10

Спектральные свойства композиционных материалов на основе нанопористых высококремнеземных стекол, активированных ионами серебра и лантана

© М.А. Гирсова, Г.Ф. Головина, И.Н. Анфимова, Л.Н. Куриленко, А.С. Саратовский

Институт химии силикатов им. И.В. Гребенщикова РАН, 199034 Санкт-Петербург, Россия e-mail: girsovama@vandex.ru

Поступила в редакцию 09.06.2023 г.

В окончательной редакции 27.10.2023 г. Принята к публикации 29.10.2023 г.

Исследованы спектральные свойства композиционных материалов на основе матриц из высококремнеземных пористых стекол, активированных ионами серебра, а также ионами лантана. Рассмотрены спектры оптической плотности (270–900 nm) и инфракрасные спектры пропускания (11000–9000 и 9000–4000 cm⁻¹) композиционных материалов различных составов, подвергнутых тепловой обработке по одному из трех режимов (120, 500 и 800°C). Синтезированные композиционные материалы исследованы методами рентгенофазового анализа и энергодисперсионной рентгеновской спектроскопии. Анализ оптических спектров позволил выявить формирование молекулярных кластеров, кластеров, димеров и наночастиц серебра, а также полос поглощения, относящихся к переносу заряда $O^{2+} \rightarrow La^{3+}$ (282, 285, 300 nm) и к наночастицам лантана (282, 285 nm), при различных условиях синтеза композиционных материалов. Установлено, что изменение режима тепловой обработки композитов приводит к изменениям в ИК спектрах композитов, а изменение их состава — к появлению дополнительных полос, связанных с атомом кислорода OH-группы, который может координироваться с несколькими соседними атомами лантана.

Ключевые слова: композиционные материалы, высококремнеземное пористое стекло, серебро, лантан, ближняя инфракрасная спектроскопия, оптическая спектроскопия, рентгенофазовый анализ, энергодисперсионная рентгеновская спектроскопия.

DOI: 10.61011/OS.2023.10.56891.5304-23

Введение

Материалы, активированные серебром в присутствии/без лантана, могут быть применены в качестве нанокатализаторов, а также в сенсорных приложениях (газовые сенсоры, колориметрические датчики), в нанофотонике, для солнечных батарей, для оптических устройств, оптической памяти [1–5]. Ион La³⁺ имеет незаполненную орбиталь ($4f^05d^06s^0$), благодаря чему он относительно стабилен, и захваченные дырки могут быть легко высвобождены [6]. Этот механизм можно описать с помощью следующих уравнений (1)–(4) (см. уравнения (3), (5)–(7)) в работе [6]):

$$O^{2-} + h^+ \to O^-,$$
 (1)

$$La^{3+} + O^{-} \rightarrow La^{4+} + O^{2-}$$
 (2)

— дырочная ловушка ("hole trap"),

$$La^{4+} + OH^{-} \rightarrow La^{3+} + OH$$
 (3)

— высвобождение дырок ("hole release"),

$$2Ag^0 + O_2 \rightarrow 2Ag^+ + O^{2-} \tag{4}$$

— высвобождение электронов ("electron release").

Известно, что La2O3 имеет широкую запрещенную зону (wide band gap, 4.3 eV) [7,8], а край фундаментального поглощения расположен в области ниже 250 nm [9]. В работе [8] показано влияние температуры отжига (от 400 до 800°С) на структуру и оптические свойства пленок La₂O₃, а также на их полупроводниковые свойства (ширина запрещенной зоны увеличивается от 4.17 до 5.11 eV с повышением температуры отжига). В наших предыдущих работах [10-12] было показано, что тепловая обработка композиционных материалов (КМ), содержащих ионы, наночастицы (НЧ), молекулярные кластеры (МК) серебра в присутствии/без ионов церия или эрбия влияет на концентрационное распределение элементов по толщине образцов КМ (метод энергодисперсионной рентгеновской спектроскопии), на структуру (метод ИК спектроскопии в области частот $1100-400\,{\rm cm^{-1}})$ и на спектральные свойства КМ (метод оптической спектроскопии). В работе [13] отмечается, что тепловая обработка (отжиг) материалов, одновременно активированных серебром и лантаном, приводит к формированию НЧ La₂O₃ и серебра, что благоприятно сказывается на спектрально-люминесцентных свойствах материала (интенсивность фотолюминесценции увеличивается).

