01.5

Генерация темных и светлых импульсов огибающей в двунаправленно связанных параметрических осцилляторах Вышкинд—Рабиновича

© П.С. Комков, О.И. Москаленко, С.В. Гришин

Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского, Саратов, Россия E-mail: sergrsh@yandex.ru

Поступило в Редакцию 27 июня 2023 г. В окончательной редакции 27 октября 2023 г. Принято к публикации 31 октября 2023 г.

Получены режимы генерации темных и светлых импульсов огибающей в системе двух двунаправленно связанных параметрических осцилляторов Вышкинд—Рабиновича. Каждый осциллятор описывает временну́ю динамику квадратичной среды с безынерционным усилением в данной точке пространства. Колебания на неустойчивой волне линейно усиливаются, а колебания на параметрически возбуждаемых волнах затухают в линейном приближении. Показано, что на неустойчивой волне формируется последовательность темных импульсов огибающей, параметрически связанная с последовательностью светлых импульсов огибающей, генерируемых на параметрически возбуждаемых волнах только при определенных значениях двунаправленной связи.

Ключевые слова: параметрическая неустойчивость, связанные параметрические осцилляторы, темные и светлые импульсы.

DOI: 10.61011/PJTF.2024.02.56981.19668

На данный момент одной из актуальных задач в области радиофизики и СВЧ-электроники является создание источников ультракоротких импульсов. Такие импульсные источники представляют интерес для систем передачи информации, для исследования быстропротекающих процессов, а также для микрообработки различных материалов и биологических тканей [1]. Одними из первых работ по генерации относительно коротких импульсов огибающей в микроволновом диапазоне являются работы профессора Б.А. Калиникоса. В своих работах он использовал оптический метод синхронизации мод на керровской нелинейности для получения периодических последовательностей "светлых" и "темных" солитонов огибающей наносекундной длительности [2-4]. В качестве среды с кубической (керровской) нелинейностью выступала пленка железо-иттриевого граната, в которой распространялись магнитостатические спиновые волны (МСВ) с разными видами (нормальной или аномальной) волноводной дисперсии. Такая диспергирующая нелинейная среда находилась в цепи обратной связи кольцевого резонатора вместе с усилителем, осуществляющим линейное усиление МСВ. Импульсные сигналы, формирующиеся в таких сильно неравновесных нелинейных системах с усилением и потерями, относятся к диссипативным солитонам [5]. В последние годы группой нижегородских исследователей, возглавляемой член-корр. РАН Н.С. Гинзбургом, было предложено использовать другой оптический метод (метод пассивной синхронизации мод) для получения диссипативных солитонов огибающей в вакуумных кольцевых генераторах микроволнового диапазона. Здесь

были получены последовательности мощных коротких импульсов огибающей субнаносекундной длительности за счет использования ЛБВ-подавителя (ЛБВ — лампа бегущей волны) в качестве насыщающегося поглотителя [6,7].

В микроволновом диапазоне генерация импульсных сигналов в активных кольцевых резонаторах с пленками железо-иттриевого граната может быть реализована не только за счет кубической нелинейности ферромагнитной среды, но и за счет квадратичной нелинейности, возникающей в результате параметрического распада длинноволновой МСВ на коротковолновые тепловые спиновые волны. В этом случае на параметрически неустойчивой МСВ, которая линейно усиливается, формируется периодическая последовательность релаксационных импульсов огибающей микросекундной длительности. Как показано в [8], такая импульсная последовательность на неустойчивой волне хорошо воспроизводится в численном эксперименте с помощью модели Вышкинд-Рабиновича [9], описывающей временную динамику диссипативных сред с усилением в условиях параметрического распада. Из результатов численного моделирования следовало, что на параметрически возбуждаемых волнах в данной точке пространства генерируются периодические последовательности импульсов огибающей колоколообразной формы, длительность которых гораздо меньше длительности релаксационных импульсов огибающей на неустойчивой волне. В эксперименте импульсные последовательности на коротковолновых спиновых волнах удавалось зарегистрировать только с помощью мандельштам-бриллюэновской спектроскопии из-за их сильного затухания [10].

