Оптические потери волновода со сверхпроводящими обкладками в терагерцовых квантово-каскадных лазерах

© А.А. Дубинов^{1,2}, Д.В. Ушаков³, А.А. Афоненко³

 ¹ Институт физики микроструктур Российской академии наук, 603950 Нижний Новгород, Россия
 ² Нижегородский государственный университет им. Н.И. Лобачевского, 603950 Нижний Новгород, Россия
 ³ Белорусский государственный университет, 220030 Минск, Беларусь
 E-mail: sanya@ipmras.ru

Поступила в Редакцию 30 ноября 2023 г. В окончательной редакции 6 декабря 2023 г. Принята к публикации 6 декабря 2023 г.

> Проведен расчет оптических потерь волновода со сверхпроводящими обкладками YBCO для квантовокаскадного лазера с частотой генерации 1.2 ТГц при температуре 10 К. Показано, что применение таких обкладок в терагерцовых квантово- каскадных лазерах с небольшим числом каскадов (~ 20) позволит значительно снизить потери по сравнению с традиционно используемыми обкладками из золота и серебра.

Ключевые слова: волновод, терагерцовый диапазон, квантово-каскадный лазер, сверхпроводник.

DOI: 10.61011/FTP.2023.08.56971.5813

1. Введение

Одними из перспективных компактных источников когерентного излучения являются терагерцовые квантовокаскадные лазеры (ТГц ККЛ) на основе полупроводниковых структур с квантовыми ямами GaAs/AlGaAs [1]. Они находят применение в спектроскопии и анализе сложных соединений, мониторинге окружающей среды, для фундаментальных исследований и пр. [2]. За двадцать один год своего существования ТГц ККЛ достигли значительного прогресса как по максимальным рабочим температурам [3], так и по их мощности [4]. Однако обычно толщина активной области ТГц ККЛ составляет > 10 мкм и включает в себя порядка тысячи нанометровых полупроводниковых слоев точно контролируемых толщины и состава, что препятствует широкому применению ТГц ККЛ. С другой стороны, использование двойного металлического волновода в ТГц ККЛ позволяет существенно уменьшить необходимое для генерации число каскадов, так как фактор оптического ограничения в таких волноводах ~ 1. Например, для лазера с частотой 3.5 ТГц ранее удалось уменьшить число каскадов до 37, каждый толщиной 43.7 нм [5]. Это позволило сделать лазер с толщиной волновода всего 1.75 мкм, что в 50 раз меньше длины волны излучения лазера в вакууме.

К сожалению, уменьшение ширины активной области приводит к резкому увеличению потерь, которые связаны с поглощением в металлических обкладках волновода [6]. Поэтому очень важно, какой металл используется для обкладок волновода. Обычно в качестве металлических контактов используют золото (Au), медь (Cu) и более редко серебро (Ag) [7–9]. Однако благородные металлы нельзя наносить непосредственно на поверхности полупроводников из-за плохой адгезии и возможности твердотельной диффузии между полупроводником и благородным металлом во время высокотемпературных процессов. Поэтому наносят промежуточный металл, который выполняет функции прочно прикрепленного адгезионного слоя и диффузионного барьера. Типичным адгезионным слоем является титан (Ті), поглощение ТГц излучения в котором значительно выше, чем в золоте и серебре.

Альтернативным вариантом металлических обкладок ТГц ККЛ могут служить слои, выполненные из сверхпроводящих материалов. Действительно, если энергия кванта излучения меньше удвоенной энергии сверхпроводящей щели Δ ($\Delta = k_{\rm B}T_c$, где $k_{\rm B}$ — постоянная Больцмана, T_c — критическая температура, ниже которой возникает сверхпроводящее состояние), то сверхпроводимость будет существовать [10]. Поэтому при энергии кванта излучения до ~ 7 мэВ (частота излучения 1.7 ГГц) может быть использован такой высокотемпературный сверхпроводник, как оксид иттрия—бария—меди (YBCO), T_c которого зависит от материала, на который он нанесен. При нанесении YBCO на GaAs без дополнительного адгезионного слоя T_c достигает 40 K [11].

В настоящей работе проведено теоретическое исследование возможности существенного уменьшения потерь в низкочастотных ТГц ККЛ за счет использования в качестве обкладок слоев YBCO.

