23

Численное моделирование делителя поляризации в конфигурации направленного разветвителя с нулевым зазором на основе тонких пленок нитрида кремния

© И.В. Кузнецов, А.С. Перин

Томский государственный университет систем управления и радиоэлектроники, 634034 Томск, Россия

e-mail: anton.s.perin@tusur.ru

Поступила в редакцию 10.05.2023 г. В окончательной редакции 06.10.2023 г. Принята к публикации 30.10.2023 г.

Представлены результаты численного моделирования делителя поляризации на основе тонких пленок нитрида кремния в конфигурации направленного разветвителя с нулевым зазором. Длина области двухмодовой интерференции делителя составила 14.5 µm. Величина переходной помехи равняется –15 dB для TM-моды и –10.4 dB для TE-моды. Коэффициент передачи составил 43%.

Ключевые слова: нитрид кремния, делитель поляризации, направленный разветвитель, двухмодовая интерференция, фотонная интегральная схема.

DOI: 10.61011/OS.2023.11.57020.5003-23

Делитель поляризации (ДП) — пассивное оптическое устройство, выполняющее пространственное разделение ТЕ- и ТМ-мод. ДП может использоваться как элемент в системах связи, использующих разделение каналов по поляризации или в качестве элемента фотонной интегральной схемы (ФИС), обеспечивающего стыковку поляризационно-зависимых элементов ФИС [1–3].

Наибольшее распространение получили интегральные поляризационные делители на платформе кремний на изоляторе (SOI) [1–3]. Платформа SOI обеспечивает малые потери на рассеяние излучения в оболочку за счет высокого контраста показателей преломления. Также одним из преимуществ SOI является совместимость с CMOS-технологиями. Недостаток платформы SOI заключается в непрозрачности кремния в видимой части оптического спектра, что не позволяет использовать ФИС на базе SOI в устройствах, использующих видимый свет [4–6]. Кроме того, в кремнии могут возникать нелинейные оптические потери, вызываемые двухфотонным поглощением в ближнем инфракрасном диапазоне [6–8].

Таким образом, актуальной задачей является исследование применения альтернативных материалов для разработки и производства пассивных элементов ФИС. Одним из перспективных соединений является нитрид кремния (Si₃N₄). Как и кремний, Si₃N₄ является CMOSсовместимым материалом, но не подвержен двухфотонному поглощению, обладает более широким спектром оптической прозрачности, меньшей шероховатостью стенок [6]. В настоящее время Si₃N₄ используется при создании различных пассивных элементов ФИС, например, таких как кольцевые резонаторы, конверторы мод, элементы ввода-вывода, оптические фильтры и др. [9].

Целью настоящей работы является численное моделирование делителя поляризации на основе гребенчатых волноводов из тонких пленок Si₃N₄. Основная задача — определение конфигурации, соответствующей наибольшей эффективности деления, наименьшей длине и переходной помехе.

Из литературы известны способы реализации интегральных поляризационных делителей на основе направленных разветвителей [10,11]. Направленный разветвитель представляет из себя два волновода, имеющих участок связи длиной L и характеризующихся расстоянием между волноводами вдоль участка связи (w_g) . Схема такого разветвителя представлена на рис. 1, a.

В настоящей работе рассматривается поляризационный делитель на основе модифицированной схемы направленного разветвителя, отличающейся тем, что вместо двух близко расположенных параллельных волноводов, между которыми наблюдается перетекание мод, формируется один волновод, ширина которого в 2 раза превышает ширину входных и выходных волноводов (*w*).

Рис. 1. Типовые схемы делителя поляризации: *а* — поляризационный делитель на основе традиционного направленного разветвителя, *b* — поляризационный делитель на основе направленного разветвителя с нулевым зазором.

Рис. 2. Результаты численного моделирования: *a* — зависимость коэффициента передачи портов от типа моды и длины зоны двухмодовой интерференции, *b* — расчет распространения ТЕ-моды при длине зоны двухмодовой интерференции 14.5 µm, *c* — расчет распространения ТМ-моды при длине зоны двухмодовой интерференции 14.5 µm.

