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Methods for detecting phase transitions in complex dynamic systems
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The paper proposes two methods for detecting transitions between laminar and turbulent behavior using the

example of unidirectionally coupled Ressler systems in the band chaos regime. Both methods are based on

calculating the probability of diagnosing the turbulent phase and introducing Poincar sections. Depending on the

choice of method, you can either reduce the time it takes to find phase transitions or increase the accuracy of

determining the moment of transition between two modes.
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Synchronization [1] and the accompanying intermittency

mechanisms [2], which emerge near the boundary of

synchronization, are common to dynamic systems of various

nature. A large number of types of synchronous behavior

are already known. For example, full, generalized, phase,

and noise-induced synchronizations, which are found in

radiophysics, chemistry, geology, and other branches of

modern science and in living systems, are distinguished,

and all of them are associated with different types of

intermittent behavior [3,4]. Specifically, eyelet intermittency

is observed near the phase synchronization boundary in the

case of fairly weak detuning between chaotic systems [5],
and ring intermittency is found under the conditions of

strong frequency detuning [6]. At the same time, jump

intermittency is observed at the boundary of generalized

synchronization in systems with a relatively complex (two-
sheeted) structure [7], while on-off intermittency occurs in

the case of a simpler attractor topology [4].
Intermittency emerges when laminar and turbulent be-

havior phases alternate in complex systems. In intermittent

synchronization regimes, laminar phases correspond to the

synchronous behavior of interacting systems, and turbulent

outbursts manifest themselves when the synchronization

regime breaks down. Statistical characteristics of length

of laminar and turbulent phases are one of the key tools

for distinguishing between different types of intermittent

behavior [8]. Therefore, it is important to determine

correctly the moment of transition between laminar and

turbulent phases.

In the case of intermittent generalized synchronization,

the auxiliary system approach [9] is the most efficient

method for identifying laminar and turbulent phases in the

dynamics of coupled systems, although this method has a

significant constraint: it is applicable only to unidirectionally

coupled systems [10]. It allows one to detect synchronous

and asynchronous behavior of unidirectionally coupled

chaotic oscillators (driving and driven) at each point in time.

The auxiliary system approach requires the introduction of

an additional system, which is identical to the driving one

in all respects except for the initial conditions [9]. By

definition, a unique functional dependence is established

between the states of driving and driven systems and driving

and auxiliary systems in the generalized synchronization

regime [9,11], resulting in identity of states of driven and

auxiliary systems; in the case of asynchronous dynamics

(turbulent phase), driving and auxiliary systems have differ-

ent states [4]. In addition, it was demonstrated in [12] with

the use of the auxiliary system method that the intermittent

generalized chaotic synchronization regime is characterized

by multistability: depending on the initial conditions for

the driven system, both synchronous and asynchronous

dynamics may be observed at one and the same point in

time. A
”
driven−auxiliary“ pair of systems is not sufficient

for the examination of multistability, since only one state

(synchronous or asynchronous) out of two possible ones

is observed in this case even in a multistable state. The

authors of [12] have proposed a way to characterize this

phenomenon and determine more accurately the moment of

switching between laminar and turbulent phases: one should

consider an ensemble of auxiliary systems, which may be

regarded as an ensemble of driven systems, and calculate

the probability of observation of synchronous (laminar)
and asynchronous (turbulent) behavior of unidirectionally

coupled systems at each point in time. The greater the

number of systems N in an ensemble is, the higher is the

accuracy of calculation of the probability value at each point

in time; however, the amount of computational resources

needed to solve the discussed problem also increases. At

the same time, an excess accuracy of probability calculation

is often unnecessary for the solution. Practically speaking,

an ensemble of several hundred systems is sufficient to

obtain valid results. The time dependence of probability of

detection of a turbulent (or laminar) phase may be used

to identify the corresponding phases in a more correct
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fashion and, consequently, obtain more accurate statistical

characteristics of intermittent behavior.

However, the implementation of this approach evidently

requires a large amount of calculations. First, the states

of at least several hundred dynamic systems need to be

calculated simultaneously, while only three of them were

considered in the classical auxiliary system method. Second,

the probability of diagnosing a turbulent (laminar) phase

also needs to be calculated at each point in time based on

the states of all systems. Since the duration of transition

from a laminar phase to a turbulent one (and vice versa) in

the intermittent generalized chaotic synchronization regime

exceeds considerably the length of a characteristic period

of oscillations of interacting oscillators and the flow systems

themselves may be reduced to lower-dimensional maps with

the use of the Poincaré section [13,14], one may estimate the

probability of detection of a turbulent or laminar behavior

phase only at section points, making it unnecessary to

perform such calculations at each point in time and reducing

the overall computation time.