2. Модель и результаты расчетов

В нашем моделировании сверхпроводник описывается с использованием известной двухжидкостной модели, которая предполагает существование двух невзаимодействующих электронных подсистем, вносящих вклад в электромагнитный отклик сверхпроводника при ненулевых температурах: сверхпроводящие электроны (куперовские пары) с чисто инерционной динамикой движения, образующей сверхток, и нормальные электроны, участвующие в рассеянии и диссипации энергии [12]. Для моделирования диэлектрической функции такой двухкомпонентной электронной плазмы на частотах ниже сверхпроводниковой щелевой частоты $2\Delta/\hbar$ используется обобщенная модель Друде [12]:

$$\varepsilon_{sc}(\omega) = 1 - \frac{\omega_s^2}{\omega^2} - \frac{\omega_n^2 \tau^2}{\omega^2 \tau^2 + 1} + i \frac{\omega_n^2 \tau}{\omega(\omega^2 \tau^2 + 1)}.$$
 (1)

Второе слагаемое в уравнении (1) представляет собой вклад недиссипирующего сверхтока куперовских пар с плазменной частотой

$$\omega_s = \sqrt{N_s e^2 / m \kappa_0} = c / \lambda_L,$$

где λ_L — лондоновская глубина проникновения, N_s — концентрация сверхпроводящих электронов, m — их эффективная масса и κ_0 — диэлектрическая проницаемость свободного пространства, c — скорость света в вакууме, e — заряд электрона. Третье и четвертое слагаемые относятся к нормальной электронной плазме с резонансной частотой

$$\omega_n = \sqrt{N_n e^2 / m \kappa_0},$$

где N_n — концентрация нормальных электронов, τ — их время релаксации. Баланс между концентрациями сверхпроводящих и нормальных электронов описывается эмпирическим соотношением Гортера-Казимира:

$$N_s = N\big(1 - [T/T_c]^4\big),$$

где N — независящая от температуры полная концентрация свободных носителей, а $N_n = N - N_s$ [13]. Параметры модели сверхпроводника выбраны для описания YBCO с $T_c = 40$ К и $N = 1.255 \cdot 10^{27}$ м⁻³ [12]. Величина τ была получена из экспериментальной температурной зависимости скорости рассеяния квазичастиц для пленок YBCO [14]. При критической температуре $\tau_c = 1/\gamma_c = 3.57 \cdot 10^{-14}$ с, а экспериментальную температурную зависимость скорости рассеяния можно точно аппроксимировать кривой вида [12]:

$$\gamma(t) = \frac{\gamma_c t}{1 + 10t(t^{-1.5} - 1)},\tag{2}$$

где $t = T/T_c$.

Для примера мы будем моделировать и сравнивать потери в ККЛ с двойным металлическим волноводом, излучающим на частоте 1.2 ТГц и экспериментально реализованным с обкладками Au/Ti [15]. Будем рассматривать T = 10 К, когда поглощение в YBCO будет близко к минимальному. В этом случае, согласно формуле (1), комплексный показатель преломления ($n_{sc} = \sqrt{\varepsilon_{sc}(\omega)}$) YBCO будет равен 0.026 + 264.993*i*.

Диэлектрическую проницаемость в ТГц диапазоне металла можно выразить через формулу Друде (j = Au, Ag, Ti):

$$\varepsilon_j(\omega) = 1 - \frac{\omega_p^2}{\omega(\omega + i\gamma_d)},\tag{3}$$

где для Au, Ag и Ti из экспериментальных работ [16,17] для температуры T = 10 K определены константы: $\hbar\omega_p = 9.02$ эВ и $\hbar\gamma = 5.68$ мэВ для Au, $\hbar\omega_p = 8.98$ эВ и $\hbar\gamma = 1.51$ мэВ для Ag, $\hbar\omega_p = 8.74$ зВ и $\hbar\gamma = 242$ мэВ для Ti. Тогда, согласно формуле (3), комплексные показатели преломления будут равны: 610 + 1343i (Au), 260.8 + 1751i (Ag) и 176.5 + 180.2i (Ti).

Диэлектрическая проницаемость как контактных слоев n^+ -GaAs (с концентрацией электронов $n_1 = 2 \cdot 10^{18} \text{ cm}^{-3}$ [15]), так и активной области GaAs/Al_{0.1}Ga_{0.9}As (со средней концентрацией электронов $n_2 = 2 \cdot 10^{15} \text{ cm}^{-3}$ и долей 0.13 слоев Al_{0.1}Ga_{0.9}As по полной толщине [15]) определялась из следующего выражения для GaAs [18]:

$$\varepsilon(\omega, n) = \varepsilon_{\infty} + \frac{\omega_{\text{TO}}^2(\varepsilon_0 - \varepsilon_{\infty})}{\omega_{\text{TO}}^2 - \omega^2 - i\Gamma\omega} - \frac{\omega_{ps}^2(n)\varepsilon_{\infty}}{\omega^2 + i\gamma_s(n)\omega}, \quad (4)$$

где ε_0 и ε_{∞} — низкочастотная и высокочастотные диэлектрические проницаемости нелегированного GaAs; ω_{TO} — частота поперечного оптического фонона; Γ — коэффициент затухания волны на фононах; $\gamma_s(n) = e/m^*\mu(n)$ — коэффициент затухания волны при поглощении свободными носителями; $\omega_{ps}^2(n) = 4\pi n e^2/m^*\varepsilon_{\infty}$ — квадрат плазменной частоты; n и m^* — концентрация и эффективная масса электронов; $\mu(n)$ — подвижность электронов. Величина $\gamma_s(n)$ определялась из данных зависимости подвижности от концентрации легирующей примеси: $\mu(n_1) = 2000 \text{ см}^2/(\text{B} \cdot \text{c}), \ \mu(n_2) = 20000 \text{ см}^2/(\text{B} \cdot \text{c})$ [18]. Оттуда же брались величины m^* , Γ , ω_{TO} , ε_0 и ε_{∞} .