В настоящей работе важной задачей является подбор температурно-временных режимов синтеза КМ, чтобы эффективно контролировать формирование оксидов серебра и лантана, НЧ и МК серебра в наноразмерных структурах, избегая эффектов кластеризации. Проведено исследование влияния химического состава и режима тепловой обработки КМ на их спектральные свойства в УФ, видимом и ближнем ИК диапазоне спектра.

Объекты и методы исследования

Объектами исследования являются КМ на основе высококремнеземных пористых стекол (ПС-8В-НТ-120), активированных ионами серебра в присутствии или без ионов лантана, которые были синтезированы методом одностадийной пропитки.

Образцы ПС-8В-НТ-120 (средний диаметр пор в диапазоне $3-5\,\mathrm{nm}$, пористость $\sim 30\%$) толщиной $1.5 \pm 0.15 \,$ mm были получены по методике [14]. Методами аналитической химии был определен состав ПСматриц (ПС-8В-НТ-120) по анализу (мас%): 0.30 Na₂O, 3.14 B2O3, 0.11 Al2O3, 96.45 SiO2, который приведен в [14]. Образцы ПС-матриц были пропитаны в водносолевых растворах AgNO3 с добавлением или без $La(NO_3)_3$ (массовое соотношение нитратов в растворе Ад/La составляло 1:1 и 10:1) с последующей тепловой обработкой КМ в воздушной атмосфере по специально разработанным температурно-временным режимам с изотермическими выдержками при температуре $T_{\text{т.о.}} = 120,500$ и 800° С в соответствии с процедурой, использованной в [15]. Известно, что термолиз нитрата лантана при 780-800°С приводит к формированию оксида лантана La₂O₃ [15,16]. При температуре выше 300°С происходит разложение нитрата серебра с образованием Ag⁰ [16], а по данным [17] термолиз AgNO₃ происходит при 360-515°С. Следует учитывать, что кристаллизация La₂O₃ в воздушной атмосфере происходит при 800°С согласно [7]. Обозначение синтезированных образцов 100Ад, 100Ад/10La, 100Ag/100La было принято в соответствии с концентрацией пропитывающих растворов. При приготовлении растворов для синтеза КМ использовали такие реагенты, как нитрат серебра AgNO₃ (марка реактива хч, 99.9%), 6-водный нитрат лантана La(NO₃)₃-6H₂O (марка реактива хч, 99.0%). В КМ 100Ag, 100Ag/10La, 100Ag/100La содержание серебра и щелочных металлов определялось методом пламенной фотометрии на спектрофотометре iCE 3000 (Thermo Fisher Scientific). Оно составило (mas%) (0.14-0.20) Na₂O, (0.01-0.05) K_2O , (0.60-0.79) Ag₂O. Стандартное квадратичное отклонение для Na₂O составляло 0.2-1.1%, для K₂O — 0.1-0.5%, для Ад₂О — 0.1-0.8%. Ранее в [15] методом ИК спектроскопии $(1000-400\,{\rm cm^{-1}})$ были исследованы серии образцов 100Ag и 100Ag/100La при 120, 500 и 800°С. Выявлены полосы, соответствующие присутствию Ag₂O, La₂O₃ и колебаниям связей Ag-O, Ag-O-Ag, O-Ag-O, La-O-H и La-O. Методом энергодисперсионной рентгеновской спектроскопии у KM 100Ag/100La (при 500°C) установлено, что содержание серебра меняется по толщине образцов KM в пределах 1.15-4.45 mas% (среднее значение 3.40 ± 0.26 mas%), а лантан распределен достаточно равномерно в пределах 0.71-1.15 mas% (среднее значение 0.85 ± 0.18 mas%) за исключением поверхностного слоя (~ 40-65 nm) [15].

