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Introduction

The splitting and shift of rotational levels of an isolated

molecule under the effect of a static magnetic field [1] is

a well-known physical phenomenon (known as the
”
molec-

ular Zeeman effect“), which serves as a fundamental basis

for the development of optical (non-contact) methods for

measurement of external magnetic field strength H (optical
magnetometers [2]). In particular, Zeeman splitting of lines

in the molecular spectra of light transition metal hydrides

(such as for example FeH(D) and NiH(D) [3]) with a

spectrally resolved rotational structure at low temperatures

and a relatively large magnetic moment (Lande factor or

g-factor) are extensively used in astrophysical studies of

the spatiotemporal evolution of magnetic field strength in

various areas of the outer space, including the atmosphere

of exoplanets, cold stars, and brown dwarts [4].

It is obvious that the observed spectrum of any (param-

agnetic) molecule with a non-zero magnetic moment can

in principle be used for remote measurement of magnetic

field strength. The CN radical is not an exception,

which has intense emission and absorption lines in the

microwave, infrared, and visible parts of the spectrum,

widely observed in the atmospheres of exoplanets [5], as

well as in various regions of the interstellar medium and

circumstellar envelopes.

It should be reminded that the modern accuracy of labo-

ratory measurements and quantum mechanical calculations

of the magnetic characteristics (primarily that of Lande

factors) of atoms and molecules in the gaseous phase is very

high in a very wide range of their absolute changes, which

makes the sign and absolute value of g-factors the most

important characteristic of atomic-molecular levels along

with their energy and radiation properties [6].

It is well known that the fundamental feature of the

Zeeman operator is that it is determined by the total

rotational angular momentum of the molecule J, as well as

the orbital Lt and spin St angular momenta of electrons,

and, therefore, for its calculation it is not necessary to

know additional intramolecular matrix elements compared

to the Hamiltonian of an isolated (without external field)
molecule. Moreover, in the limiting situations, which

are so-called pure Hund’s coupling cases (a), (b), and

(c), the magnetic structure of the rovibronic levels of

diatomic molecules can be calculated rather simply (as a

rule, even in an analytical form) provided that most of

the quantum numbers characterizing the molecular states

under consideration are conserved (i. e. they are good).
However, when intramolecular (nonadiabatic) interactions

are taken into account, almost all quantum numbers used

for adiabatic states (with the exception of the magnetic

quantum number M) cease to be good (i. e. they are

not conserved). In this case, the quantitative description

of the molecular Zeeman effect ceases to be a trivial

problem but represents an independent and very sensitive

test for correctness of the quantum mechanical model used

for the nonadiabatic description of the structural (energy)
properties of an isolated molecule [7].

An important advantage of observing and interpreting the

field-linear Zeeman effect in diamagnetic (zero magnetic

moment) states is that its associated splittings and shifts are

a direct manifestation of the nonadiabatic effect caused by

intramolecular interactions with neighboring paramagnetic

states of the molecule [8]. The nonadiabatic effect is

especially pronounced in the case of energy resonances,

when almost degenerate (in the adiabatic approxima-

tion) rovibronic (electron-vibrational-rotational) states of

the molecule interact with each other due to spin-orbital,

spin-rotational and electron-rotational interactions [9]. It

is obvious that when estimating molecular g-factors for

intermediate cases of Hund’s coupling and in the presence

of intramolecular perturbations, it is necessary to explicitly
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take into account the mixing of adiabatic states, based on the

knowledge of corresponding nonadiabatic electronic matrix

elements [10,11].
In this study, a rigorous quantum mechanical modeling

of g-factors of rovibronic levels of the complex of doublet

states X26+ ∼ A25 ∼ B26+ of the CN molecule was

carried out, taking into account spin-rotational and electron-

rotational interactions induced by an external magnetic field,

as well as local and regular intramolecular perturbations

caused by the competition between spin-orbital, spin-

rotational, and electron-rotational nonadiabatic interactions

in an isolated molecule.

