01,16

Оптическая проводимость интерметаллических соединений YSn₃ и GdSn₃

© Ю.В. Князев, Ю.И. Кузьмин

Институт физики металлов УрО РАН, Екатеринбург, Россия E-mail: knyazev@imp.uran.ru

Поступила в Редакцию 15 января 2024 г. В окончательной редакции 15 января 2024 г. Принята к публикации 18 января 2024 г.

Методом эллипсометрии исследованы оптические свойства бинарных кубических соединений YSn₃ и GdSn₃. В интервале энергий 0.083-5.64 eV определены частотные зависимости диэлектрических функций. Подробно анализируются особенности дисперсии оптической проводимости в интервалах внутри- и межзонного поглощения света. Природа квантового поглощения света в исследуемых материалах обсуждается на основе сравнительного анализа экспериментальных и теоретических спектров оптической проводимости. Определены плазменные и релаксационные частоты электронов.

Ключевые слова: интерметаллические соединения, оптические свойства, диэлектрические функции, электронная структура.

DOI: 10.61011/FTT.2024.02.57240.3

1. Введение

Интерес к бинарным соединениям RM_3 , где R — Y, Sc, редкоземельный металл (РЗМ), М — *р*-металл, обусловлен разнообразием их физических свойств, ряд которых является перспективным для практического использования. В последние годы было синтезировано большое количество соединений указанной серии, изучены их электронные, магнитные, структурные и механические характеристики. В интерметаллидах RM₃ с разными кристаллическими структурами обнаружено существование различных магнитных фаз, сверхпроводимости, флуктуации валентности, тяжелых фермионов, эффектов кристаллического поля, а также особенностей, характерных для Кондо-систем [1-8]. Природа этих свойств связана со своеобразием электронной структуры таких соединений, а именно, с особенностями локализации 4f-состояний РЗМ и их взаимодействия с электронами проводимости. Для некоторых соединений данной серии были проведены расчеты зонных спектров, в которых определена природа электронных состояний вблизи уровня Ферми *E*_F и вычислены атомные магнитные моменты.

К подобным материалам относятся интерметаллиды YSn₃ и GdSn₃ с кубической гранецентрированной решеткой типа AuCu₃. Немагнитный YSn₃ имеет наиболее высокую среди соединений данного класса температуру перехода в сверхпроводящее состояние. При изучении температурных зависимостей электросопротивления, магнитной восприимчивости и электронной теплоемкости соединения было установлено [9], что температура такого перехода находится вблизи 7 К. Экспериментальные исследования и теоретический анализ [10–13] показали, что YSn₃ является свехпроводником II-го рода с нижним и верхним критическими полями, равными 90 Ое и 3000 Ое, а природа появления сверхпроводимости связана с сильным электрон-фононным взаимодействием. Следует также отметить теоретические работы, посвященные изучению электронных, магнитных, структурных, механических и тепловых свойств этого материала [14–18]. Первопринципные расчеты [19,20] показали, что его электронная структура обладает рядом необычных свойств с аномалиями, характерными для новых квантовых систем — топологических материалов, в которых скорости переноса заряда на поверхности и в объеме существенно различаются.

При исследованиях температурных зависимостей магнитной восприимчивости и электронной теплоемкости было установлено, что соединение GdSn3 является антиферромагнетиком с температурой Нееля $T_{\rm N} = 31$ К [21,22]. В работах [23,24] показано, что такой тип магнитного упорядочения возникает в результате косвенного обменного взаимодействия локализованных 4f-электронов через s, p-электроны проводимости. Расчеты электронного спектра GdSn3, выполненные с учетом эффектов сильной корреляции f-электронов, определили особенности в структуре и локализации Gd 4f, 5d и Sn 5p, 5s-состояний в окрестности уровня Ферми E_F [25-29]. В данных работах также проведены вычисления фазовой стабильности, структурных, электронных, оптических, магнитных и механических свойств соединения.

Большинство прогнозируемых теоретическими расчетами физических характеристик обоих соединений, включая спектральные, нуждаются в экспериментальном подтверждении. В настоящей работе исследуются оптические свойства данных материалов и проводится анализ их соответствия ранее проведенным расчетам электронных структур. Для этой цели используется метод оптической эллипсометрии, охватывающий широкий интервал длин волн, включающий ультрафиолетовый (УФ), видимый и инфракрасный (ИК) диапазоны. Экспериментальные спектры оптической проводимости соединений сопоставляются с соответствующими зависимостями, полученными из первопринципных расчетов плотностей электронных состояний.

