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1. Introduction

In solid solutions of systems based on MnNiGe [1–3]
in a number of cases structural paramagnetic transition of

the 1st kind, offset type PM(P63/mmc)−PM(Pnma) from

hexagonal (hex) phase c crystalline lattice of type Ni2In in

orthorhombic (orth) phase with crystalline lattice of type

TiNiSi separated from low temperature magnetic phase

transitions of second kind paramagnetism-ferromagnetism

(PM(Pnma)−FM(Pnma)) [1], paramagnetism-helimagnetism

(PM(Pnma)−HM(Pnma)) [2–3] by significant (up to 100K)
temperature interval, Figure 1. The most characteris-

tic feature of the magnetostructural P−T diagrams of

these systems is the paradoxical behavior, according

to Figure 2 ([4–5]), lines of magnetic phase isostruc-

tural and magnetostructural transitions of the order–
disorder.

At that, when TC(h−h) ≡ TC(hex−hex) — const (Fi-
gure 1, a), the increase in dependence of temperatures

of isostructural magnetic ordering TC(o−o), TN(o−o) with

pressure increasing, up to the contact of these lines

of 2-nd kind transitions with the lability temperatures

Tt1, Tt2 of the hexagonal, orthorhombic phases is a para-

dox because it contradicts the
”
pattern“ of the occur-

rence of orthorhombic magnetic order, which can be

distinguished from the characteristic temperature depen-

dences of the inverse paramagnetic susceptibility χ−1(T ),
Figure 2.

Indeed, from the dependences χ−1
hex(T ) and χ−1

orth(T ) it

is clear that the paramagnetic Curie temperatures of the

hexagonal (2hex) and orthorhombic (2orth) phases are

close to the temperatures of spontaneous occurrence of

magnetic order in the corresponding phases are related

as 2hex ≪ 2orth. It is therefore obvious that the stability

of the spontaneous magnetically ordered phase with the

orthorhombic crystal structure is determined by the stability

of the orthorhombic phase. Therefore, if the stability

temperature of the orthorhombic phase decreases with

pressure increasing (∂Tt1,2/∂P < 0, Figure 1), then it

would be obvious to suppose that the stability of the

orthorhombic magnetically ordered phase also decreases.

However, according to Figure 1, in the temperature-and-

pressure region of 2nd kind transitions ∂TC,N/∂P > 0. This

contradiction forms the basis for the paradoxical behavior

of the lines of magnetic phase transitions of 2nd kind of

P−T-diagram.

At pressures P > 0.5GPa (Figure 1, a) and P > 10 kbar

(Figure 1, b) a combination of magnetic and structural

transitions occurs. A subsequent increase in pressure

leads to the transformation of isostructural transitions of

2nd kind

PMorth(Pnma) ↔ FMorth(Pnma), Figure 1, a

PMorth(Pnma) ↔ HMorth(Pnma), Figure 1, b

to magnetostructural transitions pof 1st kind

PMhex(P63/mmc) ↔ FMorth(Pnma),

PMhex(P63/mmc) ↔ HMorth(Pnma).

This process is accompanied not only by the merging

of the lability temperatures of the structural Tt1, Tt2 and
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Figure 1. P−T-diagrams Co0.5Ni0.5MnGe (a) MnNiGe (b)
typical For row of Germanides with spaced apart by temperature

structural and magnetic phase transitions, a — [3], b — [2].
TC(N)(o−o), TN(o−o) and TC(h−h) — lines of isostructural

transitions of 2-nd kind PMorth(Pnma) ↔ FM(HM)orth(Pnma)
and PMhex(P63/mmc) ↔ FMhex(P63/mmc); TC(N)(o−h),
TC(N)(h−o) — corresponding lines of magnetostructural

transitions of 1st kind FM(HM)orth(Pnma) → PMhex(P63/mmc),
PMhex(P63/mmc) → FM(HM)orth(Pnma).

magnetic TC,N(o−h), TC,N(h−o) transitions, but also by

the disappearance of the abnormal pressure behavior of

the orthorhombic magnetically ordered phase: the sign

of the pressure derivatives of these quantities changes

(∂TC,N(o−h)/∂P < 0, ∂TC,N(h−o)/∂P < 0), Figure 1.