Linear Zeeman effect in a diatomic
molecule

In the case of a spatially uniform magnetic field directed

along the Z axis of the laboratory coordinate system (LCS),
the Zeeman operator HZe can be represented as follows [12]:

HZe = −µBH
∑

t=0,±1

(−1)tD1
0−t [gLLt + gSSt ] . (1)

where µB is Bohr magneton; gL = 1 and gS = 2.00232 are

orbital and spin g-factors of electron, and D1
0−t is matrix of

the rotation from molecular coordinate system to laboratory

coordinate system, acting on the rotational functions of the

|J�M〉 molecule and having non-zero matrix elements ac-

cording to the selection rules: 1J = 0,±1 and 1� = 0,±1.

In this case, only the magnetic quantum number M remains

good. On the contrary, operators of orbital Lt and spin St

angular momentum of electrons act on the electronic

part |�; L3S6〉 of the total electron-vibrational-rotational

(rovibronic) wave function of the molecule. It should be

reminded that in an isolated linear molecule the projection

� = 3 + 6 of the total angular momentum J onto the

internuclear axis in the molecular coordinate system (MCS)
is always a good quantum number, and the projections of

the orbital 3 and spin 6 angular momentum of electrons are

good only in the so-called pure Hund’s coupling case (a)
with the corresponding selection rules 13 = 0,±1 and

16 = 0,±1.

The total (non-adiabatic) wave function of the interacting

rovibronic states of a diatomic molecule 9CC
J can be

represented as a linear combination of basic electron-

rotational wave functions corresponding to the pure Hund’s

coupling case (a):

9CC
J =

N
∑

i=1

φJ
i (R)|�±

i ; L3S6〉|J�i M >, (2)

where subscript i means the serial number of the electronic

state included explicitly in the non-adiabatic consideration;

sign ± denotes the use of a symmetrized electron-rotational

basis, where levels have a certain (e/ f ) symmetry, and

expansion coefficients φJ
i (R) are multicomponent vibrational

wave functions, which are a solution to N coupled radial

Schrëdinger equations:
(

−I
~
2d2

2µdR2
+ Ve/ f (R; µ, J) − IECC

J

)

8CC
J (R) = 0, (3)

with the usual boundary conditions for discrete (bound)
states of a molecule: 8CC

J (0) = 8CC
J (+∞) = 0. Here I is

diagonal unit matrix, µ is reduced mass of the molecule,

and Ve/ f (R; µ, J) is symmetric N × N matrix of potential

energy, which is an explicit function of the internuclear

distance R and parametrically dependent on µ and the

rotational quantum number J .
The Zeeman Hamiltonian (1) is an even operator,

therefore it can only mix molecular states of the same

symmetry, just like the operators of intramolecular (non-
adiabatic) perturbations. Consequently, in HZe only diagonal

matrix elements will be non-zero for certain J and M :

1E(1)
J (M) = 〈9CC

J |HZe |9CC
J 〉 = −gJµBHM, (4)

Then, taking into account representations (1) and (2), the
desired dimensionless g-factor of the non-adiabatic state

of an isolated molecule can be represented as a sum of

products of matrix elements of angular momentum:

gJ =

[

2J + 1

J(J + 1)

]
1
2

×





∑

t

(−1)t
∑

i j

(

J 1 J
−�i t � j

)

[gLLi j + gSSi j ]



 ,

(5)
where Li j and Si j are electron-vibrational matrix elements:

Li j = δSi S j δ6i6 j 〈φi |〈3i |Lt |3 j〉r|φ j〉R ; (6)

Si j = δ3i3 j 〈φi |〈6i |St |6 j〉r|φ j〉R, (7)

and δi j are Kronecker symbols that define the selection rules

for the Zeeman operator based on the spin Si = S j , its

projection 6i = 6 j , and the value of 3i = 3 j in the pure

Hund’s coupling case (a) .

Taking into account also the selection rules for non-zero

3 j-symbols included in expression (5), the following can be

written explicitly:

[

2J + 1

J(J + 1)

]
1
2

(−1)t

(

J 1 J

−�i t � j

)

=







�i
J(J+1), t = 0

±
√

[J(J+1)−�i(�i±1)]/2

J(J+1) , t = ±1
(8)

Similarly, for diagonal and off-diagonal electron matrix

elements of the operators of orbital and spin angular

momenta of electrons of the molecule the following can

be written, respectively:

〈3i |Lt |3 j〉r =

{

3i , 3i = 3 j

±Li j(R)/
√
2, 3i − 3 j = ±1,

(9)
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〈6i |St|6 j 〉r =

{

6i , 6i = 6 j

±Si j(R)/
√
2, 6i − 6 j = ±1,

(10)