Таблица 1. Параметры моделирования

Параметр	Значение параметра		
Ширина волновода w , nm	600		
Высота волновода, nm	800		
Показатель преломления Si ₃ N ₄	2 [15]		
Показатель SiO ₂	1.44 [16]		
Длина волны излучения, μ m	1.55		

Таблица 2. Результаты расчетов длин связи

$n_{\rm ef}^{\rm TE0}$	$n_{\rm ef}^{\rm TM0}$	$n_{ m ef}^{ m TE1}$	$n_{\rm ef}^{\rm TM1}$	$\Delta N^{\rm TE}$	$\Delta N^{\rm TM}$	L_c^{TE}	L_c^{TM}
1.7823	1.8053	1.5746	1.5843	0.208	0.221	3.731 µm	3.507 µm

Схема такого поляризационного делителя представлена на рис. 1, *b*.

Одним из главных достоинств схемы поляризационного делителя на основе направленного разветвителя с нулевым зазором является отсутствие дополнительных внутренних стенок волноводов в области их связи. А шероховатостями границ раздела сред, как известно [12,13], обусловливается большая часть оптических потерь в гребенчатых волноводах, выполненных методом плазмохимического травления [14]. Эффект разделения поляризации в таком волноводе достигается за счет интерференции симметричной (фундаментальной) и асимметричной (моды первого порядка) мод [11]. Поскольку ТЕ- и ТМ-моды имеют разные эффективные показатели преломления (ЭПП), они формируют разные интерференционные картины, соответственно длина зоны двухмодовой интерференции *L* определяет перетекание излучения в один из выходных волноводов.

Рассматриваемая модель поляризационного делителя построена на основе гребенчатых волноводов, сформированных из тонких пленок Si_3N_4 , окруженных диоксидом кремния (SiO₂). Параметры численного моделирования приведены в табл. 1.

Выбор параметров, приведенных в табл. 1, обусловлен существующими технологическими ограничениями и соответствует современным данным по изготовлению гребенчатых волноводов на основе Si₃N₄ [17,18].

Для расчета длин связи ТЕ- и ТМ-мод обратимся к формуле [10,11]

$$L_C^{ ext{TE}} = rac{\lambda}{2\Delta N^{ ext{TE}}}, \ \ L_C^{ ext{TM}} = rac{\lambda}{2\Delta N^{ ext{TM}}},$$

где λ — длина волны, ΔN^{TE} , ΔN^{TM} — разница между ЭПП фундаментальной ТЕ/ТМ-моды и ЭПП ТЕ/ТМмоды первого порядка соответственно. ЭПП мод были рассчитаны по методу конечных разностей [19]. Результаты расчетов длин связи приведены в табл. 2.

Реальная длина области двухмодовой интерференции может быть найдена по формуле [5]

$$L = mL_c^{\text{TE/TM}}$$

где $m = 1, 2, 3, \ldots, L_c^{\text{ТЕ/ТМ}}$ — длина связи соответствующей моды.

При моделировании использовалось граничное условие, предотвращающее отражение излучения обратно от внешних границ модели. На рис. 2, *а* приведена зависимость коэффициента передачи выходных портов

Рис. 3. Нормированное распределение интенсивности на выходном торце делителя поляризации для TE- и TM-мод.

от моды и длины зоны двухмодовой интерференции, полученная в результате численного моделирования. На рис. 2, *b* представлен расчет распространения света через делитель поляризации.

По рис. 2, a-c видно, что при длине зоны двухмодовой интерференции $L = 14.5 \,\mu$ m достигается разделение ТЕ/ТМ-мод по разным портам. На рис. 3 приведено распределение интенсивности на выходном торце делителя поляризации для ТЕ- и ТМ-мод при $L = 14.5 \,\mu$ m.

Рассчитанная переходная помеха для ТМ-моды составляет -15 dB, для TE-моды -10.4 dB, коэффициент передачи составил 43%. Полученные переходные помехи превосходят результат, достигнутый аналогичной конфигурацией на основе ниобата лития [11]. Разработанная модель делителя поляризации может быть использована в дальнейшем для разработки ФИС на основе Si₃N₄ или гибридной платформы Si₃N₄/Si [6].