It should be also noted that the occurrence of magne-

tostructural transitions under pressure leads to additional

increase in the magnetocaloric effect (MCE). Since the

increase in crystal symmetry from orthorhombic to hexa-

gonal, accompanying the spontaneous magnetic disorder

HMorth(Pnma) → PMhex(P63/mmc), is summed up with

the increase in magnetic symmetry and additional increase

in the overall entropy of the system. As a consequence, this

leads to increase in the MCE absolute value during demag-

netization. Therefore, understanding of the mechanisms of

temperature-and-pressure features is of significant practical

importance.

This paper relates to the analysis and explanation of

the abnormal features of the magnetic phase diagrams of

Mn1−xCrxNiGe system within the framework of the so-

called exchange-structural model.

2. Basic positions of exchange-structural
model for interacting structural and
spin degrees of freedom

We partially proceed from the provisions set out in pa-

pers [5–6], where the initial highly symmetric paramagnetic

(PM) state at T ≥ Tt2 corresponds to the hexagonal (hex)
paramagnetic state (P63/mmc). The low-symmetry PM

state at T ≤ Tt1, arising as a result of the 1st kind structural

transition PMhex(P63/mmc) ↔ Morth(Pnma), is character-

ized by the structural order parameter Q0 . According to [5]
Q0 is the average statistical Q0 = 〈Qn〉ρ value of the vari-

ables Qn (Appendix). The variables Qn = (UNi1
nz −UNi2

nz )/chex

describe V classical approaching local group offsets of

atoms Ni1, Ni2 in n-th hexagonal cell along direction z ,
Figure 3. The appearance of average Q0 = 〈Qn〉ρ as inter-

cell correlations between local offsets Qn arises as a result

of competition between the intra-cell single-particle poten-

tial W (Qn) =
∑

n

(

ω̃2Q2
n + γ̃Q4

n + Ŵ̃Q6
n

)

and inter-cell multi-

particle interactions (− ∑

n,n′
V (n, n′)QnQn′) (Appendix). At

that it is believed that non-local (common with neighboring

cells) offsets of atoms Mn1 (Mn2) — UMn1
nx (UMn2

nx ) arise due

to orthogonal local (belonging to one n-th cell) offsets of

atoms Ni UNi1
nz , (UNi2

nz ) and Ge UGe1
nx , (UGe2

nx ). In general,

the group offsets of all atoms of the cell can characterize

the amplitude of the phonon soft mode, the freezing

of which leads to decrease in the hexagonal symmetry

P63/mmc to the orthorhombic Pnma and the occurrence

of a cooperative structural transition P63/mmc−Pnma in

the entire system.

According to experimental data [7–8] the magnetically

ordered state with orthorhombic system (orth) corresponds

to simple helimagnetic structure described by the wave

vector q = [0, 0, qa ]. As a magnetic order parameter

we consider the variable y = 〈Uk
n ŝ

k
n〉/s = 〈m̂k

n〉/s ≡ m/s ,
which in the framework of the Heisenberg model in

the mean field approximation (MFA) is defined (Ap-
pendix) as the statistical average 〈m̂k

n〉 ≡ m of the pro-

jection of the operator m̂k
n of that k-atom spin (Mn)

ŝk
n in n-th hexagonal cell to the direction of the local

quantization axis Uk
n [6].

In the original papers [5–6] the relationship between

the spin and structural subsystems was determined by the

presence in the components J i of the Fourier components
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Figure 2. Characteristic temperature dependencies of magnetization σ and reverse susceptibility χ−1 of samples of system

Mn1−xCrxNiGe, [4-5].

of interatomic exchange interactions (1) of combinations of

structural order parameters Q2
n with elastic deformations of

the type e1Q2
0 .

J(qa) =
∑

1R

J(|1Rkk′

nn′ |) cos(q1Rkk′

nn′ )

≈
2

∑

i=0

J i(Q
2
0, e1Q2

0) cos(i9), (1a)

J i =
2

∑

1Ri=0

J(|1Ri |), (1b)

where 1Ri = [1Rx , 1Ry , ichex/2]; J i — correspon-

ding components Fourier components of integrals of

exchange interactions inside ferromagnetic layer and

between closest layers at distances |1R1| = chex/2

and |1R2| = chex, 9 = qachex/2, 29 = qa chex, with ac-

counting of nearest neighbors in hexagonal basic plane
√

(1Rx )2 + (1Ry)2 = ahex where chex and ahex — para-

meters of hexagonal lattice along and perpendicular the

direction z .
At the same time, in papers [5–6] the appearance of

the dependences J i(Q2
0, e1Q2

0) as a limited response of the

spin subsystem to the offset of Ni atoms was accepted

a priori. This approach made it possible to describe the

increase in magnetic disorder temperatures (∂TN,C/∂P > 0)
in the region of isostructural transitions of 2nd kind,