Исследования КМ 100Ag, КМ 100Ag/10La, КМ 100Ag/100La в сравнении с ПС-8В-НТ-120 методом ближней ИК спектроскопии (рис. 1-4) были выполнены при комнатной температуре с помощью спектрофотометра ФСМ-2211 в областях частот 11000-9000 и $9000-4000 \text{ cm}^{-1}$ со спектральным разрешением 2 cm^{-1} . При работе в спектральном диапазоне $11000-9000 \text{ cm}^{-1}$ приемником является фотодиод Si, в диапазоне 9000-4000 сm $^{-1}$ — фотодиод InGaAs. Источником излучения является галогенная лампа. Исследования КМ 100Ag, KM 100Ag/10La, KM 100Ag/100La в диапазоне 270-900 nm (рис. 5) проводили на спектрофотометре СФ-2000. Наименьший спектральный разрешаемый интервал 1 nm, предел допускаемого значения абсолютной погрешности установки для спектрального диапазона 270-390 nm составлял ±0.4 nm, для 390-900 nm — ±0.8 nm. При работе в спектральном диапазоне 190-390 nm источником излучения служила дейтериевая лампа, в диапазоне 390-1100 nm галогенная лампа. Измерения спектров пропускания и оптической плотности проводили при комнатной температуре на образцах КМ и ПС-8В-НТ-120 в форме плоскопараллельных пластин толщиной 1.50 ± 0.15 mm. Рентгенофазовый анализ порошков КМ проводился при применении дифрактометра Rigaku Ultima IV (Япония). Использовалось излучение медного анода с $\lambda(CuK_{\alpha}) = 1.5418$ Å. Рентгенограммы снимались в диапазоне углов 2θ от 5 до 80° . Скорость сканирования по 20 составила 3°/min. Для интерпретации дифракционных рефлексов использовалась база дифракционных данных ICDD PDF-2 (2022). Элементный состав композитов изучен методом энергодисперсионной рентгеновской спектроскопии (EDS). Измерены линейные профили концентрации элементов с шагом 35-47 µm. Измерения проводили на сканирующем электронном микроскопе CamScan MX2500, оборудованном энергодисперсионным спектрометром Link Pentafet (Oxford Instruments, Si(Li)-детектор с площадью 10 mm² и разрешающей способностью 138 eV (на МпК_а-излучение)). Образцы КМ запрессовывали в полимерные шайбы, полировали и напыляли на поверхность углерод. Измерения проводили на плоскопараллельных пластинах толщиной 1.50 ± 0.15 mm.

Результаты исследований

На рис. 1–3 представлены ИК спектры пропускания (в диапазонах частот 11000–9000 и 9000–4000 сm⁻¹)

Рис. 1. Спектры пропускания КМ 100Ag в зависимости от температуры тепловой обработки: $a - 120^{\circ}$ C, $b - 500^{\circ}$ C, $c - 800^{\circ}$ C.

На рис. 4, *а* показаны ИК спектры пропускания ПС-8В-НТ-120 в диапазонах частот 11000–9000 и 9000–4000 сm⁻¹. Из рис. 4, *а* видны полосы поглощения при 10732, 10458, 8113, а также при 7317, 7133, 6876, 5272, 4548 сm⁻¹.

В табл. 1 приведены полосы поглощения, обнаруженные у КМ и ПС-8В-НТ-120, а также идентифи-

Рис. 2. Спектры пропускания КМ 100Ag/10La в зависимости от температуры тепловой обработки: $a - 120^{\circ}$ C, $b - 500^{\circ}$ C, $c - 800^{\circ}$ C.

кация полос. У всех композитов вне зависимости от состава и режима тепловой обработки и ПС-8В-НТ-120 обнаружено четыре группы полос: при 10762–10730, 7335–7317, 5284–5267 и 4554–4523 сm⁻¹. Установлено влияние тепловой обработки КМ, которое приводит к появлению/исчезновению полос. Для КМ (вне зависимости от состава), высушенных при 120°С, характерны дополнительные полосы в шести областях частот: при 10513–10480, 8132–8104, 7133–7126, 6894–6870, 6060–6003, 5662–5627 сm⁻¹. Кроме того, у КМ 100Аg

Рис. 3. Спектры пропускания КМ 100Ag/100La в зависимости от температуры тепловой обработки: $a - 120^{\circ}$ C, $b - 500^{\circ}$ C, $c - 800^{\circ}$ C.

и 100Ag/10La (при 120°C) обнаружено еще по одной дополнительной полосе при 8717 и 9421 cm⁻¹, что говорит о влиянии химического состава КМ. С повышением температуры тепловой обработки КМ (при 500°C) дополнительные полосы в четырех областях частот (при 10585–10504, 8123–8110, 7159–7155, 6880–6864 cm⁻¹) сохраняются у всех КМ (вне зависимости от состава), а полосы при 6060–6003 и 5662–5627 cm⁻¹ пропадают. У КМ 100Ag/100La (при

Рис. 4. Спектры пропускания (*a*) и оптической плотности (*b*) ПС-8В-НТ-120.