В последние годы авторами настоящей работы экспериментально были получены гиперхаотические многосолитонные комплексы, состоящие только из темных диссипативных солитонов огибающей нано- и даже субнаносекундной длительности [11,12]. Такие короткие импульсы огибающей генерировались в микроволновом активном кольцевом резонаторе, работающем в многомодовом режиме. В цепи обратной связи кольцевого резонатора содержался изогнутый ферромагнитный микроволновод, поддерживающий не только трех- и четырехволновые нелинейные спин-волновые взаимодействия, но и управление дисперсией МСВ, а также усилитель, работающий в режиме насыщения выходной мощности.

В настоящей работе раскрывается один из механизмов формирования коротких темных импульсов огибающей, наблюдаемых в эксперименте, с помощью двухмодовой генераторной модели в виде двух двунаправленно связанных параметрических осцилляторов Вышкинд—Рабиновича.

Двухмодовая модель кольцевого генератора, в которой параметрический распад осуществляется на каждой из двух кольцевых мод, а сами моды связаны между собой двунаправленной связью, имеет следующий вид:

$$\frac{\partial m_1(t)}{\partial t} = -c_{01}b_1(t)b_2(t)\exp(-i\delta_1t) + \gamma_1m_1(t) + K_1m_2,$$

$$\frac{\partial b_1(t)}{\partial t} = c_{11}m_1(t)b_2^*(t)\exp(i\delta_1t) - \nu_1b_1(t),$$

$$\frac{\partial b_2(t)}{\partial t} = c_{21}m_1(t)b_1^*(t)\exp(i\delta_1t) - \nu_1b_2(t),$$

$$\frac{\partial m_2(t)}{\partial t} = -c_{02}b_3(t)b_4(t)\exp(-i\delta_2t) + \gamma_2m_2(t) + K_2m_1,$$

$$\frac{\partial b_3(t)}{\partial t} = c_{12}m_2(t)b_4^*(t)\exp(i\delta_2t) - \nu_2b_3(t),$$

$$\frac{\partial b_4(t)}{\partial t} = c_{22}m_2(t)b_3^*(t)\exp(i\delta_2t) - \nu_2b_4(t),$$
(1)

где $m_{1,2}(t)$ — комплексная амплитуда огибающей колебаний параметрически неустойчивой волны, $b_{1,2,3,4}(t)$ комплексные амплитуды огибающих колебаний параметрически возбуждаемых волн, $\delta_{1,2}$ — частотная отстройка от параметрического резонанса в первом и втором параметрических осцилляторах, $\gamma_{1,2}$ — инкременты в первом и втором параметрических осцилляторах, $v_{1,2}$ — декременты в первом и втором параметрических осцилляторах, c₀₁, c₁₁, c₂₁, c₀₂, c₁₂, c₂₂ — произвольные константы в первом и втором параметрических осцилляторах, *K*_{1,2} — коэффициенты двунаправленной связи. Из (1) следует, что в отсутствие связи между модами ($K_{1,2} = 0$) каждая из них представляет собой параметрический осциллятор Вышкинд-Рабиновича [9], в котором колебания амплитуды параметрически неустойчивой волны в данной точке пространства испытывают безынерционное

линейное усиление, а колебания амплитуд параметрически возбуждаемых волн затухают. Необходимо отметить, что предложенная модель (1) может описывать режимы генерации импульсных сигналов, реализуемых в системе двух двунаправленно связанных одномодовых генераторов, в каждом из которых реализуется параметрический распад.