2. Эксперимент

Поликристаллические образцы соединений были приготовлены по методу [22] дуговой плавкой в атмосфере аргона высокочистых Y, Gd и Sn (99.99%), взятых в стехиометрических пропорциях. Полученные слитки с целью гомогенизации отжигались при температуре $\sim 650^{\circ}$ C в течение пяти дней. Рентгеновский анализ порошковых образцов показал, что оба сплава кристаллизуются в кубической структуре типа AuCu₃ с параметрами решетки a = 4.66 Å (YSn₃) и a = 4.68 Å (GdSn₃), что близко к значениям, полученным в работах [9,22].

Спектральные свойства соединений исследовались методом оптической эллипсометрии с вращающимся анализатором, основанным на определении разности фаз и амплитуды световых волн s- и p-поляризаций, отраженных от зеркальной поверхности образца [30]. Данные величины, зависящие от частоты света, позволяют вычислить действительную и мнимую части комплексной диэлектрической проницаемости $\varepsilon(E) = \varepsilon_1(E) - i\varepsilon_2(E)$ (Е — энергия кванта света), характеризующие, соответственно, диэлектрические и проводящие свойства материала. По значениям ε_1 и ε_2 определены оптические параметры каждого соединения: отражательная способность R(E), оптическая проводимость $\sigma(E) = \varepsilon_2 \omega / 4\pi$ и функция характеристических потерь электронов Im $(-1/\varepsilon) = \varepsilon_2/(\varepsilon_1^2 + \varepsilon_2^2)$. Измерения, выполненные при комнатной температуре, охватывают интервал длин волн $\lambda = 0.22 - 15 \,\mu m \ (E = 0.083 - 5.64 \,\mathrm{eV}).$ Зеркальные отражающие поверхности 14-го класса чистоты были приготовлены механическим полированием с использованием алмазных паст различной дисперсности. Погрешность в определении указанных характеристик составляет 2-4%.

3. Результаты и обсуждение

Энергетические зависимости действительных ε_1 и мнимых ε_2 частей диэлектрической проницаемости соединений представлены на рис. 1 (на вставке приведена отражательная способность R(E)). Характер дисперсии данных параметров в обоих сплавах типичен для металлических материалов. На это указывает то, что при всех энергиях световых квантов выполняется соотношение $\varepsilon_1 < 0$, а в зависимостях $\varepsilon_2(E)$ и R(E) в ИК диапазоне наблюдается резкий монотонный подъем, свойственный

Рис. 1. Действительная ε_1 и мнимая ε_2 части комплексной диэлектрической проницаемости и отражательная способность *R* соединений YSn₃ и GdSn₃.

проявлению друдевского механизма поглощения света. Отражательная способность обоих соединений довольно высока, превышая значение 0.9 на низкочастотной границе интервала. На рис. 2 темными кружками представлены экспериментальные дисперсионные зависимости оптической проводимости YSn3 и GdSn3. В отличие от статической проводимости данная характеристика зависит не только от плотности электронных состояний на уровне Ферми, но также от электронных плотностей во всем исследуемом интервале энергий. В низкоэнергетической области спектра (ИК диапазон) дисперсия $\sigma(E)$ обоих соединений соответствует друдевской зависимости ($\sigma \sim \omega^{-2}$, где ω — частота света), характерной для внутризонного механизма взаимодействия электронов с электромагнитным полем световой волны. В этом диапазоне энергий, где влияние межзонных переходов на оптические свойства минимально, из соотношений Друде были рассчитаны кинетические характеристики электронов проводимости — плазменные $\omega_{\rm p}$ и релаксационные γ частоты. Параметр $\omega_{\rm p}$ определяет частоту коллективных колебаний электронов, а γ — частоту электронных столкновений при учете всех типов рассеяния. Численные значения данных параметров, составляют $\omega_{\rm p} = 6.8 \cdot 10^{15} \, {\rm s}^{-1}, \ \gamma = 4.7 \cdot 10^{14} \, {\rm s}^{-1}$ (YSn₃), $\omega_{\rm p} = 7.4 \cdot 10^{15} \, {\rm s}^{-1}, \ \gamma = 5.3 \cdot 10^{14} \, {\rm s}^{-1}$ (GdSn₃). Получен-

Рис. 2. Экспериментальные энергетические зависимости оптической проводимости соединений YSn₃ и GdSn₃ (темные кружки). Экспериментальные межзонные (светлые кружки), рассчитанные межзонные (жирные сплошные линии) и друдевские (тонкие сплошные линии) вклады. Также представлены вклады межзонных переходов с участием различных электронных состояний. На вставках показаны полные плотности электронных состояний по данным [16] (YSn₃) и [27] (GdSn₃).

