01

Инфракрасный спектр гексафторизопропанола в области первого и второго обертонов валентного колебания ОН в газовой фазе и в сжиженном ксеноне

© С.М. Меликова, К.С. Рутковский, М.Х. Сиавичай

Санкт-Петербургский государственный университет, 199034 Санкт-Петербург, Россия

e-mail:k.rutkovsky@spbu.ru

Поступила в редакцию 06.10.2023 г. В окончательной редакции 06.10.2023 г. Принята к публикации 19.10.2023 г.

Исследованы инфракрасные спектры гексафторизопропанола в газовой фазе при 300 K и в сжиженном ксеноне в интервале температур 165–190 K. Измерены положения и относительные интенсивности полос первого и второго обертонов валентного колебания ν (OH). Вычисления, выполненные с использованием пакета Gaussian, подтверждают экспериментальные наблюдения.

Ключевые слова: фторированные спирты, гексафторизопропанол, инфракрасный спектр, квантовохимический расчет, ангармоничность, модель локальных мод.

DOI: 10.61011/OS.2023.11.57023.5639-23

Введение

Гексафторизопропанол (1, 1, 1, 3, 3, 3-hexafluoro-2-propanol (HFIP)) привлекает внимание исследователей в различных областях — от физико-химии до медицины и технологических применений. Он является как прекурсором, так и основным метаболитом севофлюрана, одного из наиболее широко используемых в инвазивной хирургии ингаляционного анестетика. Недавно обнаружено, что HFIP может обладать антиприонной активностью в прион-инфицированных культивируемых клетках [1]. В качестве полярного растворителя HFIP находит применение в биохимии пептидов. В межмолекулярных взаимодействиях невалентной природы он выступает как типичный донор водородной связи с соединениями, обладающими локальными областями с повышенной электронной плотностью [2]. В настоящей работе приводятся результаты исследования инфракрасного (ИК) спектра HFIP в слабо изученной области обертонов валентного колебания О-Н как в газовой фазе, так и в сжиженном ксеноне. Данные измерений анализируются с привлечением квантово-механических расчетов структуры и спектроскопических параметров молекулы с учетом ангармонических поправок. Проанализирована применимость модели локальных мод для интерпретации экспериментальных результатов.

Методика эксперимента и расчетов

Измерения выполнены на ИК фурье-спектрометре [Nicolet-6700] с разрешением 0.5 сm⁻¹. Для исследования спектров раствора в сжиженном ксеноне использовался оригинальный оптический криостат, охлаждаемый дозированием жидкого азота. Температура измерялась как по давлению паров над жидким ксеноном, так и с помощью термопары, вмонтированной в тело кюветы [3]. Оптическая длина низкотемпературной жидкостной кюветы составляла 1 ст. Измерения в газовой фазе выполнялись при комнатной температуре использованием стандартной газовой кюветы. с имеющей оптическую длину 10 ст. Концентрация HFIP составляла $\sim 10^{17} - 10^{18} \text{ molec/cm}^3$ (давление пара 8-20 Torr). Расчеты проведены с помощью пакета GAUSSIAN 16 Rev. A.03 [4]. Результаты получены в приближении второго порядка теории возмущений Møller-Plesset (MP2) [5]. Спектроскопические параметры обертонов получены в рамках одномерной модели локальных мод [6]. Необходимые для ангармонических расчетов параметры потенциала и функции дипольного момента получены из поточечных сканов соответствующих поверхностей. Использовался валентно-расщепленный базисный набор Попла, включающий поляризационные и диффузные функции 6-311++G(d, p). Кроме того, в единичных расчетах использовался корреляционносогласованный базис aug-cc-pVTZ. Оценка влияния растворителя на энергию конформеров проведена в рамках модели PCM (polarizable continuum model).

Результаты измерений

Из предыдущих исследований известно, что HFIP существует в виде трех конформеров, соответствующих антиперипланарной (ар) и двум хиральным — синклинальной (sc) структурам [2] (рис. 1). Этот результат, в частности, можно получить в рамках поточечного расчета на уровне MP2/6-311++G(d, p), проводя скан

Рис. 1. (a) Конформер (ap) HFIP, (b) конформер (sc) HFIP.