PM(Pnma)−HM(Pnma), at low pressures about P < 7 kbar,

and the transformation of these transitions to 1st kind

magnetostructural transitions at high pressures. However,

the persistence of an increase in the dependences TN1,2
(P),

coinciding with the lability temperatures of first-order mag-

netostructural transitions PM(P63/mmc) ↔ HM(Pnma), de-
termines the qualitative discrepancy between theoretical

and experimental (Figure 1) P−T-diagrams, in which such

y
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Figure 3. Local optical displacements UNi1
nz , (UNi2

nz ), UGe1
nx , (TGe2

nx )
of Ni and Ge atoms, respectively, related to n-th hexagonal cell

of MnNiGe type Ni2In (shown by bold lines). The dashed lines

highlight the base region of the orthorhombic cell of the MnNiGe

type.

dependences undergo a break and become decreasing

functions of pressure.

In this paper, we proceed from the fact that the coupling

between the spin and structural subsystems should be

described by competing contributions. One of them can

be obtained by taking into account the response of the

structural (phonon) subsystem to a change in the degree

of polarization of the bonding and antibonding electronic

d-states of magnetically active atoms. In the approach under

consideration, which uses the Heisenberg form to describe

interactions in the spin subsystem, the Hamiltonian of the
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structure-spin interaction can be represented in the form

ĤsQ = −
∑

nk,n′k′

(Lkk′

nn′ ŝ
k
n ŝ

k′

n′QnQn′ + e1lkk′

nn′ ŝ
k
n ŝ

k′

n′QnQn′)

≈ −
∑

nk,n′k′

(Lkk′

nn′ + e1lkk′

nn′ )ŝ
k
n ŝ

k′

n′〈QnQn′〉ρ

−
∑

nk,n′k′

(Lkk′

nn′ + e1lkk′

nn′ )〈ŝk
n ŝ

k′

n′ 〉hQnQn′ . (2)

In this case, according to (A15b) of the Appendix, the com-

ponents J(qa) and j i are transformed into the components

J̃(qa) and J̃ i(Q0), which are expressed through

∑

nk,n′k′

Lkk′

nn′ 〈QnQn′ 〉ρ

and are as follows

J̃(qa) ≈
2

∑

i=0

J̃ i(Q
2
0, e1Q2

0) cos(i9), (3a)

J̃ i(Q0) =
∑

1Ri

[

J(|1Ri |) +
[

2L(|1Ri |) + e12l(|1Ri |)
]

Q2
0

]

= J i + [2Li + e12li ]Q
2
0. (3b)

This contribution is identical in form to (1) and retains all its

shortcomings. The second competing contribution can arise

if we directly take into account the changes in the Fourier

components of the exchange interaction J i upon offset of Ni

atoms. The appearance of the competing contribution may

be a consequence of more complex changes in the variable

J̃(qa) accompanying the structural transition. Indeed,

it is logical to assume that in the system under study,

interatomic exchange interactions are formed in the form

of superposition of indirect and kinetic exchanges [9] and

significantly depend on the overlap and distortion of the

wave functions of d-electrons. It can be assumed that

changes in overlap caused by the breaching of the hexagonal

crystal system form the dependence J i ≡ J i(Q0), which is

qualitatively different from [2Li + e12li ]Q2
0.

Expressions for the complete TP of the system � = �̃s

+ �̃Q +�e taking into account (3) are given in the Ap-

pendix (�e — TP of the elastic subsystem with hexagonal

symmetry [10]).
Equilibrium dependences of magnetic, structural and

elastic characteristics can be obtained from the equations

∂J(qq)/∂9 = 0, ∂�/∂ϑ = 0, ∂�/∂σ̃ = 0,

∂�/∂e1 = 0, ∂�/∂e2 = 0, (4)

