be studied in experiments on the

optical orientation of atoms. Optical orientation of atoms is

the transfer of angular momentum from a polarized resonant

radiation to an ensemble of atoms that are either in the

ground state or in excited state and have an uncompensated

electron spin. In this case, the polarization transfer is

possible both between the electronic degrees of freedom of

colliding atoms [8] and between the electronic and nuclear

degrees of freedom [4,9].

Collisions of alkali metal atoms in the ground state

with an electron spin of S = 1/2 are accompanied by the

exchange of electronic coordinates between the colliding

particles, which results in the transfer of polarization

between them (i. e., to the well-known phenomenon of

spin exchange). In addition, along with the transfer

of polarization from one partner to another [8], the

magnetic resonance lines of colliding atoms broaden and

shift during the spin-exchange collisions [10,11]. The

latter two processes depend, in particular, on the complex

cross section of the spin exchange. The real part of

the cross section determines the so-called
”
spin exchange

cross section“, which is responsible for the broadening of

magnetic resonance lines, and the imaginary part, that is

the shift cross section, determines the shift of the magnetic

resonance frequency. When alkali atoms in the ground state

collide, an elastic scattering also takes place, along with the

spin exchange process.

The purpose of this study is to calculate the cross sections

of collisions of Na and Cs alkali atoms. These include

various cross sections: the elastic scattering cross section,

the complex spin exchange cross section, consisting of

real and imaginary parts. As it follows from the standard

scattering theory, all of the above-mentioned cross sections

can be calculated using the scattering phases on the

corresponding terms of the NaCs dimer [12]. It should

be noted that in collisions of alkali atoms at not too

low temperatures, when the hyperfine interaction time

2π/1ω (for example, 1ν = 9192 · 106 Hz for 133Cs and

1ν = 1771 · 106 Hz for 23Na [13]) is significantly longer

than the collision time, which is of the order of 10−12 s,

the spin exchange process can only be considered as the

evolution of electron spins during the collision. In other

words, the total electron spin is assumed to be conserved

during the collision. Between collisions, electron and

nuclear spins interact. In this case, a molecule formed from

two alkali atoms in the process of collision can be described

in the ground state using two potentials corresponding to

the total spins of the system: S1 = 0 and S2 = 1. Collision

cross sections are calculated based on the information on

singlet (S = 0, X16+) and triplet (S = 1, a36+) potentials

describing the interaction of alkali atoms in the ground

state [14].

1. Interaction potentials of the NaCs
system

The interaction potentials of the NaCs system have

been studied for quite a long time [14–17] and, as noted

above, recently interest in the study of this system has

grown significantly [3,17]. In this study, to calculate the

cross sections of spin exchange and elastic scattering of

interest to us, we will use the results of [14], where the

singlet and triplet terms of the NaCs dimer were found on

the basis of the experimental data obtained using Fourier
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spectroscopy. The potentials of interest were divided into

three regions in accordance with the internuclear distance:

the region of small internuclear distances (R < RSR), the

region of large internuclear distances (R > RLR), the region

of medium internuclear distances (RSR ≤ R ≤ RLR ). The

numerical values of the parameters RSR and RLR are given

below. The region of small internuclear distances (R < RSR)
is characterized by strong repulsion, the region of large

internuclear distances (R > RLR) is due to van der Waals

interaction, in the region of medium internuclear distances

(RSR ≤ R ≤ RLR) singlet and triplet interaction potentials

are characterized by the presence of a quantum well.

In [14], the singlet and triplet potentials were represented

in analytical form as follows.

For small internuclear distances (R < RSR), the potential

had the form of repulsion:

USR(R) = A +
B
R3

, (1)

where A = −0.121078258 · 105 cm−1,

B = 0.278126476 · 106 cm−1Å3 for the singlet

term and A = −0.147429182 · 104 cm−1,

B = 0.160029429 · 106 cm−1Å3 for the triplet term.

For large internuclear distances (R > RLR), the potential

was described by the van der Waals interaction taking into

account the term describing the exchange interaction:

ULR = −
C6

R6
−

C8

R8
−

C10

R10
± Eex. (2)

The exchange interaction Eex is included with the sign (+)
in the triplet term and with the sign (−) in the singlet term;

its explicit form is presented in [14]:

Eex = AexR
γ exp(−βR). (3)

For distances of RSR < R < RLR, the potential was

presented in the following form:

UIR(R) =

n
∑

k=0

akx k , (4)

where x = R−Rm
R+bRm

, a i are fitting coefficients, Rm is distance

close to the equilibrium, equal to 3.85062906 Å for the

singlet term and 5.75585938 Å for the triplet term. The

explicit form of the parameters in expressions (1)−(4)
is tabulated in [14]. Using expressions (1)−(4) and the

parameters included in them, given in [14], we have built

up the interaction potentials of the NaCs dimer in the

atomic system of units (Fig. 1). Knowing the singlet and

triplet terms of the NaCs dimer in the ground state, we can

proceed to the calculation of the cross sections of interest to

us.