по двугранному углу, отвечающему повороту группы О-Н вокруг оси С-О (рис. 1,2). При этом разница в энергии между наиболее прочным (ар) и менее прочным (sc) конформерами составляет 4.6 kJ/mol. Расчет с корреляционно-согласованным базисом aug-сс-рVTZ приводит к незначительному уменьшению этой величины до 4.3 kJ/mol. Результаты спектроскопических измерений как в газовой фазе (нижний спектр), так и в растворе в жидком Хе (верхний спектр) приведены на рис. 3. Определены положение (v), ширина на полувысоте (FWHM $\equiv 2\Gamma$) и относительная интенсивность полос. Результаты измерений приведены в табл. 1. В растворе в Хе отмечается значительное уширение полос обертонов ОН. Так, величина FWHM составляет $18 \,\mathrm{cm}^{-1}$ для основного тона. Она увеличивается до 40 cm⁻¹ для первого обертона. Наконец, в случае второго обертона ширина на полувысоте достигает $\sim 76 \, {\rm cm}^{-1}$. Ширины полос обоих конформеров sc и ар практически не отличаются. Таким образом, для второго обертона наблюдается более чем четырехкратное уширение. Следует отметить, что контуры регистрируемых полос близки к форме Лоренца. В рамках аддитивной модели колебательного и ориентационного (вращательного) механизмов уширения полная полуширина Г является суммой вращательного го $\Gamma_{\rm rot}$ и колебательного $\Gamma_{\rm vib}$ вкладов: $\Gamma = \Gamma_{\rm rot} + \Gamma_{\rm vib}$. [7]. Причем в пределе быстрой модуляции полуширина обертона nv зависит от полуширины основного тона $\Gamma_{\rm vib}(v)$ и от квадрата n: $\Gamma_{\rm vib}(nv) \sim n^2 \Gamma_{\rm vib}(v)$ [8,9]. Простые оценки показывают, что наблюдаемое уширение обертонов валентного колебания v (OH) HFIP укладывается в модель быстрой модуляции.

При учете влияния растворителя в рамках простых континуальных моделей реактивного поля предсказывается сближение энергий конформеров. Так, с базисом aug-cc-pVTZ расчет с моделью PCM для ксенона приводит к разнице в 2.9 kJ/mol, а в четыреххлористом углероде она составляет лишь 2.2 kJ/mol. Такое уменьшение по крайней мере качественно находится в соответствии с

Рис. 2. Зависимость потенциальной энергии HFIP от двугранного угла.

Рис. 3. Инфракрасный спектр HFIP в области колебаний ν (OH) в газовой фазе (внизу) и в растворе в сжиженном ксеноне (вверху).

Конформер	Переход	Эксперимент, газовая фаза		Эксперимент, раствор в жидком Хе		Расчет		
		ν , cm ⁻¹	$A_{\rm rel}$	ν , cm ⁻¹	$A_{\rm rel}$	ν , cm ⁻¹	A, km/mol	A _{rel}
ap	v_{01}	3626.8	(100)	3593.4	(100)	3655	65.7	(100)
	v_{02}	7085.3	5.4	7024.9	3.2	7118	2.74	4.16
	ν_{03}	10379	0.28	10286	0.16	10400	0.15	0.23
_	v_{04}					13472	0.10	0.15
	ν_{01}	3666.5	(100)	3632.6	(100)	3691	75.3	(100)
sc	v_{02}	7165.6	5.7	7099.3	3.1	7189	3.36	4.46
	ν_{03}	10500	0.30	10406.5	0.17	10496	0.18	0.24
	v_{04}					13610	0.14	0.19

Таблица 1. Рассчитанные и измеренные значения интенсивности основной полосы и обертонов по моде v(OH) конформеров гексафторизопропанола

Рис. 4. Потенциальная функция от координаты $Q_1(OH)$ для двух конформеров HFIP: точки — расчет MP2/6-311++G(d, p), сплошные кривые — подгонка функцией Морзе (см. текст).

наблюдавшимся как в CCl₄ [2], так и в настоящем эксперименте в Хе относительным увеличением интенсивности высокочастотной полосы валентного колебания OH, принадлежащей конформеру sc.