Потери волновода α можно определить из продольной компоненты волнового вектора моды: $\alpha = 2 \operatorname{Im}(k_x)$. Для определения k_x численно методом матриц переноса решалось уравнение для координатной зависимости напряженности магнитного поля $H_y(z)$, распространяющейся в направлении x в ККЛ моды TM₀ (ось z направлена поперек слоев структуры) [19]:

$$\varepsilon(z) \frac{d}{dz} \left[\frac{1}{\varepsilon(z)} \frac{dH_y(z)}{dz} \right] + \left(\varepsilon(z) \frac{\omega^2}{c^2} - k_x^2 \right) H_y(z) = 0, \quad (5)$$

а диэлектрическая проницаемость изменяется по координате *z* следующим образом:

$$\varepsilon(z) = \begin{cases} \varepsilon_j(\omega), \ z < 0, \ z \ge 2(d+W) + QD, \\ \varepsilon_{\text{Ti}}(\omega), \ 0 \le z < d, \ z \ge d + 2W + QD, \\ \varepsilon(\omega, n_1), \ d \le z < d + W, \\ d+W + QD \le z < d + 2W + QD, \\ \varepsilon(\omega, n_2), \ d+W \le z < d + W + QD, \end{cases}$$

$$(6)$$

где j = Au, Ag, sc, W — толщина контактного слоя n^+ -GaAs (50 нм [15]), d — толщина слоя Ті,

Зависимости потерь волновода α на частоте 1.2 ТГц от числа каскадов Q для трех видов обкладок: I — Au/Ti, 2 — Ag/Ti и 3 — YBCO. T = 10 K, D = 134.7 нм.

Q и D — число и толщина каскадов в ККЛ (Q = 85 и D = 134.7 нм в работе [15]).

Расчет зависимости потерь волновода на частоте 1.2 ТГц от числа каскадов для трех видов обкладок (Au/Ti, Ag/Ti и YBCO) приведен на рисунке. Для сравнения с экспериментом [15] толщина каскада была выбрана равной 134.7 нм. В случае использования обкладок из Au и Ag толщина слоя адгезии (Ti) была 20 нм, для случая использования ҮВСО слой адгезии не нужен [11]. Отметим хорошее согласие вычисленной величины поглощения (20.6 см⁻¹) для ККЛ из работы [15] с экспериментом (Q = 85), где использовались обкладки Au/Ti. Из рисунка видно, что применение для экспериментальной структуры обкладок из Ag/Ti и YBCO снизило бы незначительно потери на $\sim 1.5\,{\rm cm}^{-1}.$ Это связано с тем, что при большой толщине активной области основные потери определяются потерями в полупроводниковых слоях. Однако при уменьшении числа каскадов в ТГц ККЛ роль потерь в обкладках волновода возрастает и суммарные потери теперь сильно зависят от них. Поэтому потери в волноводе с обкладками Au/Ti растут очень быстро до $35.2 \,\mathrm{cm}^{-1}$ с уменьшением числа каскадов до 10. При использовании обкладок из Ag/Ti и YBCO для аналогичной структуры с Q = 10потери составили бы 25.8 и 22.9 см⁻¹ соответственно. Это значит, что при одинаковом уровне потерь 20.6 см⁻¹ для рассмотренного ТГц ККЛ с обкладками из Ag/Ti и YBCO достаточно для работы всего 36 и 20 каскадов соответственно. Тогда было бы необходимо вырастить полупроводниковые слои толщиной только 5 и 2.8 мкм для волноводов с обкладками из Ад/Ті и YBCO соответственно, что значительно меньше используемой структуры толщиной 11.6 мкм с обкладками Аи/Ті.

3. Заключение

В заключение отметим, что проведен расчет потерь ПГц ККЛ с двойным металлическим волноводом с обкладками из Аu и Ag со слоем адгезии из Ti и с обкладками из YBCO. Было показано, что потери в волноводе для частоты 1.2 ГГц с обкладками из Au значительно больше, чем с обкладками из Ag и YBCO. Кроме того, было показано, что использование обкладок из YBCO может позволить значительно (более чем в 4 раза) уменьшить число каскадов (толщину активной области), необходимых для работы ТГц ККЛ. Предсказанные результаты значительно упростят изготовление ТГц ККЛ для различных применений.