∂�/∂y = 0, ∂�/∂Q0 = 0, (5)

e1 = exx + eyy + ez z and e2 = (exx−eyy)/
√
3 6= 0 elastic

volumetric and orthorhombic deformations of the cell as

a whole. Equations ∂J(qa)/∂9 = 0, ∂�/∂ϑ = 0, allow

us to obtain conditions for the existence of helimagnetic

structure without field (A14) and in field at H0 = [0, 0, H0],
H0 > 0 (P21).
When specifying a specific approximation of the depen-

dence J i ≡ J i(Q0), the next three equations have analytical

solutions in the form of dependencies: e1 = e1(y, Q0, T, P),
e2 = e2(Q0), σ̃ = σ̃ (Q0, T ). The last two equations (5)
∂�/∂Q0 = 0, ∂�/∂y = 0 are reduced to the form (6) and

solved numerically

(∂�/∂Q0) = 0, (6a)

y = B s(X), (6b)

B s(X) =

[(

1

2s + 1

)

coth
1

2s + 1
X −

(

1

2s

)

coth
1

2s
X

]

— Brillouin function X = hs/kBT .
The solutions of the system of equations (6) determine

the behavior of the temperature dependences of the magne-

tostructural characteristics of the model under study. This

parameters of structural Q0(T ) and magnetic y(T ) orders

; magnetization σ (T ) for given values of magnetic field

strengths H0 (7a) and dimensionless reverse paramagnetic

susceptibility χ−1(T ) in the limit H0 → 0 (7b).

σ (T ) = M0(x)y(T ) cos ϑ(T ), (7a)

χ−1(T ) =
T
T0

− hFm(T ), (7b)

hFm(T ) = hm(qa = 0, y = 0),

M0(x) — maximum magnetic moment at collinear confi-

gurations (cos ϑ(T ) = 1) of localized spins Mn for sample

with given number x and spin s = 3/2; for his calculation

we use expression

M0 [emu/g] = (1− x)2sµB/A(x)

= 1.116906∗s∗10 000∗(1− x)/A, (8)

A(x) — atomic weight per formula unit.

Further analysis of solutions (6) showed that the con-

vergence of theoretical and experimental P−T-diagrams is

achieved if the dependencies J i(Q0), J̃(qa) are represented

in the form (9), (10) at 1/2 < d < 1. In this case,

competition between the initial contributions Li Q2
0 and

contributions from J i(Q0) can lead to a change in sign of

∂TC1,2
(P)/∂P, ∂TN1,2

(P)/∂P at high pressures.

J i(Q0) = J i0 + |Q0|2d
{

λi0 + λi1e1 + λi4|Q0|2d
}

, (9)

J̃(qa) ≈
2

∑

i=0

J̃ i(Q0) cos(i9)

≡
2

∑

i=0

J i(Q0) cos(i9) +
2

∑

i=0

2Li (Q0) cos(i9)

≡ J00

[

rAF+|Q|2d
0 (λAF+λ1AFe1)

2+2λ|Q|4d
0

]

+J002LAFQ2
0,

(10)
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Table 1. Basic experimental data and their changes under pressure for the Mn1−xCrxNiGe system

x ↓ Tt2 Tt1 cosψ
σm(0)
σm(12)

( ∂TN
∂P

)

0

( ∂TN2

∂P

)

12
θhex θorth

Unit of meas. → K emu/g K/kbar K

0.11 431 390 0.92−0.9
49.9
51.2

3.05 −4.6 225 350

0.07 449 423
28
49

2.5 −1.4

0.04 460 443 0.8−0.87
10.5
27.5

2.7 −5.7 225 350

Table 2. Main reference constants of thermodynamic potential used to describe the baric features of magnetostructural characteristics

x ↓ ν0 A B δ λ00 λ20 M0(x) −L20 −λ01
a3

10−5 T0

Unit of meas. → kbar emu/g kbar K

0.11 43.616 9 98 0.918 27.2 1.646 80.2 2.68 141.9 307 50

0.07 44/137 11.8 98 0.827 28 2.02 83.75 10.56 141.9 321 50

0.04 44.544 18 08 0.724 34.4 1.197 86.4 12.32 141.9 331 49

No t e. The values a3 = NkB are calculated based on X-ray density values. The values M0(x) are calculated for spin s = 3/2 by formula (8), L00 = λ21 = 0.

rAF = 1 + K(9,Q0), λAF = λ00 + λ20K(9, Q0),

λ1AF = λ01 + λ21K(9,Q0), (11a)

λ4AF = λ04 + λ24K(9,Q0), LAF = L00 + L20K(9, Q0),

δ(Q0) = 1− AQ2
0 + BQ4

0, (11b)

J00 = J0(Q0 = e1 = 0) = kBT0 2/3s(s + 1),

K(9, Q0) =
J20

J00

(

cos(9) − 1
)[

2δ(Q0) − cos(9) − 1
]

.