The aim of the present study is to develop new methods

for identifying the transitions from a turbulent phase to a

laminar one (and vice versa). The proposed techniques

provide a higher sensitivity to interphase transitions or

simplify the calculation of states of examined systems.

The object under examination is an ensemble of unidi-

rectionally coupled weakly non-identical Rössler systems in

the band chaos regime:

ẋd = −ωdyd − zd,

ẏd = ωdxd + ayd,

żd = p + zd(xd − c),

ẋi
r = −ωr y

i
r − zi

r + ε(xd − xi
r ),

ẏi
r = ωr i x

i
r + ayi

r ,

żi
r = p + zi

r (x
i
r − c), (1)

where indices d and r correspond to driving and driven

systems, respectively; index i = 1, . . . , N (N = 500 was

considered in the present study) denotes the driving system

number; these systems have different initial conditions;

a = 0.15, p = 0.2, c = 10, ωd = 0.93, and ωr = 0.95 are

the control parameters for interacting systems; and ε is the

coupling parameter. To avoid the
”
numerical calculation

trap“ with the states of driven systems in the synchronous

motion phase appearing to be identical within the number

format precision in random access memory (if this occurs,

the systems are characterized by identical dynamics even

in the turbulent phase), we used the standard technique of

random selection of slightly different parameter ωr i values

for driven systems: ωr i = ωr + 1ωi , where |1ωi | < 10−7.

The generalized synchronization regime is established in

system (1) at the chosen values of control parameters and
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Figure 1. Example (x, y) projection of the phase portrait of the

driving system with a Poincaré section line indicated.

ε = 0.178. The probability of observation of asynchronous

behavior [12] is given by

Pa = 1−

N∑

i=1

n(xi
r )

N(N − 1)
, (2)

where n(xi
r ) is the number of systems in synchrony with

the i -th oscillator and N is the number of oscillators in the

ensemble. When probability Pa is near-unity, the turbulent

behavior phase is detected in the examined system; when

Pa is close to zero, the laminar phase is observed.

Setting the threshold of distinction between laminar and

turbulent phases, one may distinguish characteristic phases

of behavior of interacting systems. PL = 0.1 was chosen as

the threshold value.

A Rössler system attractor with the Poincaré section

introduced is shown in Fig. 1. In order to illustrate the

feasibility of the proposed approach, we compared the

probabilities of diagnosing the turbulent behavior regime

calculated in various ways for the examined systems within

an extended time interval corresponding to the turbulent

phase. The first technique relied on the method from [12]
with probability Pa determined at each trajectory point.

The second technique for determination of the probability

of diagnosing the turbulent regime involved Pa calculation

only at Poincaré section points.

Figure 2, a presents the results obtained when the prob-

ability was calculated only in the Poincaré section (method

1). The data corresponding to techniques 1 and 2 are

represented by the gray curve and black dots, respectively.

As expected, all dots fit the curve corresponding to the first

calculation technique. It is evident that these dots are quite

sufficient to determine accurately the boundaries of the
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Figure 2. Example time dependences of probability of detection of a turbulent phase Pa(t) calculated in different ways. The gray curve

represents the probability calculated at each point in time, and black dots are the results of probability determination with the use of the

Poincaré section. a — Probability is calculated in the Poincaré section only (method 1); b — probability is calculated at each point in

time and averaged between Poincaré sections (method 2).

turbulent phase. It should also be noted that
”
spikes,“ which

complicate the search for an exact moment of transition

from the turbulent regime to the laminar one (and vice

versa), are observed in the Pa(t) dependence obtained with

the probability calculated at each point. Although the use

of the Poincaré section helps reduce the time of probability

calculation, these spikes are still inherited partially from the

first calculation technique.

One may use a different modification of the initial method

to get rid of the mentioned spikes in dependence Pa(t):
calculate the probability for each moment in time and

perform averaging within the time intervals between two

Poincaré sections (method 2). The corresponding results

are shown in Fig. 2, b. The amount of calculations is not

reduced in this case, but it is evident that average probability

values smooth out the spikes of probability of detection of

the turbulent phase, allowing one to identify more accurately

and easily the moments of transition between different

regimes.

Thus, applying the proposed approaches in scenarios

involving the analysis of collective dynamics of systems

(e.g., in diagnostics of epileptic discharges [15,16]), one
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may identify efficiently the temporal boundaries of turbulent

and laminar phases in less time (method 1) or enhance the

accuracy of detection of moments of transition by removing

artifacts (method 2).
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