ные величины $\omega_{\rm p}$ и γ позволяют оценить величину друдевского вклада в оптическую проводимость $\sigma_{\rm D} = \omega_{\rm p}^2 \gamma / 4\pi (\omega^2 + \gamma^2)$. Такой вклад, рассчитанный для каждого соединения, показан на рис. 2 тонкой сплошной линией. Его величина уменьшается пропорционально квадрату частоты света и становится пренебрежимо малой при энергиях выше ~ 2.5 eV. Из соотношения $n = \omega_{\rm p}^2 m / 4\pi e^2$ (*e* и *m* — заряд и масса электрона) можно рассчитать значения эффективных концентраций свободных электронов, которые для обоих сплавов близки по величине: $n = 1.05 \cdot 10^{23}$ cm⁻³ (YSn₃), $n = 1.14 \cdot 10^{23}$ cm⁻³ (GdSn₃).

Диэлектрические проницаемости ε_1 и ε_2 , полученные в эксперименте, позволяют рассчитать функции объ-

емных характеристических потерь энергии электронов $Im(-1/\varepsilon)$, максимум которой имеет место при $\varepsilon_1 \rightarrow 0$ и $\varepsilon_2 \ll 1$ [31]. Данная величина характеризует дискретные потери энергии электронов при возбуждении объемных плазменных колебаний. В нашем случае, как следует из рис. 3, зависимости $Im(-1/\varepsilon)$ для обоих соединений показывают рост во всем диапазоне энергий, не выходя на максимальное значение.

С увеличением энергии фотонов (видимая и УФ области спектра) в зависимостях $\sigma(E)$ наблюдается формирование широких полос поглощения, связанных с межзонными переходами электронов. Путем вычитания друдевской составляющей из экспериментальной зависимостей можно выделить вклады межзонного поглощения в оптическую проводимость $\sigma_{ib}(E) = \sigma(E) - \sigma_D(E)$, которые обозначены на рис. 2 светлыми кружками. Хорошо видно, что форма полос поглощения индивидуальна для каждого соединения. Если для YSn₃ полоса имеет бесструктурный куполообразный вид и характеризуется одним максимумом при энергии 3.5 eV, то в соответствующей зависимости для GdSn3 проявились два максимума при 4.0 и 4.9 eV, а центр тяжести данной полосы смещен в сторону высоких энергий. В обеих зависимостях $\sigma_{ib}(E)$ проявился низкоэнергетический максимум, локализованный при энергии 0.3 eV. Рис. 2 показывает, что в довольно обширной области спектра примерно 0.2-2.5 eV внутри- и межполосные вклады в $\sigma(E)$ сосуществуют.

Особенности экспериментальных зависимостей межзонных составляющих оптической проводимости можно качественно объяснить на основе расчетов их плотностей электронных состояний N(E), представленных для YSn₃ и GdSn₃ в работах [16] и [27] (вставки на рис. 2). Вычисления показали, что в интервале энергий $-10 < E_F < 10 \text{ eV}$ в структуре зависимости N(E)соединения YSn₃ доминируют Sn 5*p*, Y 4*d* и Sn 5*s*

Рис. 3. Функции объемных характеристических потерь энергии электронов соединений YSn₃ и GdSn₃.

состояния, парциальные плотности которых формируют ряд интенсивных максимумов по обе стороны от $E_{\rm F}$. В свою очередь, в плотности состояний магнитоупорядоченного GdSn₃, которая является суперпозицией двух плотностей с различной ориентацией спина, в этом же диапазоне энергий преобладают Sn 5p, Gd 5d и Sn 5s состояния. Узкие интенсивные пики, связанные с 4 *f* электронами, локализованы в спектре $N(E) \downarrow$ вблизи 4 eV, а в N(E) \uparrow при -9 eV. Представляет интерес сопоставить экспериментальные спектры $\sigma_{ib}(E)$ с теоретическими зависимостями данной функции, рассчитанными из плотностей состояний обоих соединений. Вычисления межзонных оптических проводимостей проведены по аналогии с методом, ранее использованным в [32], на основе сверток полных N(E) ниже и выше уровня Ферми в предположении равной вероятности всех типов электронных переходов. Результаты таких расчетов, которые носят качественный характер, представлены на рис. 2 в произвольных единицах толстыми сплошными линиями. Как следует из рисунка, при $E > \sim 1 \text{ eV}$ для обоих соединений наблюдается довольно близкое соответствие теоретических и экспериментальных зависимостей $\sigma_{ib}(E)$. Рассчитанные кривые, в целом воспроизводят форму эмпирических спектров и локализацию основных максимумов, хотя в ряде структурных деталей нет полного совпадения.