Результаты расчетов и обсуждение

Для колебательного перехода $0 \rightarrow n$ интенсивность A_{0n} равна (в km/mol):

$$A_{0n} = \frac{8\pi^3 N_A \nu_{0n} 10^{-41}}{3hc} \langle 0|p|n\rangle^2 = 2.496\nu_{0n} \langle 0|p|n\rangle^2, \quad (1)$$

где N_A — число Авогадро, ν_{0n} — волновое число перехода (сm⁻¹), $\langle 0|p|n\rangle^2$ — момент перехода (Debye). Моменты переходов рассчитывались в приближении двухатомной молекулы, т.е. предполагалось, что колебание

ОН слабо взаимодействует с другими колебаниями. В качестве волновых функций нулевого приближения были использованы волновые функции осциллятора Морзе (так называемая одномерная модель локальных мод [6]). Потенциальная энергия в этом случае записывается как

$$\frac{1}{hc}U = D(1 - e^{-b(r - r_e)})^2,$$
(2)

где D, b — параметры потенциала Морзе, $(r - r_e)$ — координата изменения длины связи ОН. Уровни энергии осциллятора Морзе определяются выражением (в ст⁻¹)

$$\frac{1}{hc}E_n = \omega\left(\upsilon + \frac{1}{2}\right) + x\left(\upsilon + \frac{1}{2}\right)^2,\tag{3}$$

где $\omega = 4D/k$ — гармоническая частота, $x = \omega/k$ постоянная ангармоничности. Параметр модели $k = 2\gamma/b^2$ приблизительно соответствует удвоенному числу уровней в ангармоническом потенциале Морзе, $\gamma = 4\pi^2 c \mu \omega / h$ — обратный квадрат амплитуды колебания, μ — приведенная масса. Для оценки параметров потенциала был сделан расчет сечения поверхности потенциальной энергии (ППЭ) по безразмерной нормальной координате $Q_1(OH) \approx \sqrt{\gamma} (r - r_e)$. Поточечный расчет ППЭ выполнялся с использованием пакета Gaussian16 на уровне MP2/6-311++G(d, p). Результат приведен на рис. 4. При подгонке рассчитанных кривых потенциалом Морзе получены следующие параметры для двух конформеров HFIP (ар и sc соответственно): $\omega = 3844.5 \text{ cm}^{-1}$, $D = 38680 \text{ cm}^{-1}$, $k = 40.2; \omega = 3882.5 \text{ cm}^{-1}, D = 39260 \text{ cm}^{-1}, k = 40.4.$

Полученные в серии поточечных расчетов в том же базисе декартовы компоненты функции дипольного момента изображены на рис. 5. Здесь $\alpha = x$, y, z (ось z направлена по связи ОН, ось x перпендикулярна ей и лежит в плоскости НОС, ось y перпендикулярна этой

Рис. 5. Зависимость дипольного момента от координаты $Q_1(OH)$ для двух конформеров HFIP. Для конформера ар компонента P_y равна нулю.

Таблица 2. Производные дипольного момента по координате Q (Debye)

Порядок	HFIP, ap	HFIP, sc		
P'_z	0.11338	0.12227		
$1/2P_{z}^{''}$	-0.00211	-0.00331		
$1/6P_{z}^{'''}$	-0.00058	-0.00068		
$1/24P_{z}^{IV}$	$-1 \cdot 10^{-7}$	$-6.6\cdot10^{-6}$		
P'_x	-0.04258	-0.04263		
$1/2P_x''$	0.00401	0.00373		
$1/6P_x'''$	$-1.5 \cdot 10^{-5}$	$3.0\cdot10^{-5}$		
$1/24P_x^{IV}$	$1.1 \cdot 10^{-5}$	$1.1 \cdot 10^{-5}$		
P'_y	0	-0.00340		
$1/2P_{x}^{''}$	0	$6.8\cdot10^{-5}$		
$1/6P_{y}^{'''}$	0	$7.9\cdot 10^{-6}$		
$1/24P_y^{IV}$	0	$1.3\cdot 10^{-6}$		

плоскости). Проекции дипольного момента можно представить как ряд Тейлора по степеням координаты Q_1 :

$$P_{\alpha} = P_{\alpha}^{0} + P_{\alpha}^{'}Q_{1} + \frac{1}{2}P_{\alpha}^{''}Q_{1}^{2} + \frac{1}{6}P_{\alpha}^{'''}Q_{1}^{3} + \frac{1}{24}P_{\alpha}^{IV}Q_{1}^{4} + \dots$$
(4)

Значения производных дипольного момента приведены в табл. 2.