(11c)
The values of the constants in (11) are given in Tables 1, 2.

3. Results of numerical solutions
of equations of state for specific
systems Mn1−xCrxNiGe
with given concentration x

When choosing the values of the constants (Table 2),
a number of experimental data at atmospheric pressure

were used (Table 1). Which include parameters of heli-

coidal structure cos(9), maximum values of magnetization

σm(0), σm(12) in field H0 = 9.7 kOe and pressures P = 0,

P = 12 kbar, values of temperatures of magnetic TN(x)
and structural Tt1,2(x) transitions and their derivatives

(∂TN/∂P)0, (∂TtN2/∂P)12 at P = 0 and P = 12 kbar, values

paramagnetic Curie temperatures θhex(x), θorth(x).

Verification of theoretical results for samples of

Mn1−xCrxNiGe system was considered satisfactory if a

once-made choice of constants with reference to experi-

mental data for atmospheric pressure allowed a qualitatively

correct description of their changes for arbitrary pressures

(Table 1).

For example, the comparison was made of the iso-

baric experimental and theoretical dependences of the

inverse paramagnetic susceptibility χ−1(T ) and magneti-

zation σ (T ) = y(T )M0(x) cos[ϑ(T )] in the pressure range

0−12 kbar and magnetic fields up to H0 = 9.7 kOe,

Figure 4, 5.

In Figure 4 the peripheral high-temperature jumps in

magnetization 11,2σ illustrate the magnetostructural mecha-

nism of the abnormal behavior in the PM region of 1st kind

hex(P63/mmc) ↔ orth(Pnma); Figure 2. Link of jumpers

of 11,2σ = H0/χ
−1(T ) with jumpers of structural order

parameter Q0 during the structural transition is traced

from Figure 4, b, d, f. The appearance of magnetization

maximum with temperature decreasing in Figure 4 corre-

lates with the experimental graphs (Figure 2) and arises

as a result of competition between two contributions to

the average field (A16). Exchange spatially periodic con-

tribution 2s y
[

J̃(qa ) sin2(ϑ) + J̃(0) cos2(ϑ)
]

and spatially

homogeneous contribution from the external magnetic field

2µ0H0 cos(ϑ). In this case, at temperatures Tm < T ≤ TN

when y(T ) ≪ 1 in finite field H0 according to (A21)

cos(ϑ) = 1, and increase in the magnetic order parameter

with temperature decreasing, according to (6b), it results

in increase in magnetization σ (T ) = M0(x)y(T ) cos ϑ(T ).

At temperatures T ≤ Tm, if the condition (A21) occurs,

cos ϑ(T ) deviates from 1 and, according to calculations,

rapidly decreases in value, which makes it obvious that

maximum can be realized in the temperature dependence

σ (T ) = M0(x)y(T ) cos ϑ(T ).

Physics of the Solid State, 2023, Vol. 65, No. 10
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Figure 4. Theoretical temperature dependences of magnetostructural characteristics compared to samples of Mn1−xCrxNiGe system

at atmospheric pressure. The magnetization σ (T ) = M0(x)y(T ) cos ϑ(T ) and the dimensionless structural order parameter Q0(T ) were

calculated in the field H0 = 8.6 kOe; spin magnetic moment of manganese atoms M(T ) = y(T )M0(x) in units of emu/g, dimensionless

inverse paramagnetic susceptibility χ−1(T ) calculated in the field H0 = 0; dash-dot lines — describe the metastable sections of the

corresponding dependencies.
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Figure 5. Comparison of isobaric experimental (left) and theoretical (right) temperature dependences of magnetization σ of sample

Mn0.83Cr0.07NiGe in external magnetic field H0 = 9.7 kOe. The dependence M(T ) = y(T )M0(x) was calculated at H0 = 0 to determine

the spontaneous Néel temperature TN in P−T region of 2nd kind transitions.

The main effects of hydrostatic pressure action on

samples of Mn1−xCrxNiGe system with magnetic and

structural transitions separated by temperature can be traced

in Figure 5. The most significant among them is the

change in the nature of magnetic ordering from isostructural

transitions of 2nd kind PM(Pnma)−HM(Pnma) at relatively

low pressures to magnetostructural transitions of 1st kind

PM(P6)3/mmc) ↔ HM(Pnma) at pressures about 8 kbar

and higher.