На рис. 1 приведены результаты, полученные на основе численного решения системы обыкновенных дифференциальных уравнений (1) с использованием метода Рунге-Кутта четвертого порядка. Расчеты выполнены в предположении равенства комплексных амплитуд колебаний двух параметрически возбуждаемых волн в каждом параметрическом осцилляторе $(b_1 = b_2$ и $b_3 = b_4)$, инкрементов неустойчивых волн ($\gamma = \gamma_1 = \gamma_2$), декрементов параметрически возбуждаемых волн ($\nu = \nu_1 = \nu_2$), частотных отстроек от параметрического резонанса ($\delta = \delta_1 = \delta_2$), а также произвольных констант у неустойчивых волн $(c_0 = c_{01} = c_{02})$ и параметрически возбуждаемых волн $(c = c_{11} = c_{12} = c_{21} = c_{22})$. Для проведения расчетов значения v, δ , c_0 и c были взяты из работы [8]. Из представленных на рис. 1 результатов расчета следует, что если коэффициенты двунаправленной связи не сильно отличаются друг от друга ($K_1 \cong K_2$), то в обоих параметрических осцилляторах формируются периодические последовательности темных импульсов огибающей на неустойчивых волнах (рис. 1, *a*, *c*) и светлых импульсов огибающей на параметрически возбуждаемых волнах (рис. 1, b, d). Длительность темных импульсов огибающей для выбранных параметров системы имеет значение $\sim 4\,\mathrm{ns}$, а длительность светлых импульсов огибающей значение $\sim 0.5\,\text{ns.}$ Рассчитанные длительности темных импульсов огибающей практически полностью соответствуют экспериментальным значениям ($\sim 1-2 \, \text{ns}$) [11]. Поскольку в численном моделировании параметрически связанные последовательности темных и светлых импульсов огибающей формируются в диссипативной нелинейной системе с усилением за счет установления баланса между усилением и потерями, по аналогии с работой [11] такие импульсы можно классифицировать как диссипативные солитоны. Узкая область значений параметров связи, в которой реализуется данный режим, указывает на экспериментальные трудности его реализации в двухмодовой системе с идентичными параметрами. Расчеты показывают, что данный эффект реализуется и в системе двух связанных неидентичных параметрических осцилляторов, а увеличение количества параметрических осцилляторов до трех (такая система ближе к экспериментальному случаю, описанному в [11]) приводит к расширению области значений параметров связи, при которых наблюдаются последовательности темных и светлых импульсов огибающей.

Для выявления хаотической динамики системы двух двунаправленно связанных параметрических осцилляторов Вышкинд—Рабиновича рассчитывался спектр показателей Ляпунова по предложенной модели (1). Расчет

Рис. 1. Импульсные последовательности на неустойчивых (a, c) и параметрически возбуждаемых (b, d) волнах, рассчитанные для первого (a, b) и второго (c, d) двунаправленно связанных параметрических осцилляторов Вышкинд–Рабиновича. Расчеты выполнены для $v = 9 \mu s^{-1}$, $\gamma = 0.7 \mu s^{-1}$, $\delta = 0.01 \mu s^{-1}$, $c_0 = 1497 \mu s^{-1}$, $c = 745 \mu s^{-1}$, $K_1 = 0.595$, $K_2 = 0.6$.

Рис. 2. Зависимости трех старших показателей Ляпунова $\lambda_{1,2,3}$ (*a*) и пиковых значений амплитуд колебаний шести волн $m_{1,2}^{\max}$, $b_{1,2,3,4}^{\max}$ (*b*) от изменения коэффициента связи K_1 . Расчеты выполнены для $\nu = 9 \, \mu \text{s}^{-1}$, $\gamma = 0.7 \, \mu \text{s}^{-1}$, $\delta = 0.01 \, \mu \text{s}^{-1}$, $c_0 = 1497 \, \mu \text{s}^{-1}$, $c = 745 \, \mu \text{s}^{-1}$ и $K_2 = 0.6$. Штриховой линией показана область неустойчивости численной схемы ($K_1 = K_2$).

проводился на базе известного алгоритма, использующего уравнения в вариациях и метод ортогонализации Грамма-Шмидта [13]. На рис. 2, а приведены результаты расчета трех старших показателей Ляпунова λ_{1,2,3}. Расчеты выполнены для случая, когда один из двух коэффициентов связи является постоянным (К2), а второй меняет свое значение (K_1) . Из представленных на рис. 2, а результатов следует, что хаотическая динамика наблюдается при относительно малых значениях K₁, принадлежащих интервалу [0, 0.15]. В указанном интервале $\lambda_1 > 0, \lambda_2 = 0, a \lambda_3 < 0.$ В этой области параметров реализуются режимы генерации релаксационных импульсов огибающей на неустойчивых волнах. Генерация темных импульсов огибающей на неустойчивых волнах наблюдается при больших значениях К1, принадлежащих двум областям $0.57 \leqslant K_1 < 0.6$ и $0.6 < K_1 \leqslant 0.63$ (показаны заливкой). Так как в указанных областях $\lambda_{1,2} = 0$, а $\lambda_3 < 0$, данные импульсные последовательности являются периодическими. При $K_1 = K_2$ численная схема является неустойчивой. Необходимо отметить, что в случае однонаправленной связи, когда $K_1 = 0, K_2 \neq 0$ (рис. 2, *a*) или $K_2 = 0, K_1 \neq 0$, генерация последовательностей темных импульсов огибающей не наблюдается.