С использованием матричных элементов от степеней координаты $y = 1 - e^{-b(r-r_e)}$ из работы [10] были получены следующие выражения для матричных элементов дипольного момента для переходов 1-го – 4-го порядков

(с точностью до $1/k^2$):

$$\langle 0|P_{\alpha}|1\rangle = \frac{1}{\sqrt{2}} \left(1 + \frac{1}{2k}\right) P_{\alpha}' + \frac{5}{2\sqrt{k}} \left(1 - \frac{3}{2k}\right) \frac{P_{\alpha}''}{2} + \frac{3}{2\sqrt{2}} \left(1 - \frac{3}{2k}\right) \frac{P_{\alpha}''}{6},$$

$$\langle 0|P_{\alpha}|2\rangle = -\frac{1}{2\sqrt{k}} \left(1 + \frac{3}{2k}\right) P_{\alpha}' + \frac{1}{\sqrt{2}} \left(1 - \frac{2}{k}\right) \frac{P_{\alpha}''}{2} + \frac{2}{2k} \left(1 - \frac{3}{2k}\right) \frac{P_{\alpha}''}{6} + \frac{3}{\sqrt{2}} \frac{P_{\alpha}''}{24},$$

$$\langle 0|P_{\alpha}|3\rangle = -\frac{\sqrt{3}}{3k} \left(1 - \frac{3}{k}\right) P_{\alpha}' - \frac{\sqrt{6}}{2\sqrt{k}} \left(1 + \frac{25}{3k}\right) \frac{P_{\alpha}''}{2} + \frac{\sqrt{3}}{2} \left(1 - \frac{27}{k}\right) \frac{P_{\alpha}''}{6} - \frac{2\sqrt{6}}{\sqrt{k}} \frac{P_{\alpha}''}{24},$$

$$\langle 0|P_{\alpha}|4\rangle = \frac{\sqrt{3}}{k\sqrt{k}} P_{\alpha}' + \frac{25\sqrt{6}}{12K} \left(1 - \frac{27}{5k}\right) \frac{P_{\alpha}''}{2} - \frac{9\sqrt{3}}{2\sqrt{k}} \left(1 - \frac{5}{k}\right) \frac{P_{\alpha}''}{6} + \frac{\sqrt{6}}{2} \frac{P_{\alpha}''}{24}.$$

$$(5)$$

Волновые числа переходов для осциллятора Морзе рассчитывались по формуле:

$$\nu_{0n} = n\omega + n(n+1)x. \tag{9}$$

Полученные значения волновых чисел и интенсивностей для двух конформеров приведены в табл. 1. Относительные интенсивности первого и второго обертонов хорошо согласуются с экспериментальными данными. Также получена предварительная оценка интенсивности третьего обертона, расположенного в субмикронной области.

Заключение

Рассмотрены и проанализированы результаты по исследованию ИК спектров гексафторизопропанола в мало изученной области обертонов валентного колебания О-Н как в газовой фазе, так и в сжиженном ксеноне. Получены спектроскопические параметры (положение максимума, относительная интенсивность и ширина полос на половине высоты) основной полосы, а также полос первого и второго обертонов. В растворе в ксеноне обнаружено значительное уширение первого и особенно второго обертонов ОН по сравнению с результатом, полученным в газовой фазе.

Экспериментальные результаты проинтерпретированы в рамках двухатомного приближения с использованием одномерной модели локальных мод. Расчет находится в разумном соответствии с данными измерений.

Финансирование работы

Работа выполнена при поддержке гранта СПбГУ ID 95439487.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- T. Shimuzu, E. Nogami, Y. Ito, K. Morikawa, M. Nagane, T. Yamashita, T. Ogawa, F. Kametani, H. Yagi, N. Hachiya. Neurochemical Research, 46, 2056 (2021).
- [2] B. Czarnik-Matusewicz, S. Pilorz, D. Bienko, D. Michalska. Vibr. Spectrosc., 47, 44 (2008).
- DOI: 10.1016/j.vibspec.2008.01.016 [3] С.М. Меликова, К.С. Рутковский. Опт. и спектр., **130** (11),
- 1660 (2022). DOI: 10.21883/OS.2022.11.53771.4071-22 [S.M. Melikova, K.S. Rutkowski. Opt. Spectrosc., **130** (11), 1398 (2022). DOI: 10.21883/EOS.2022.11.55097.4071-22].
- [4] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko et.al. Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.
- [5] C. Møller, M.S. Plesset. Adv. Chem. Phys., 57, 1 (1984).
- [7] K.S. Rutkowski, S.M. Melikova, D.N. Shchepkin. Vibr. Spectrosc., 24, 277 (2000).
- [8] K.S. Schweizer, D. Chandler. J. Chem. Phys., 76, 2296 (1982).
- [9] N. Gayathi, S. Bhattcharyya, B. Bagchi. J. Chem. Phys., 107, 10381 (1997).
- [10] Ю.С. Ефремов, Н.И. Жирнов. Опт. и спектр., **49**, 1119 (1980).