 500° C) обнаружены еще две полосы: при 9295 и 9108 cm⁻¹, что косвенно указывает на влияние химического состава КМ. У КМ, подвергнутых тепловой обработке при 800°C, происходит исчезновение полос в нескольких областях частот, но также обнаружены дополнительные полосы у всех КМ (вне зависимости от состава): при 7245–7244, 5085–5083, 4761–4753, 4189–4179 cm⁻¹. Влияние состава КМ установлено также. Для КМ 100Ag (при 800°C) обнаружены две дополнительные полосы при 10622 и 9414 cm⁻¹, а для КМ 100Ag/10La (при 800°C) — при 4913 cm⁻¹.

Установлено существенное влияние режима тепловой обработки КМ (120, 500 и 800°С), которое проявляется в появлении/исчезновении дополнительных полос. Известно, что при нагревании пористых стекол характерны следующие процессы (см. обзор в [18–22]). При $T_{\text{т.o.}} \leq 200^{\circ}$ С происходит удаление физически адсорбированной воды. В области температур 200–600°С удаляется координационно-связанная вода. При температурах 600–800°С происходит дегидроксилирование связанных силанольных групп и размягчение кремнеземного каркаса. Дальнейшее повышение температуры сопровождается необратимым дегидроксилированием и конденсацией силанольных групп, расположенных на поверхности соседних стенок пор, что приводит к закрытию пор.

Обозна	Обозначение стекол и композитов, температура тепловой обработки КМ. Положение полос поглощения, ст ⁻¹									Отнесение полос
ПС-8В-	KM 100Ag KM 100Ag/10La					10La	KM 100Ag/100La			
HT-120	120°C	500°C	800°C	120°C	500°C	800°C	120°C	500°C	800°C	
10732 10458	10730 10480	10752 10525	10762 10622	10730 10513	10750 10552	10750	10733 10498	10750 10585 10504	10760	$3\nu(OH_{CB}), \nu(Si-OH), 3\nu_3OH$
			9414	9421				9295 9108		$2\nu_3(OH) + 2\nu_1(SiO_4)$, атом кислорода OH-группы может координироваться с несколькими соседними атомами лантана
	8717									$2\nu_3(OH)+2\nu_1(SiO_4)$
8113	8104	8121		8132	8110		8116	8123		$2\nu(OH_{CB}) + \nu(Si-O), 2\nu_3(OH) + \nu_1(SiO_4)$
7317	7317	7330	7334	7317	7330	7335	7317	7329	7335	$2\nu_3(OH), \nu(Si-OH)$
			7244			7244			7245	$\nu(B^{III}-OH), 2\nu_3(OH)$
7133	7126	7155		7133	7159		7131	7156		поглощение гидроксильных групп и адсорбированных на поверхности молекул воды
6876	6894	6880		6884	6864		6870	6864		поглощение капиллярно-конденсированных молекул воды
	6003			6060			6032			$\nu_{sym}(OH)$
	5627			5628			5662			$(\delta + \nu)(H_2O)$
5272	5268	5284	5277	5270	5284	5280	5267	5284	5280	поглощение гидроксильных групп и адсорбированных на поверхности молекул воды, $(\delta + \nu)(H_2O)$
			5083			5085			5084	поглощение молекул воды, координационно связанных с примесными атомами бора
						4913				$(\delta + \nu)(OH)$, $\nu(B^{III} - OH)$, атом кислорода OH-группы может координироваться с несколькими соседними атомами лантана
			4754			4761			4753	$\nu(OH), \nu(B^{IV}-OH)$
4548	4523	4542	4542	4554	4540	4542	4539	4542	4542	$\delta(\text{Si-OH}), \overline{\nu(\text{OH}), \nu(\text{Na-OH}), (\delta + \nu)(\text{Si-OH})}$
			4189			4179			4189	$\nu(OH)$ с низкой частотой колебаний решетки

Таблица 1. Полосы поглощения (в диапазоне 11000-4000 cm⁻¹), обнаруженные у КМ в зависимости от состава и температуры тепловой обработки в сравнении с ПС-8В-НТ-120

Влияние химического состава КМ проявляется только в появлении дополнительных полос при 10622, 9421, 9414, 9295, 9108, 8717, 4913 сm⁻¹, характерных для отдельных КМ. Известно, что La(NO₃)₃·6H₂O и La₂O₃ являются гигроскопичными веществами, которые увеличивают колебания ОН и увеличивают количество воды [23]. Причина появления дополнительных полос при 9421, 9295, 9108, 4913 сm⁻¹, возможно, обусловлена тем, что атом кислорода OH-группы может координироваться с несколькими соседними атомами лантана [23,24].