In [14], the dissociation energy of the NaCs molecule

and the equilibrium distance were also determined: for

the singlet term De = 4954.237(10) cm−1, Re = 3.8506 Å,

for the triplet term Te = 217.168(10) cm−1, Re = 5.7448 Å.

Moreover,RSR = 2.8435 Å, RLR = 10.2 Åfor the singlet

term, RSR = 4.78 Å, RLR = 10.2 Åfor the triplet term.
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Figure 1. Singlet (1) and triplet (2) potentials of the NaCs dimer

according to [14] in the atomic system of units.

2. Calculation of scattering phases
during collisions of Na and Cs atoms

As it follows from the theory of scattering, the calculation

of cross sections is conditioned by the knowledge of

scattering phases (δs ,t
l ) (here the superscript s is referred to

the singlet term, t is referred to the triplet term) on the cor-

responding terms. The amplitude of the scattered wave on

the triplet ( f t) and singlet ( f s ) terms is determined by the

following expression through the scattering phases [18,19]:

f t,s =
1

2ik

∞
∑

l=0

(2l + 1)[exp(2iδt,s
l ) − 1]P l(cos θ), (5)

The scattering phase δs ,t
l can be obtained from a regular

solution to the equation of partial waves:

d2g t,s
l

dR2
+

[

k2 −Vt,s −
l(l + 1)

R2

]

g t,s
l = 0. (6)

For large values of R, the g t,s
l function has the following

asymptotic form:

g t,s
l ∼ k−1 sin

(

kR −
1

2
lπ + δt,s

l

)

. (7)

Here l is orbital momentum, k is wave vector, Vt,s is triplet

(or singlet) interaction potential, P l is Legendre polynomial.

The scattering phases were calculated in a quasi-

classical approximation based on the Jeffreys method mod-

ified by Langer [18], in the collision energy range of

E = 10−2−10−4 a.u. In accordance with this method, the

scattering phase on the potential Vs can be represented in

the following form:

δl =

∞
∫

R0

F1(R)dR −

∞
∫

R′

0

F0(R)dR, (8)
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where

FS
1 (R) =

[

2µ(E −VS(R) −
(l + 1/2)2

2µR2

]

, S = s, t, (9)

F0(R) =

[

2µE −
(l + 1/2)2

R2

]

.

Here E is collision energy, R0 and R′

0 are roots of the

equations FS
1 (R) = 0, F0(R) = 0 (and for FS

1 (R) the largest

root is taken), VS(R) is interaction potential corresponding

to the total spin S (0 or 1).

3. Calculation of cross sections for
collisions of Na and Cs atoms

Complex spin exchange cross sections and elastic scatter-

ing cross sections can be calculated based on the standard

theory of scattering. The calculation of complex cross

sections for spin exchange in collisions of sodium and

cesium atoms was carried out similarly to how it was

done, for example, in collisions of rubidium isotopes [20].
When two atomic particles with electron spins collide, an

exchange of electrons is possible, and if one of the particles

was previously polarized, then an exchange of electron

polarization is possible as well. Such a process can be

notionally represented as follows:

A(↑) + B(↓) ↔ A(↓) + B(↑), (10)

in this representation arrows indicate the possible electronic

polarization of the atom.

The spin exchange process can be described using a

complex spin exchange cross section of the following form:

qAB = q̄AB + i ¯̄qAB . (11)

At the same time, knowing the interaction potentials of Na

and Cs atoms, it is also possible to determine the cross

sections for elastic scattering at each potential.

The complex spin exchange cross section can be rep-

resented in a standard way through the scattering matrix

T AB
S (l) [12]:

qAB =
π

k2
AB

∞
∑

l=0

(2l + 1)[1− T AB
0 (l)T AB

1 (l)∗]. (12)

Here k2
AB is wave number, ∗ means complex conjugation,

S is total spin of the system. The scattering matrix can be

represented in terms of scattering phases δAB
S (l) in a channel

with total spin S as follows:

T AB
S (l) = exp(2iδAB

S (l)), (13)

where l is orbital quantum number. In this case, the

elastic scattering cross section can be represented [12] in

the following form:

qs ,t =
π

k2
AB

∞
∑

l=0

(2l + 1)|1 − T AB
s ,t (l)|2. (14)

In thus representation subscripts s and t correspond to

scattering on singlet (S = 0) term or triplet (S = 1) term.

It follows from expressions (12)−(13) that the real and

imaginary parts of the complex spin exchange cross section

have the following form:

q̄AB =
π

k2
AB

∞
∑

l=0

(2l + 1) sin2[δAB
1 (l) − δAB

0 (l)], (15)

¯̄qAB =
π

k2
AB

∞
∑

l=0

(2l + 1) sin 2[δAB
1 (l) − δAB

0 (l)]. (16)

In this case, the elastic scattering cross section on the singlet

and triplet terms can be represented as follows:

q0,1 =
π

k2
AB

∞
∑

l=0

(2l + 1) sin2(δAB
0,1(l)). (17)

In accordance with [21], the total elastic scattering cross

section in the case of collisions of dissimilar atoms can be

represented in the following form:

qel = (1/4)(q0 + 3q1). (18)

Thus, to calculate the cross sections of interest to us

using expressions (15)−(18), it is necessary to calculate the

scattering phases on the singlet and triplet terms presented

in Section 1.