In the case when the orbital L and/or spin S angular

momentum of the molecule is conserved, the off-diagonal

matrix elements Li j(R) and Si j(R) can be evaluated analyt-

ically:

Si j =
√

S(S + 1) − 6i(6i ± 1), (11)

Li j =
√

L(L + 1) − 3i(3i ± 1), (12)

Equation (12) reflects the validity of the hypothesis of

the so-called pure precession of Van Vleck [7], which is

relatively rarely fulfilled in practice for the vast majority

of molecular states. The exception is the Rydberg states

of light molecules, primarily hydrides. On the contrary,

the conservation of the total spin of the molecule S and,

accordingly, the validity of expression (11) is typical for

most pure Hund’s coupling cases, except, of course, the

case (c). Thus, it is easy to see that even when taking

into account non-adiabatic interactions, the g-factors of

molecular states can be calculated based only on the wave

functions of an isolated molecule (in the absence of an

external magnetic field) and the corresponding diagonal

and off-diagonal electron matrix elements of the angular

operators momenta.

It should be reminded that in the limiting cases of the

Hund’s coupling, g-factors can be represented analytically.

For example, for the states of pure coupling cases (a) and

(c) they have the simplest form:

g(a)
J = �

gL3 + gS6

J(J + 1)
, � = 3 + 6, (13)

g(c)
J = �

gL� + (gS − gL)〈�|S0|�〉r
J(J + 1)

, (14)

whereas for the pure coupling case (b) they become

noticeably more complicated:

g(b)
J =

gL

2J(J + 1)

[

32[J(J + 1) + N(N + 1) − S(S + 1)]

N(N + 1)

]

+gS
J(J + 1) − N(N + 1) + S(S + 1)

2J(J + 1)
,

(15)
where N = J ± S.

g-factors of the X2
6

+
∼ A2

5 ∼ B2
6

+

complex of CN molecule

Quantum mechanical calculation of g-factors of rovibronic
levels of the low-lying doublet states X26+, A25�, and

B26+ of the CN radical was based on a strict non-

adiabatic model of coupled vibrational channels (CC) [13],
within which the matrix of potential energy Ve/ f (R; µ, J)
for the X ∼ A ∼ B complex of mutually-perturbing states

included in an explicit form the spin-orbital, spin-rotational,

and electron-rotational intramolecular interactions between

all three states of the complex [14], as well as second-

order corrections of non-degenerate perturbation theory,

effectively taking into account non-adibatic interactions with

distant doublet states using Van Vleck contact transfor-

mations [15]. Necessary non-adiabatic vibrational wave

functions φJ
i (R) for all rovibronic levels of the X ∼ A ∼ B

complex within the range of excitation energy of 0−60000

cm−1 and rotational quantum number J ∈ [0.5, 120.5], were
found from the numerical solution to the system of four

coupled radial equations (3) of the CC method. For this

purpose, a five-point finite-difference scheme [16] was used
to replace the kinetic energy operator in equation (3), and
the resulting band matrix was diagonalized using the FEAST

library program [17]. The partial contribution of each

electronic state to the resulting multicomponent vibrational

wave functions of the 8CC
J (R) complex was determined

from the conditions for normalizing the wave functions of

bound molecular states:

pi = 〈φJ
i |φJ

i 〉R,

N
∑

i=1

pi = 1, (16)

where i ∈ [X26+, A251/2, A253/2, B26+].
Based on equation (5) and auxiliary expressions (8)-(10),

it is easy to show that in the gJ-factor of the X ∼ A ∼ B
complex under consideration the following terms will make

non-zero contributions:

g
26+

= gS
1± (J + 1/2)

2J(J + 1)
pX/B , (17)

g
251/2 =

gL − gS/2

2J(J + 1)
pA1/2

, (18)

g
253/2 =

3[gL + gS/2]

2J(J + 1)
pA3/2

, (19)

g
251/2−

253/2 = gS

√

J(J + 1) − 3/4

2J(J + 1)
〈φJ

A1/2
|φJ

A3/2
〉R, (20)

g
251/2−

26+

= ±gL
J + 1/2

2J(J + 1)
〈φJ

A1/2
|L56|φJ

X/B〉R, (21)

g
253/2−

26+

= gL

√

J(J + 1) − 3/4

2J(J + 1)
〈φJ

A3/2
|L56|φJ

X/B〉R, (22)

where the signs ± refer to the symmetry levels e/ f ,
respectively.