Следует отметить, что при 800°С у всех серий КМ наблюдается уменьшение интенсивности полос поглощения во всем диапазоне частот, а пропускание в диапазоне частот 11000-9000 cm⁻¹ по сравнению с КМ (при 120 и 500°C) значительно снижается. Это может косвенно указывать на уменьшение количества ОН-групп и воды в КМ с ростом температуры тепловой обработки.

Наблюдаемые слабые полосы при 10762–10730 сm⁻¹ (~ 929–932 nm), 10622–10458 сm⁻¹ (~ 941–956 nm) могут относиться ко второму обертону валентных колебаний свободных ОН-групп (3ν (OH_{CB})), ко второму обертону валентных колебаний Si–OH-групп ν (Si–OH) и к колебаниям OH-групп ($3\nu_3$ (OH)) [25–27]. Дополнительные полосы слабой интенсивности при 9421–9414 сm⁻¹ (~ 1061–1062 nm), 9295 сm⁻¹ (~ 1076 nm), 9108 сm⁻¹ (~ 1098 nm) могут быть связаны с сочетанием валентных колебаний $2\nu_3$ (OH) + $2\nu_1$ (SiO₄) [26].

Перейдем к рассмотрению области частот $9000-4000 \text{ cm}^{-1}$. Дополнительная слабая полоса поглощения при $8717 \,\mathrm{cm}^{-1}~(\sim 1147 \,\mathrm{nm})$, наблюдаемая только у КМ 100Ад, может быть связана с сочетанием валентных колебаний $2\nu_3(OH) + 2\nu_1(SiO_4)$ [26]. Полосы при 8132-8104 cm⁻¹ $(\sim 1230-1234\,\mathrm{nm}),$ которые были обнаружены у ПС-8В-НТ-120 и у всех КМ (вне зависимости от состава) при 120 и 500°C, скорее всего, относятся к сочетанию первого обертона валентных колебаний свободных ОН-групп на поверхности пористого стекла и валентных колебаний Si-Oсвязей $2\nu(OH_{CB}) + \nu(Si-O)$ [25], а также могут быть связаны с сочетанием валентных колебаний $2\nu_3(OH) + \nu_1(SiO_4)$ [26]. Полосы при 7335-7317 сm⁻¹ $(\sim 1363 - 1367 \text{ nm})$, выявленные у всех КМ и ПС-8В-НТ-120, возможно, связаны с первым обертоном валентных колебаний 2v3 OH-групп и v Si-OHгрупп [10,25-27,28-30]. Тепловая обработка КМ при 800°С приводит к появлению дополнительных полос поглощения при 7245 и 7244 см $^{-1}$ (\sim 1380 nm), которые могут относиться к колебаниям v В^{III}-ОН-групп, где бор находится в тройной координации [28-31], и к обертону валентных колебаний 2v3 ОН-групп [26].

У ПС-8В-НТ-120 и у всех КМ (вне зависимости от состава) при 120 и 500°С были обнаружены полосы при 7159–7126 сm⁻¹ (~1397–1403 nm) и слабые полосы при 6894–6864 сm⁻¹ (~1451–1457 nm). Первая группа полос, скорее всего, относится к поглощению гидроксильных групп и адсорбированных на поверхности молекул воды, а вторые слабые полосы — к поглощению капиллярно-конденсированных молекул воды [10,25,28–31]. Дополнительные полосы низкой интенсивности, наблюдаемые у КМ при 120°С при 6060–6003 сm⁻¹ (~1650–1666 nm) и 5662–5627 сm⁻¹ (~1766–1777 nm), могут быть приписаны к обертону симметричных валентных колебаний ОН-групп $\nu_{\rm sym}$ (OH) и к сочетанию деформационных и валентных колебаний воды ($\delta + \nu$)(H₂O) соответственно [30,32].