The mechanism of pressure transformation of magnetic

ordering is due to the combination of temperatures of

magnetic and structural transitions. This is clear from

Figure 5, b, where convergence and combination of depen-

dences of magnetic σ, y and structural Q0 characteristics

upon pressure increasing to 8 bar leads to the disappearance

of smooth magnetic phase transitions within the orthorhom-

bic symmetry (Q0 6= 0) and the appearance of jump-like

magnetostructural transitions, accompanied by change in

symmetry PM(P63/mmc−Q0 = 0) ↔ HM(Pnma−Q0 6= 0).

In this case, the transformation of the transitions is

accompanied not only by the appearance of temperature

hysteresis, but also by characteristic jump-like magnetostruc-

tural deformation of the lattice cell (Figure 6, c, d), which

may be the cause of the virgin effect, studied in [11].
At atmospheric pressure the jump-like change in these

variables is observed only in the region of PM structural

transition, Figure 6, a, b. This result reflects the fact

of superposition of magnetic and structural deformation

contributions for 1st kind magnetostructural transitions

PM(P63/mmc) ↔ HM(Pnma) at P = 12 kbar. A similar

superposition of entropy contributions is observed for

the magnetocaloric effect when calculating the pressure

effects of enhancing the change in isothermal entropy

11S = SH0

1orth−S0
1hex ≫ SH0

1orht−S0
1orth [12].

Another important feature of the dependences σ (T )
accompanying the increase in pressure is significant increase

in magnetization (by almost two times). This effect can

be interpreted as decrease in the spatially inhomogeneous

contribution to the exchange field due to the baric instability

of the orthorhombic structure.

Also note that the above features arise due to baric

convergence and combination of structural and magnetic

transitions. When decrease in the temperature of the

structural transition occurs with the increase in the Néel

temperature of the magnetic transition. As we noted,

this may be a consequence of the competition of opposite

tendencies in the stabilization of the magnetically ordered

phase at side of the spin and phonon subsystems. Therefore,

it is of significant interest to analyze the comparison of ex-

perimental (Figure 7, d, e, f ) and calculated (Figure 7, a, b, c)
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�(|Q0| > 0, |y | ≥ 0) = �(|Q0| = 0, |y | = 0).
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of magnetic phase P−T diagrams for 3 samples of the

system under study.

Magnetostructural transitions of 1st kind from the heli-

magnetic orthorhombic phase to the paramagnetic hexag-

onal phase HM(Pnma) → PM(P63/mmc), accompanied,

according to Figure 6, by striction phenomena, occur

at the lability temperature T = Tt2 ≡ TN2. The reverse

transition PM(P63/mmc) → HM(Pnma), accompanied by

increase in the volume of the lattice cell, depending on

the microstructure of samples, can be realized in the

interval Tt1 ≤ TN1 ≤ Tm. Comparison with experimental

P−T diagrams indicates that the actual P−T boundaries of

stability loss of the hexagonal state Tt1 and TN1 are closer to

the line Tm.

4. Conclusion

In the exchange-structural model under consideration, in

the approximation of an ideal single-domain crystal, it was

possible to reflect at a qualitative level the most important

baric features of the observed magnetostructural and mag-

netovolume characteristics, which include the following.

Baric transformation of isostructural transitions of

2nd kind to magnetostructural transitions of 1st kind.

The increase in the magnetic field-induced magnetization

of the helimagnetic state with pressure increasing.

Opposite tendencies of stabilization of the magnetically

ordered phase in P−T region of existence of transitions

of 1st and 2nd kind.
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Appendix

Ĥs = −
∑

nk,n′k′

Jkk′

nn′ ŝ
k
n ŝ

k′

n′ − 2µ0H0

∑

nk

ŝk
n, (51)

ĤsQ = −
∑

nk,n′k′

Lkk′

nn′ ŝ
k
n ŝ

k′

n′QnQn′ , (52)

HQ =
∑

n

(

1

2
ω2Q2

n +
1

4
γQ4

n +
1

6
ŴQ6

n

)

− 1

2

∑

n,n′

V (n, n′)QnQn′ . (53)

The complete TP of the system � is determined by

superposition

� = �̃s + �̃Q +�e, (54)

�̃s = 〈 ˜̂Hs − Ĥhs 〉h − NkBT ln[z (X)], (55)