The electronic matrix element of the spin-rotation inter-

action Si j between the components � = 3
2
and � = 1

2
of

the state A25� included in equation (20) was estimated

analytically according to formula (11), under the assumption

that the molecular spin S remains a good quantum number.

The non-adiabatic matrix elements of the electron-

rotational coupling L56(R) between A25� and the states

X/B26+ included in the expressions (21−22) are known

in a point-wise form, obtained earlier within the ab initio

quantum chemical calculation of the electronic structure of

the X ∼ A ∼ B complex [14]. It should be reminded that

it was these intramolecular matrix elements that were used
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Figure 1. Lande factors of weakly perturbed rotational levels of

the ground vibrational state X26e/ f (v = 0) of the CN molecule,

calculated within the pure Hund’s coupling case (b), g(b), as well as

taking into account only intramolecular, g(1) , and magnetic field-

induced, g(2) , non-adiabatic interactions. The insert shows the

deviations of non-adiabatic g-factors from predictions for the pure

Hund’s coupling case (b). Dashed lines correspond to corrections

of the 2-nd order of smallness g(2)
26+ , calculated according to

equation (24).

in the non-adiabatic analysis of the rovibronic energy levels

of the complex under study [13], but at the same time they

were completely ignored in the calculation of its magnetic

g-factors in [18].
On the contrary, in this study we calculated the g-

factors of rovibronic levels of the X ∼ A ∼ B complex in

a wide range of its vibrational-rotational excitation with the

explicitly taken into account contribution of the electron-

rotational interaction according to equations (21) and

(22). In addition, to estimate the required multicomponent

vibrational wave functions 8CC
J (R) from equation (3), a

precision non-adiabatic model [13] was used, which allows

reproducing (unlike the study of [18]) energies of both

locally and regularly perturbed levels of an isolated CN

molecule at an almost spectroscopic (experimental) level

of accuracy.

However, it should be emphasized that although the non-

adiabatic model used effectively takes into account regular

interactions with an infinite number of distant doublet states

using Van Vleck contact transformations, to assess the effect

of these states on the Lande factors of the X ∼ A ∼ B
complex in question, it is necessary to additionally take into

account the magnetic field-linear corrections of the order of

non-degenerate perturbation theory of the following type:

1E(2)
i =

∑

j 6=i

〈9ad
i |Vpert |9ad

j 〉
Ead

i − Ead
j

〈9ad
j |HZe |9ad

i 〉 (23)

where Ead
j , 9ad

j are adiabatic (unperturbed) energies and

wave functions of the molecule, and Vpert is the operator of

spin-orbital and/or electron-rotational intramolecular interac-

tion.

Within the purely ab initio technique, it is quite difficult

to perform summation over states according to equation

(23), because it is necessary to know all the corresponding

electronic matrix elements and energies. However, fortu-

nately, the situation is significantly simplified when making

use of the approximate relationship between the desired

second-order corrections to g-factors, g(2)
i , and the so-called

effective constants of 3- doubling of the doublet states of the

molecule. Thus, for example, for the state 26+ the following
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Figure 2. Non-adiabatic contributions gCalc
− g(b) to the Lande

factors of the rotational levels e/ f of the vibrational state

B26+(v = 0) of the CN molecule, calculated with and without

taking into account the magnetically induced electron-rotational

interaction. Dashed lines show the contribution of the second order

of smallness to the g-factor estimated according to approximate

relationship (24).
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can be written using the Curl formula [19]:

g(2)
26+ ≈ ∓gL

J + 1/2

J(J + 1)

( γ

2B

)

, (24)

where γ is experimental γ-doubling constant, and B is

rotational constant of the state 26+ under consideration.