У ПС-8В-НТ-120 и у всех КМ были обнаружены полосы при 5284-5267 ст⁻¹ (~ 1893-1899 nm) и при 4554-4523 cm⁻¹ (~ 2196-2211 nm). Первая группа полос может относиться к поглощению гидроксильных групп и адсорбированных на поверхности молекул воды, к сочетанию деформационных и валентных колебаний воды $((\delta + \nu)(H_2O))$, а вторая группа полос — к деформационным колебаниям Si–OH-групп (δ (Si–OH)), к валентным колебаниям OH-групп (v(OH)) и Na-OHгрупп (ν (Na–OH)), к сочетанию деформационных и валентных колебаний Si-OH-групп ($(\delta + \nu)(Si-OH)$) соответственно [10,28-31]. Тепловая обработка КМ при 800°C (вне зависимости от состава) приводит к появлению дополнительных полос поглощения в трех областях частот: $5085-5083 \text{ cm}^{-1}$ (~ 1967 nm), $4761 - 4753 \text{ cm}^{-1}$ (~ 2100 - 2104 nm), $4189 - 4179 \text{ cm}^{-1}$ $(\sim 2387 - 2393 \text{ nm})$, а также к полосе поглощения слабой интенсивности у КМ 100Ag/10La при 4913 ст⁻¹

(2035 nm). Полосы при 5085–5083 сm⁻¹ возможно приписать к поглощению молекул воды, координационно связанным с примесными атомами бора [29–31]. Полосы при 4761–4753 сm⁻¹, скорее всего, относятся к валентным колебаниям ОН-групп (ν (OH)) и В^{IV}–ОН-групп (ν (В^{IV}–OH)), где бор находится в четверной координации [33]. Полосы при 4189–4179 сm⁻¹ могут быть связаны с валентными колебаниями ОН-групп (ν (OH)) с низкой частотой колебаний решетки [29–31,34]. Слабая полоса при 4913 сm⁻¹ может быть приписана к сочетанию деформационных и валентных колебаний ОН-групп (($\delta + \nu$)(OH)), к валентным колебаниям В^{III}–OH-групп (ν (B^{III}–OH)), где бор находится в тройной координации [33,34].

Ранее было установлено, что для матриц ПС-8В-НТ-120 характерен край фундаментального поглощения при 240 nm [28]. На рис. 4, *b* представлен спектр оптической плотности ПС-8В-НТ-120 в диапазоне 270–900 nm. Полосы поглощения в указанном диапазоне не были обнаружены, но виден край сильной УФ полосы.

На рис. 5 представлены спектры оптической плотности КМ в зависимости от состава (100Ag, 100Ag/10La, 100Ag/100La) и режима тепловой обработки КМ (120, 500 и 800°C) в диапазоне 270–900 nm. В табл. 2 сведены все данные по обнаруженным полосам поглощения у КМ и их расшифровка согласно литературным данным (см. обзор в [11], [35–53]).

На спектральных зависимостях оптической плотности KM 100Ag, высушенных при 120°C, видны слабые полосы поглощения при 400 nm ($\sim 3.10 \text{ eV}$), 473 nm ($\sim 2.62 \text{ eV}$), 739 nm ($\sim 1.68 \text{ eV}$). С введением лантана у KM 100Ag/10La, высушенных при 120°C, проявляются дополнительные полосы при 489 nm ($\sim 2.54 \text{ eV}$) и 570 nm ($\sim 2.18 \text{ eV}$), а также полоса при 742 nm ($\sim 1.67 \text{ eV}$), а для KM 100Ag/100La при 120°C обнаружены полосы только при 397 nm ($\sim 3.12 \text{ eV}$) и 740 nm ($\sim 1.68 \text{ eV}$). Видно, что состав KM влияет на форму спектров, на интенсивность и положение полос поглощения, а также приводит к появлению дополнительных полос поглощения (489, 570 nm).