На рис. 2, *b* приведены результаты, демонстрирующие изменение пиковых значений амплитуды темных и светлых импульсов огибающей в зависимости от коэффициента связи K_1 . Видно, что данные зависимости являются резонансными, а при $K_1 = K_2$ пиковые значения амплитуд светлых и темных импульсов огибающей уходят на бесконечность.

Полученные результаты могут представлять интерес для разработчиков источников коротких импульсов не только микроволнового, но и оптического диапазона.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 19-79-20121 (https://rscf.ru/en/project/19-79-20121/).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- П.Г. Крюков, Фемтосекундные импульсы. Введение в новую область лазерной физики (Физматлит, М., 2008).
- B.A. Kalinikos, N.G. Kovshikov, C.E. Patton, Phys. Rev. Lett., 80 (19), 4301 (1998). DOI: 10.1103/PhysRevLett.80.4301
- [3] B.A. Kalinikos, M.M. Scott, C.E. Patton, Phys. Rev. Lett., 84 (20), 4697 (2000). DOI: 10.1103/PhysRevLett.84.4697
- M. Wu, B.A. Kalinikos, C.E. Patton, Phys. Rev. Lett., 95 (23), 237202 (2005). DOI: 10.1103/PhysRevLett.95.237202
- [5] Н.Н. Розанов, Диссипативные оптические и родственные солитоны (Физматлит, М., 2021).

- [6] Н.С. Гинзбург, Э.Б. Абубакиров, М.Н. Вилков, И.В. Зотова, А.С. Сергеев, Письма в ЖТФ, 43 (18), 47 (2017). DOI: 10.21883/PJTF.2017.18.45033.16444b
 [N.S. Ginzburg, E.B. Abubakirov, M.N. Vilkov, I.V. Zotova, A.S. Sergeev, Tech. Phys. Lett., 43 (9), 842 (2017). DOI: 10.1134/S1063785017090164].
- [7] N.S. Ginzburg, G.G. Denisov, M.N. Vilkov, A.S. Sergeev, S.V. Samsonov, A.M. Malkin, I.V. Zotova, Phys. Rev. Appl., 13 (4), 044033 (2020).
 DOI: 10.1103/PhysRevApplied.13.044033
- [8] В.Е. Демидов, Н.Г. Ковшиков, ЖТФ, 69 (8), 100 (1999).
 [V.E. Demidov, N.G. Kovshikov, Tech. Phys., 44 (8), 960 (1999). DOI: 10.1134/1.1259413].
- [9] С.Я. Вышкинд, М.И. Рабинович, ЖЭТФ, 71 (2), 557 (1976).
 [S.Ya. Vyshkind, M.I. Rabinovich, Sov. Phys. JETP, 44 (2), 292 (1976).].
- [10] S.V. Grishin, O.I. Moskalenko, A.N. Pavlov, D.V. Romanenko, A.V. Sadovnikov, Yu.P. Sharaevskii, I.V. Sysoev, T.M. Medvedeva, E.P. Seleznev, S.A. Nikitov, Phys. Rev. Appl., 16 (5), 054029 (2021).
 DOI: 10.1103/PhysRevApplied.16.054029
- [11] А.С. Бир, С.В. Гришин, Письма в ЖЭТФ, 110 (5), 348 (2019). DOI: 10.1134/S0370274X19170120 [A.S. Bir, S.V. Grishin, JETP Lett., 110 (5), 364 (2019). DOI: 10.1134/S0021364019170053].
- [12] A.S. Bir, S.V. Grishin, O.I. Moskalenko, A.N. Pavlov, M.O. Zhuravlev, D. Osuna Ruiz, Phys. Rev. Lett., **125** (8), 083903 (2020). DOI: 10.1103/PhysRevLett.125.083903
- [13] С.П. Кузнецов, Динамический хаос (Физматлит, М., 2001).