Similarly, the correction to the g-factor of the diamagnetic

state 25�=1/2 can be expressed through the experimental 3-

doubling constants p and q, as well as the rotational constant
B as follows:

g(2)
25

≈ ±gL
J + 1/2

J(J + 1)

( p
2B

)

+ gL

( q
B2

)

, (25)

Results and discussion

Systematic non-adiabatic analysis of numerous spectro-

scopic (experimental) data corresponding to the low-lying

states X26+, A25, and B26+ of the CN radical, carried

out in [13,20] made it possible to conveniently classify all

rovibronic levels of the X ∼ A ∼ B complex in question into

three groups:

1. Almost
”
pure“ (very weakly perturbed) levels that can

be described in the approximation of an isolated electronic

state, obeying the pure Hund’s coupling case. These include,

for example, several low-lying vibrational (v = 0− 3) levels
of the ground electronic state X26+, obeying the pure

Hund’s coupling case (b).
2. Regularly perturbed levels that make up the bulk of the

experimental terms of the CN molecule. The intramolecular

perturbation of these levels is determined by the severe

competition of spin-orbit and electron-rotational interactions

between all three states of the complex, as well as regular

interaction with distant electronically excited states of the

molecule.

3. A few locally perturbed levels that correspond to

the position of energy resonances and appear only in

very narrow intervals of electron-vibrational-rotational

excitation of the molecule. Among them, the pairs of

quasi-degenerate terms B26+(v = 0) ∼ A25(v = 10),
B26+(v = 5) ∼ A25(v = 17), and

A25(v = 7) ∼ X26+(v = 11) are the most studied.

From the analysis of expressions for g-factors (17−19) it

follows that among all the under-consideration states of the

complex, only the � = 1
2
component of the A25� state is

diamagnetic in the adiabatic approximation. The A253/2

component, as well as the X26+ and B26+ states are

paramagnetic and, therefore, the dominant contribution to

their g-factors can be obtained on the basis of analytical

expressions (13) and (15) corresponding to the Hund’s

coupling cases (a) and (b), respectively. However, it should
be emphasized that the A251/2 component of the doublet

is strictly diamagnetic only if the magnetic moment of

the electron gS is identically equal to two (according to

expression (13)). In the real case of an anomalous magnetic

moment of electron, the A251/2 component remains weakly

paramagnetic even within pure Hund’s coupling case (a).
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Figure 3. Non-adiabatic contributions gCalc
− g(b) to the Lande

factors of the rotational levels e/ f of the vibrational state

B26+(v = 5) of the CN molecule, calculated with and without

taking into account the magnetically induced electron-rotational

interaction. Dashed lines show the contribution of the 2-nd order

of smallness to the g-factor estimated according to relationship

(24).

Consequently, to obtain corrections to the g-factors of

paramagnetic states at the level of hundredths of a percent,

it becomes absolutely necessary to take into account the

quantum electrodynamic (QED) correction for the magnetic

moment of the electron.

From a comparison of expression (20) with (21) and (22),
an assumption can also be made that the contribution of

the electron-rotational interaction to the g-factors of doublet
states induced by an external magnetic field is significantly

less than that of the spin-rotational interaction, and will be

most effectively manifested only in the case of strong local

perturbations. To confirm this conclusion, two calculation

options were carried out.

1. Taking into account only the spin contribution (20)
to the g-factors (g(1)). This calculation does not require

knowledge of non-adiabatic matrix elements Li j(R) and is

similar to the approach implemented in [18] based on the

DUO program [6,21].

2. Taking into account the additional electron-rotational

contribution of the g-factors (g(2)) based on expressions

(21) and (22).

Fig. 1 shows the g-factors of the rotational levels of

the ground vibrational state X26+(v = 0) of the CN

Optics and Spectroscopy, 2023, Vol. 131, No. 8
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molecule, calculated in various approximations. As ex-

pected, the Lande factors of a given regularly and very

weakly perturbed level are described almost perfectly

(within hundredths of a percent) according to equation

(15) within the pure Hund’s coupling case (b). In this

case, the difference between the results obtained taking

into account only intramolecular and magnetic field-induced

non-adiabatic interactions turned out to be minimal, and a

significant role is played by corrections of the second order

of smallness calculated according to equation (24).