В соответствие с электронной структурой исследуемых соединений интенсивное оптическое поглощение формируется, главным образом, за счет электронных переходов между гибридизованными Sn 5p, 5s и Y(Gd) 4d(5d) зонами, расположенными ниже и выше E_F . Несмотря на то, что их плотности состояний (вставки на рис. 2) демонстрируют наличие многочисленных максимумов, зависимости $\sigma_{ib}(E)$, вследствие суперпозиции большого числа переходов, имеют почти бесструктурный вид. Два максимума при 4.0 и 4.9 eV, наблюдаемые в экспериментальной и теоретической зависимостях $\sigma_{ib}(E)$ соединения GdSn₃, идентифицируются с переходами в $4f \downarrow$ зону, локализованную выше уровня Ферми. Вклады от других электронных состояний незначительны ввиду малости их парциальных плотностей. На рис. 2 представлены наиболее значительные вклады в межзонную оптическую проводимость, связанные с различными электронными состояниями. Расчет этих вкладов проведен также по методу [32] с использованием данных об их парциальных плотностях, приведенных в [16,27]. При сопоставлении обращает внимание различный характер поведения рассчитанных и измеряемых зависимостей $\sigma_{ib}(E)$ в длинноволновой (ИК) области. Если на экспериментальных кривых при $E \rightarrow 0$ наблюдается спад, указывающий на резкое уменьшение вклада от низкоэнергетических межзонных переходов, то расчетные кривые, напротив, показывают существенный рост. Аномальное возрастание интенсивности такого поглощения, по нашему мнению, связано с аппроксимациями, допущенными при расчете. В частности, приближение постоянства матричных элементов переходов приводит к

некоторой погрешности, связанной с тем, что переходам в пределах одной зоны приписывается вероятность, отличная от нуля. В результате, рассчитанные значения $\sigma_{ib}(E)$ при низких частотах оказываются завышенными. В целом, качественное сходство экспериментальных и теоретических спектров межзонной оптической проводимости YSn₃ и GdSn₃ свидетельствует о том, что опубликованные первопринципные расчеты электронной структуры дают адекватное описание их оптических свойств.

4. Заключение

Представлены результаты экспериментальных исследований оптических свойств бинарных интерметаллидов YSn₃ и GdSn₃ в области длин волн 0.22-15 µm. Эллипсометрическим методом измерены компоненты комплексной диэлектрической проницаемости, оптические проводимости и функции характеристических энергетических потерь электронов. Определены плазменные и релаксационные частоты электронов проводимости. Показано, что спектральные свойства соединений соответствуют материалам металлического типа. Энергетические зависимости оптической проводимости данных интерметаллидов в области межзонного поглощения света обсуждаются на основе ранее опубликованных расчетов их зонной структуры. Показано удовлетворительное соответствие экспериментальных спектров оптической проводимости со спектрами, вычисленными из плотностей электронных состояний.

Финансирование работы

Работа выполнена в рамках государственного задания Минобрнауки России (тема "Электрон" № 122021000039-4).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] B. Liu, M. Kasaya, T. Kasuya. J. de Phys. 49, 12, 369 (1988).
- M. Kasaya, B. Liu, M. Sera, T. Kasuya, D. Endoh, T. Goto, T. Fujimura. J. Magn. Magn. Mater. 52, 1–4, 289 (1985).
- [3] H. Usui, Y. Domi, S. Ohshima, H. Sakaguchi. Electrochim. Acta 246, 280 (2017).
- [4] M.A. Dudek, N. Chawla. Intermetallics. 18, 5, 1016 (2010).
- [5] H. Yamaoka, P. Thunström, I. Jarrige, K. Shimada, N. Tsujii, M. Arita, H. Iwasawa, H. Hayashi, J. Jiang, T. Habuchi, D. Hirayama, H. Namatame, M. Taniguchi, U. Murao, S. Hosoya, A. Tamaki, H. Kitazawa. Phys. Rev. B 85, 11, 115120 (2012).
- [6] D. Billington, T.M. Llewellyn-Jones, G. Maroso, S.B. Dugdale. Supercond. Sci. Technol. 26, 8, 085007 (2013).
- [7] Z. Kletowski. J. Rare Earths 27, 4, 688 (2009).