4. Calculation of elastic scattering cross
sections and complex spin exchange
cross sections in collisions of Na
and Cs atoms

In the quasi-classical approximation, based on expres-

sions (8) and (9) and interaction potentials from [14], the
scattering phases were calculated in the collision energy

range from 10−4 to 10−2 a.u. The possibility of using

the quasi-classical approximation is due to the fact that a

large number of scattering phases contribute to the cross

sections even at a minimum collision energy. Fig. 2 shows

the dependences of real and imaginary parts of the complex

spin exchange cross section on the collision energy, obtained

on the basis of relationships (15) and (16). Fig. 3 shows the

dependences of the elastic scattering cross sections on the

singlet and triplet terms as function of the collision energy,

obtained on the basis of relationships (17).
To proceed to the temperature dependences of the de-

sired cross sections, it is necessary to carry out Maxwellian

averaging over velocities in accordance with the following

expression:

σ AB(T ) =
〈qAB(E)νAB〉

〈νAB〉

=
1

(kT )2

∞
∫

0

qAB(E)E exp
(

−
E

kT

)

dE. (19)
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Figure 2. Dependence of the real (1) and imaginary (2) parts of

the complex cross section of spin exchange on the collision energy

during collisions of Na and Cs atoms in the ground state.
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Figure 3. Dependence of elastic scattering cross sections on

collision energy: 1 — scattering cross section on a singlet

term (�), 2 — scattering cross section on a triplet term ( •).

Here k is Boltzmann’s constant, E is collision energy,

νAB is relative thermal velocity of colliding particles. Fig. 4

shows the results of Maxwellian averaging of the energy

dependences of the cross sections presented in Fig. 2 and 3,

including the total elastic scattering cross section, which is

expressed through the elastic scattering cross sections on

the triplet and singlet terms in accordance with (18 ). Since
the elastic scattering cross sections on the singlet and triplet

terms are close to each other (Fig. 3), and in accordance

with (18) the contribution from scattering on the triplet term

prevails in the value of the total cross section, it turns out

that the total cross section and the scattering cross section

on the triplet term are weakly differ, as it follows from Fig. 4.

Indeed, as can be seen, for example, from [19], in

the collision of two lithium atoms in the ground state

with Maxwellian averaging of the cross sections in the

temperature interval of 1−100K scattering cross sections on

the singlet and triplet terms coincide, and the spin exchange
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Figure 4. Temperature dependences of the cross sections: 1 —
real part of the spin exchange cross section, 2 — imaginary part

of the spin exchange cross section, 3 — scattering cross section on

the singlet term, 4 — scattering cross section on the triplet term,

5 — total scattering cross section on the singlet and triplet terms.

cross section (real part) is significantly smaller than them.

The main difference between the cross sections for elastic

scattering on the singlet and triplet terms takes place in the

region of low temperatures (less than 1K).

Conclusion

As can be seen from Fig. 4, the real part of the spin

exchange cross section (q̄AB) is quite large and falls within

the range from 1.8 · 10−14 to 1.6 · 10−14 cm 2. At the

same time, the imaginary part of the cross section ( ¯̄qAB),
responsible for shifts in the magnetic resonance frequency,

is, firstly, negative throughout the entire temperature range,

and secondly, varies from −4 · 10−15 to −5 · 10−15 cm2.

The magnitude and sign of the cross section are significant

when calculating the frequency shift of magnetic resonance

in the collision of polarized alkali metal atoms in the ground

state. In particular, the behavior of the frequency shift as

a function of temperature for two hyperfine states of alkali

atoms depends on them.

Spin exchange cross sections make it possible to describe

the process of spin exchange during the collision of two

alkali metal atoms in the ground state. As already

noted, the process of spin exchange leads both to the

transfer of polarization between colliding particles and to

the broadening of the magnetic resonance line of colliding

atoms. In addition, along with the transfer of polarization

from one partner to another, the magnetic resonance lines

of colliding atoms broaden and shift during spin-exchange

collisions. These processes depend, in particular, on the

complex cross sections of spin exchange. The real part of

the cross section determines the so-called
”
spin exchange

cross section“, which is responsible for the broadening

of magnetic resonance lines, and the imaginary part,
”
the
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shift cross section“ determines the shift of the magnetic

resonance frequency. The spin-exchange broadening of the

magnetic resonance line affects the accuracy of quantum

electronics devices such as quantum frequency standards

and magnetometers, which are built using the optical

orientation of atoms.
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