Fig. 2 and 3 present the results of calculations of

the contributions of regular non-adiabatic interactions to

the Lande factors of the rotational e/ f -levels of the

B26+(v = 0) and B26+(v = 5) states of the CN molecule,

both taking into account and without taking into account

the magnetic field-induced electron-rotational interaction,

estimated according to equations (21) and (22). The

contribution of regular perturbations to the level v = 0

is obviously significantly less than that to v = 5, and is

comparable to the contribution of the second order of

smallness g(2)
26+ . The contribution of magnetically induced

interactions to g-factors does not exceed 0.005.

The table, as well as Figs. 4 and 5, present the g-
factors calculated for the rovibronic levels of the X ∼ A ∼ B
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Figure 4. Non-adiabatic contributions gCalc
− g(a) to the Lande

factors of rotational e/ f -levels of the A251/2(v = 17) state of the

CN molecule, calculated taking into account intramolecular and

magnetic field-induced non-adiabatic interactions. Dashed lines

show the contribution of the second order of smallness to the g-
factor estimated from relationship (25).

Contribution of 1g = gCalc
− g(a/b) intramolecular and field-

induced non-adiabatic interactions to g-factors of locally perturbed
rovibronic levels X ∼ A ∼ B of the CN molecule complex

J 1g(2) 1g(1) pX pA1/2 pA3/2 pB

X26+
e (v = 11)

24.5 -0.00039 0.00032 70.8 8.5 20.7 0

25.5 0.00343 0.00286 59.6 6.6 33.8 0

45.5 0.01889 0.01881 54.5 32.4 13.1 0

X26+
f (v = 11)

13.5 -0.03738 -0.03799 67.0 1.7 31.3 0

26.5 -0.00094 -0.00152 67.2 24.0 8.8 0

27.5 -0.00293 -0.00232 68.8 25.0 6.2 0

B26+
e (v = 0)

7.5 0.00437 0.00445 0 0.7 12.5 86.8

15.5 0.02293 0.02276 0 18.4 3 78.6

B26+
e (v = 5)

11.5 0.01735 0.01778 0 9.2 2.6 88.2

12.5 0.05673 0.05821 0 38.4 6.2 55.4

13.5 0.01568 0.01361 0 13.5 0.4 86.1

A25e
1/2(v = 17)

11.5 0.02749 0.02604 0 82.8 6.0 11.2

12.5 -0.0131 -0.0155 0 52.5 3.4 44.1

13.5 0.02678 0.02798 0 76.4 10.1 13.5

A25e
3/2(v = 7)

24.5 0.00648 0.00598 28.7 13.1 58.1 0

25.5 0.00211 0.00288 40.1 15.7 44.2 0

A25
f
3/2(v = 7)

13.5 -0.09484 -0.09434 32.5 9.6 57.9 0

complex, for which strong local intramolecular perturbations

are observed. As was expected, these are the levels, for

which the largest deviation from the adiabatic model is

observed. Moreover, the maximum contribution of the

magnetically induced interaction is also observed here,

which is caused by a significant deviation of the non-

adiabatic CC-models [13] and [18], which, in particular,

manifests in the accuracy of the description of the energies

of these levels [13]. Thus, in this case, although the effect

of taking into account terms (21) and (22) is amounted

to a few percent, the influence of magnetically induced

perturbations turns out to be noticeable in terms of absolute

value.

Conclusion

The calculations carried out in this study allow making

the following conclusions.
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Figure 5. The contribution of local non-adiabatic interactions to

the Lande factors of vibrational-rotational levels of the ground state

X26+(v = 11) of the CN molecule, calculated with and without

taking into account the magnetically induced electron-rotational

interaction. Dashed lines show the contribution of the second order

of smallness to the g-factor estimated according to approximate

relationship (24).

1. Magnetic g-factors for the overwhelming number of

rovibronic levels of the considered X26+ ∼ A25 ∼ B26+

complex of CN radical can be described with a very good

accuracy in terms of the simplest (limiting) Hund’s coupling
cases (a) and (b).
2. Only for a small number of locally perturbed levels

of the complex a non-adiabatic model is actually required,

and exactly the same as for describing the energy levels

of an isolated molecule in the absence of an external field.

Thus, the use of a simplified model for describing g-factors
proposed in [6] seems completely justified, at least in the

case of this complex.

3. The inclusion of electron-rotational interactions in-

duced by an external field in the Zeeman Hamiltonian

insignificantly affects the observed g-factors and is therefore

necessary only in the case of particularly precise magnetic

measurements.
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