Таким образом, была продемонстрирована возможность реализации делителя поляризации на основе гребенчатых волноводов из тонких пленок Si₃N₄ в конфигурации направленного разветвителя с нулевым зазором с длиной области двухмодовой интерференции, равной 14.5 μ m. Полученные переходные помехи составили –15 dB для TM-моды и –10.4 dB для TE-моды.

Финансирование работы

Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (тема № FEWM-2022-0004 "Исследование и разработка способов изготовления интегральных оптических волноводов и элементов на их основе").

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- C.W. Hsu, T.K. Chang, J.Y. Chen, Y.C. Cheng. Appl. Optics, 55 (12), 3313 (2016). DOI: 10.1364/AO.55.003313
- [2] L. Liu, Y. Ding, K. Yvind, J.M. Hvam. Optics Express, 19 (13), 12646 (2011). DOI: 10.1364/OE.19.012646
- [3] D. Dai, J.E. Bowers. Optics Express, 19 (19), 18614 (2011).
 DOI: 10.1364/OE.19.018614
- [4] L. Matheus, A. Viera, L.F.M. Viera, M.A.M. Viera, O. Gnawali. IEEE Commun. Surveys & Tutorials, 21 (4), 3204 (2019). DOI: 10.1109/COMST.2019.2913348
- [5] H. Fukuzawa, J. Yoshinari, H. Hara, K. Sasaki, H. Take, M. Yoshida, T. Kikukawa. AIP Advances, **12** (6), 065029 (2022). DOI: 10.1063/5.0088842
- [6] T. Sharma, J. Wang, B.K. Kaushik, Z. Cheng, R. Kumar, Z. Wei, X. Li. IEEE Access, 8, 195436 (2020). DOI: 10.1109/ACCESS.2020.3032186
- [7] A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, P. Van Dorpe. IEEE Photonics. J., 5 (6), 2202809 (2013). DOI: 10.1109/JPHOT.2013.2292698
- [8] H. Ying, S. Junfeng, L. Xianshu, L. Tsung-Yang, L. Guo-Qiang. Opt. Express, 22 (18), 21859 (2014).
- [9] D.J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, C. Roeloffzen. Proc. IEEE, **106** (12), 2209 (2018).
 DOI: 10.1109/JPROC.2018.2861576
- [10] M. Kuznetsov. Optics Lett., 8 (9), 499 (1983).DOI: 10.1364/OL.8.000499
- [11] R. Sattibabu, P.K. Dey, B.N. Bhaktha, P. Ganguly. Results in Optics, 8, 100262 (2022). DOI: 10.1016/j.rio.2022.100262
- [12] F.P. Payne, J.P.R. Lacey. Optical and Quantum Electronics, 26, 977 (1994). DOI: 10.1007/BF00708339
- [13] E. Jaberansary, T.M.B. Masaud, M.M. Milosevic, M. Nedeljkovic, G.Z. Mashanovich, H.M.H. Chong. IEEE Photonics J., 5 (3), 6601010 (2013).
 DOI: 10.1109/JPHOT.2013.2251869
- [14] B.E.E. Kastenmeier, P.J. Matsuo, G.S. Oehrlein. J. Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17 (6), 3179 (1999). DOI: 10.1116/1.582097
- [15] H.R. Philipp. J. Electrochemical Society, **120** (2), 295 (1973).
 DOI: 10.1149/1.2403440
- [16] I.H. Malitson. JOSA, 55 (10), 1205 (1965).
 DOI: 10.1364/JOSA.55.001205
- [17] J.C. Mak, W.D. Sacher, H. Ying, X. Luo, P.G.Q. Lo, J.K. Poon. Optics Express, 26 (23), 30623 (2018).
 DOI: 10.1364/OE.26.030623
- [18] Y. Chen, T.D. Bucio, A.Z. Khokhar, M. Banakar, K. Grabska, F.Y. Gardes, R. Halir, I. Molina-Fernández, P. Cheben, J.J. He. Optics Lett., **42** (18), 3566 (2017). DOI: 10.1364/OL.42.003566
- [19] A.B. Fallahkhair, K.S. Li., T.E. Murphy. J. Lightwave Technology, 26 (11), 1423 (2008).