�̃Q = 〈H̃Q〉ρ − TS(ρ), (56)

where for the TP of the elastic subsystem a simplified

version is used

�e =
1

2
e21/κ1 +

1

2
(e2)

2/κ2 + Pe1−Tαe1/κ1 [10];

α, κ1, κ2 — coefficients of volumetric thermal expansion,

volumetric compressibility and elastic constant, respectively

Ĥhs = −
∑

nk

hUk
nŝ

k
n = −

∑

nk

hm̂k
n = Nhm̂, (57)

˜̂Hs = −
∑

nk,n′k′

(

Jkk′

nn′ + Lkk′

nn′ 〈QnQn′〉ρ
)

ŝk
n ŝ

k′

n′ − 2µ0H0

∑

nk

ŝk
n,

(58)
where ŝk

n(ŝ
k′

n′ ) — operators spins k(k ′) atoms in n(n′)
hexagonal lattice cells; |Uk

n| = 1, m̂k
n = Uk

n ŝ
k
n — operator of

spin projections on axis of quantization,

H̃Q =
∑

n

(

1

2
ω2Q2

n +
1

4
γQ4

n +
1

6
ŴQ6

n

)

− 1

2

∑

n,n′

(

V (n, n′) + 2
∑

k,k′

Lkk′

nn′ 〈ŝk
n ŝ

k′

n′ 〉h

)

QnQn′ ,

(59)

�̃s + �̃Q =
∑

nk,n′k′

(

Jkk′

nn′ + 2Lkk′

nn′ 〈QnQn′〉ρ
)

〈ŝk
n ŝ

k′

n′〉h

− 2µ0H0

∑

nk

〈ŝk
n〉h + Nh〈m̂〉h − NkBT ln[z (X)]

+
∑

n

(

1

2
ω̃2〈Q2

n〉ρ +
1

4
γ̃〈Q4

n〉ρ +
1

6
Ŵ̃〈Q6

n〉ρ
)

− 1

2

∑

n,n′

(

V (n, n′)
)

〈QnQn′〉ρ − TS(ρ).

(510)
In (A5)−(A10) averaging in MFA

〈A(m̂)〉h = S p A(m̂)eβhm̂/z (X);

For averaging

〈B(Qn)〉ρ =

∞
∫

−∞

ρdso B(Qn)dQn

the single-particle probability density ρdso(Qn) is used for

biased harmonic oscillator [13].

z (X) = S p eβhm̂ ≡
s

∑

ms =−s

eβhms ; X = hs/kBT, (511)

ys = 〈m̂〉 = S p m̂eβhm̂/z (X), (512a)

ρdso ≡ ρdso(Qn) =
1√
2πσ̃

exp

[

− (Qn − Q0)
2

2σ̃

]

, (512b)
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σ̃ = 〈[Qn − Q0]
2〉ρ ; 〈Qn〉ρ =

∞
∫

−∞

ρdsoQndQn. (512c)

In this case, the variables Q0, σ̃ are considered

as independent variables. Then at H0U
k
n = H0 cos(ϑ);

〈ŝk
n〉h = Uk

n〈m̂k
n〉h = Uk

n〈m̂〉h = Uk
nys (P10) can be reduced

to the form

�̃s + �̃Q = −N〈m̂〉2h
[

J̃(qa) sin
2(ϑ) + J̃(0) cos2(ϑ)

]

− N2µ0H0 cos(ϑ)〈m̂〉h + N〈m̂〉hh + U(Q0, σ̃ ) − T S(σ̃ ),
(513a)

U(Q0, σ̃ ) =
ω2

2
(Q2

0 + σ̃ ) +
γ

4
(Q4

0 + 6Q2
0σ̃ + 3σ̃ 2)

+
Ŵ

6
(Q6

0 + 15Q4
0σ̃ + 45Q2

0σ̃ + 15σ̃ 3)

− 1

2
ν0(1 + L2e1 + L3e2)Q

2
0, (513b)

S(σ̃ ) = −kB

∑

n

〈ln ρdso(Qn)〉

= −kBN0

∞
∫

−∞

ρdso(Qn) lnρdso(Qn)dQn

=
kB

2
N0 ln σ̃ + const, (513c)

ω2 = N0ω̃
2, γ = N0γ̃, Ŵ = N0Ŵ̃, N0V0 = N0

∑

n′

Vnn′N0V0

≡ N0V0(e1, e2) = ν0(1 + L2e1 + L3e2).