- [8] Z. Kletowski. Solid State Commun. 137, 11, 634 (2006).
- [9] K. Kawashima, M. Maruyama, M. Fukuma, J. Akimitsu. Phys. Rev. B 82, 9, 094517 (2010).
- [10] S.B. Dugdale. Phys. Rev. B 83, 1, 012502 (2011).
- [11] R. Szczęśniak, A.M. Duda, E.A. Drzazga, M.A. Sowińska. Physica C 506, 115 (2014).
- [12] S. Singh, R. Kumar. J. Supercond. Nov. Magn. 32, 1157 (2019).
- [13] R. Sharma, G. Ahmed, Y. Sharma. Physica C 540, 1 (2017).
- [14] J.A. Abraham, G. Pagare, S.S. Chouhan, S.P. Sanyal. Intermetallics. 51, 1 (2014).
- [15] A. Benidris, A. Zaoui, M. Belhadj, M. Djermouni. J. Supercond. Nov. Magn. 28, 2215 (2015).
- [16] J.A. Abraham, G. Pagare, S.S. Chouhan, S.P. Sanyal. J. Mater. Sci. 50, 542 (2015).
- [17] Kh. Dine, A. Zaoui, A. Benidris, M. Bejar, M. Ameri, A. Boukortt, B. Bouhafs. J. Supercond. Nov. Magn. 29, 2195 (2016).
- [18] Y. Hedjar, S. Saib, A. Muñoz, P. Rodńgues-Herández, N. Bouarissa. Phys. Status Solidi B 258, 10, 2100219 (2021).
- [19] S. Ram, V. Kanchana, G. Vaitheeswaran, A. Svane, S.B. Dugdale, N.E. Christensen. Phys. Rev. B 85, 17, 174531 (2012).
- [20] X.-T. Tu, P.-F. Liu, B.-T. Wang. Phys. Rev. Mater. 3, 5, 054202 (2019).
- [21] T. Yuen, C.L. Lin, T. Mihalisin, N. Bykovetz. J. Appl. Phys. 70, 10, 5995 (1991).
- [22] C.L. Lin, T. Yuen, T. Mihalisin. Phys. Rev. B 54, 13, 9254 (1996).
- [23] G.E. Grechnev, A.S. Panfilov, I.V. Svechkarev, K.H.J. Buschow, A. Czopnik. J. Alloys Compd. **226**, *1*–2, 107 (1995).
- [24] A.E. Baranovskiy, G.E. Grechnev, A.S. Panfilov, I.V. Svechkarev, A.Hackemer, M. Solyga, A. Czopnik. Chech. J. Phys. 54, 351 (2004).
- [25] M. Shafiq, I. Ahmad, S.J. Asadabadi. J. Appl. Phys. 116, 10, 103905 (2014).
- [26] J. Deniszczyk, A. Bajorek, G. Chełkowska, E. Zipper. Acta Phys. Pol. A 127, 2, 427 (2015).
- [27] J.A. Abraham, G. Pagare, S.P. Sanyal. Indian J. Mater. Sci. 2015, 296095 (2015).
- [28] G. Pagare, J.A. Abraham, S.P. Sanyal. Indian J. Phys. 90, 1, 57 (2016).
- [29] M. Adnane, L. Djoudi, M. Merabet, M. Boucharef, F. Dahmane, S. Benalia, M. Mokhtari, D. Rached. Condens. Matter Phys. 23, 3, 33705 (2020).
- [30] H. Fujiwara. Spectroscopic ellipsometry. Principles and Applications. JohnWiley Sons, N.Y. (2007). 392 p.
- [31] M. Fox. Optical Properties of Metals. Oxford University Press. USA (2001), 324 p.
- [32] Yu.V. Knyazev, A.V. Lukoyanov, Yu.I. Kuz'min, A.G. Kuchin, I.A. Nekrasov. Phys. Rev. B 73, 9, 094410 (2006).

Редактор К.В. Емцев

183