Финансирование работы

Работа выполнена при поддержке Российского научного фонда, грант № 23–19–00436, https://rscf.ru/project/ 23-19-00436/

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] B. Wen, D. Ban. Progr. Quant.Electron., 80, 100363 (2021).
- [2] A. Leitenstorfer, A.S. Moskalenko, T. Kampfrath, J. Kono, E. Castro-Camus, K. Peng, N. Qureshi, D. Turchinovich, K. Tanaka, A.G. Markelz et al. J. Phys. D: Appl. Phys., 56, 223001 (2023).
- [3] A. Khalatpour, M.C. Tam, S.J. Addamane, J. Reno, Z. Wasilewski, Q. Hu. Appl. Phys. Lett., **122**, 161101 (2023).
- [4] L.H. Li, L. Chen, J.R. Freeman, M. Salih, P. Dean, A.G. Davies, E.H. Linfield. Electron. Lett., 53, 799 (2017).
- [5] E. Strupiechonski, D. Grassani, D. Fowler, F.H. Julien, S.P. Khanna, L. Li, E.H. Linfield, A.G. Davies, A.B. Krysa, R. Colombelli. Appl. Phys. Lett., 98, 101101 (2011).
- [6] S. Kohen, B. S. Williams, Q. Hu. J. Appl. Phys., 97, 053106 (2005).
- [7] M.A. Belkin, J.A. Fan, S. Hormoz, F. Capasso, S.P. Khanna, M. Lachab, A.G. Davies, E.H. Linfield. Opt. Express, 16, 3242 (2008).
- [8] S. Fathololoumi, E. Dupont, S.G. Razavipour, S.R. Laframboise, G. Parent, Z. Wasilewski, H.C. Liu, D. Ban. Semicond. Sci. Technol., 26, 105021 (2011).
- [9] Y.J. Han, L.H. Li, J. Zhu, A. Valavanis, J.R. Freeman, L. Chen, M. Rosamond, P. Dean, A.G. Davies, E.H. Linfield. Opt. Express, 26, 3814 (2018).
- [10] A. Majedi. IEEE Trans. Appl. Supercond., 19, 907 (2004).
- [11] R.J. Lin, P.T. Wu. Jpn. J. Appl. Phys., 28, L2200 (1989).
- [12] A. Tsiatmas, V.A. Fedotov, F.J. Garcia de Abajo, N.I. Zheludev. New J. Phys., 14, 115006 (2012).
- [13] Z. Tian, R. Singh, J. Han, J. Gu, Q. Xin, J. Wu, W. Zhang. Optics Lett., 35, 3586 (2010).
- [14] F. Gao, J.W. Kruse, C.E. Platt, M. Feng, M.V. Klein. Appl. Phys. Lett., 63, 2274 (1993).
- [15] C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, J. Faist. Appl. Phys. Lett., 91, 131122 (2007).

- [16] Д.В. Ушаков, А.А. Афоненко, А.А. Дубинов, В.И. Гавриленко, И.С. Васильевский, Н.В. Щаврук, Д.С. Пономарев, Р.А. Хабибуллин. Квант. электрон., 48, 1005 (2018).
 [(D.V. Ushakov, A.A. Afonenko, A.A. Dubinov, V.I. Gavrilenko, I.S. Vasil'evskii, N.V. Shchavruk, D.S. Ponomarev, R.A. Khabibullin. Quant. Electron., 48, 1005 (2018)].
- [17] W.R.G. Kemp, P.G. Klemens, G.K. White. Australian J. Phys., 9, 180 (1956).
- [18] J.S. Blackmore. J. Appl. Phys., 53, R123 (1982).
- [19] H.C. Casey, M.B. Panich. *Heterostructure lasers*. Pt A (N.Y., Academic Press, 1978).

Редактор Г.А. Оганесян

Optical losses of a waveguide with superconducting plates in terahertz quantum cascade lasers

A.A. Dubinov^{1,2}, D.V. Ushakov³, A.A. Afonenko³

¹ Institute for Physics of Microstructures Russian Academy of Sciences,
603950 Nizhny Novgorod, Russia
² Lobachevsky State University of Nizhny Novgorod,
603950 Nizhny Novgorod, Russia
³ Belarusian State University,
220030 Minsk, Belarus

Abstract The paper calculates the optical losses of a waveguide with superconducting YBCO plates for a quantum cascade laser with a generation frequency of 1.2 THz at a temperature of 10 K. It is shown that the use of such plates in terahertz quantum cascade lasers with a small number of cascades (~ 20) will significantly reduce losses compared to traditionally used gold and silver plates.