J̃(qa) =
∑

1R

J̃(|1Rkk′

nn′ |) cos(q1Rkk′

nn′ )

≈
2

∑

i=0

∑

1Ri

J̃(|1Ri |) cos(q1Ri)

= J̃0 + J̃1 cos(9) + J̃2 cos(29), (514)

J̃(|1Rkk′

nn′ |) = J̃kk′

nn′ = J(|1Rkk′

nn′ |) + L(|1Rkk′

nn′ |)Q2
0

Effective integrals of exchange interaction between magnet-

ically active atoms at distance |1Rkk′

nn′ |,

9 = qa chex/2, 29 = qachex,

chex — hexagonal lattice constants along axis 0z .

J̃(0) ≡ J̃(qa = 0) ≡ J̃(9 = 0) = J̃0 + J̃1 + J̃2, (515a)

J̃1 =
∑

1Ri

[

J(|1Ri |) + L(|1Ri |)Q2
0

]

= J i + L1Q2
0, (515b)

1Ri = [1Rx , 1Ry , ichex/2], J i ≡ J i(Q0), in approximation

of closest neighbors
√

1R2
x + 1R2

x ≈ ahex.

From minimum condition �̃s + �̃Q ≡ �̃ relative to h we

obtain

h = 2s y
[

J̃(qa) sin
2(ϑ) + J̃(0) cos2(ϑ)

]

+ 2µ0H0 cos(ϑ).
(516)

Then full TP of � = �̃+�e system considering (A16) can

be written as

� = ahm(Q0, e1)y
2 − kBNT ln z (X) + U(Q0, σ̃ )

− T
kB

2
N0 ln σ̃ +�e, (517)

hm = s2
[

J̃(qa) sin
2(ϑ) + J̃(0) cos2(ϑ)

]

,

a = NJ̃(q = Q0 = e1 = 0)s2 = (3/2)s2a3T0/s(s + 1),

a2 = N0kB = 2(1− x)a3, a3 = NkB.

Equilibrium dependences of magnetic, structural and

elastic model characteristics can be obtained from the

equations

∂J(qa)/∂9 = 0, ∂�/∂ϑ = 0, ∂�/∂σ = 0,

∂�/∂e1 = 0, ∂�/∂e2 = 0, (518)

∂�/∂y = 0, ∂�/∂Q0 = 0. (519)

The first of equations (A18) leads to the condition of

existence of helimagnetic structure at H0 = 0. which at

J̃(Q0, e1) = −4δJ̃2(Q0, e1) > 0 and J̃2(Q0, e1) < 0 has the

form

cos9 =

{

δ(Q0) by |δ(Q0)| < 1,

1 otherwise.
(520)

In this case, the competing states will be only the

helicoidal

( cos9 = J̃1(Q0, e1)/4|J̃2(Q0, e1)| = δ < 1)

with a higher value of J̃(qa)

(J̃(qa) = J̃0(Q0, e1) + (2δ2 + 1)|J̃2(Q0, e1)|)

and ferromagnetic (9 = 0) with lower value of J̃(0)

(

J(0) = J̃0(Q0, e1) + (4δ−1)|J̃2(Q0, e1)|
)

because at δ < 1

1J̃(qa) ≡ J̃(qa)−J̃(0) = 2(δ−1)2|J̃2(Q0, e1)| > 0.

The second equation (A18) with H0 = [0, 0, H0] > 0

leads to the condition

cos ϑ =































2H0µB
(

J(qa) − J(0)
)

y
by |δ(Q0)| < 1

and 0 <
2H0µB

(

J(qa) − J(0)
)

y
< 1,

1 otherwise.

(521)
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Moreover, if we assume that HM structure is limited to the

region of existence of the orthorhombic phase, then δ(Q0)
can be represented by the relation

δ(Q0) = 1− AQ2
0 + BQ4

0. (522)

The coefficients A and B vary the spontaneous and field

characteristics of the HM structure.

The equilibrium values of the dispersion σ̃ of volumetric

deformations e1 and orthorhombic distortions e2, satisfying
the last 3 equations (A18) have the form

σ̃ = σ̃ (Q0, T ), (523a)

e1 = e1(Q0, y, T ), (523b)

e2 ≡ e2(Q0) =
L3

2
Q2

0κ2. (523c)
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