Тепловая обработка КМ при 500°С приводит к дальнейшему изменению формы спектров, которое проявляется в увеличении интенсивности оптической плотности в УФ области спектра. Для КМ 100Ад установлено наличие дополнительной УФ полосы поглощения сильной интенсивности при 315 nm ($\sim 3.94 \, \mathrm{eV}$) и сохранение полосы при 734 nm (~ 1.69 eV). Для КМ 100Ag/10La характерна также дополнительная УФ полоса поглощения сильной интенсивности при 300 nm $(\sim 4.13\,eV)$ и полоса при 747 nm (~ 1.66 eV). С повышением концентрации лантана у КМ 100Ag/100La на спектре появляется дополнительная полоса слабой интенсивности при 535 nm $(\sim 2.32 \,\mathrm{eV})$ и полоса при 745 nm $(\sim 1.66 \,\mathrm{eV})$. Что указывает на влияние состава КМ и режима тепловой обработки на появление дополнительных полос поглощения по сравнению с высушенными образцами КМ.

Рис. 5. Спектры оптической плотности KM в зависимости от состава (a, b - 100Ag, c, d - 100Ag/10La, e, f - 100Ag/100La) и температуры тепловой обработки: $I - 120^{\circ}$ C, $2 - 500^{\circ}$ C, $3 - 800^{\circ}$ C.

Дальнейшее повышение температуры тепловой обработки КМ (при 800°С) приводит к резкому увеличению интенсивности оптической плотности во всем диапазоне (270–900 nm), в том числе это проявляется в росте интенсивности полос поглощения и их количестве по сравнению с КМ, подвергнутыми тепловой обработке при 120 и 500°С. Этот же характер спектров проявляется для всех серий КМ. Кроме того, тепловая обработка при 800°С КМ серий 100Аg/10La и 100Аg/100La приводит к существенным изменениям в форме спектров по сравнению с КМ 100Ag при том же режиме обработки.

Для КМ 100Ag (при 800°С) обнаружены полосы с максимумами при 286 nm (~ 4.34 eV), 343 nm (~ 3.62 eV), 388 nm (~ 3.20 eV), 412 nm (~ 3.01 eV), 431 nm (~ 2.88 eV), 449 nm (~ 2.76 eV), 510 nm (~ 2.43 eV), 569 nm (~ 2.18 eV), 606 nm (~ 2.05 eV), 664 nm (~ 1.87 eV). Для КМ 100Ag/10La (800°С)

Обозна	ачение с	текол и По	композ ложени	витов, те е полос	емперат: поглош	Отнесение полос			
К	M 100A	Ŋ	KM 100Ag/10La			KM 100Ag/100La			1
120°C	500°C	800°C	120°C	500°C	800°C	120°C	$500^{\circ}\mathrm{C}$	800°C	
		286			282			285	МК Ag ₄ , кластеры Ag ₄ ²⁺ и Ag ₈ ²⁺ , из-за переноса заряда $O^2 \rightarrow La^{3+}$ (charge transfer), НЧ лантана
				300					МК Ag1, МК Ag4, МК Ag9, нейтральные атомы Ag0, из-за переноса заряда ${\rm O}^2 \to La^{3+}$ (charge transfer)
	315								молекулярные ионы Ag ₂ ⁺ , MK Ag ₁
		343			343			341	нейтральные атомы Ag ₀ , MK Ag ₆ и Ag ₇
								353	MK Ag ₃ , La ₂ O ₃
					368			370	МК Ag_3 , МК Ag_5 и МК Ag_5^+ , La_2O_3
								376	MK Ag ₅ , La ₂ O ₃
		388							МК Ад ₂ , Ад ₃ , Ад ₄ и Ад ₈
400						397			МК Аg4, Аg6, кластеры Аg ₈ ²⁺
		412			414			411	МК Ад2, НЧ серебра
		431			429			430	МК Ад4, НЧ серебра
		449			451			453	МК Ад3, НЧ серебра
473					465			475	димеры Ag ⁺ -Ag ⁺
			489						МК Ад3 и Ад4
					504			503	МК Ад5, НЧ серебра
		510			515			515	МК Ад3, НЧ серебра
							535	533	МК Ag_7 , HЧ серебра, кластеры серебра, в том числе Ag_m^{n+} $(m \ge 8, n \le 4)$
					541			541	НЧ серебра, кластеры серебра, в том числе $\operatorname{Ag}_{m}^{n+}(m\geq 8,n\leq 4)$
		569	570		566			566	НЧ серебра, кластеры серебра, в том числе $\operatorname{Ag}_{m}^{n+}(m\geq 8,n\leq 4)$
								575	НЧ серебра, кластеры серебра, в том числе $\operatorname{Ag}_{m}^{n+}(m\geq 8,n\leq 4)$
		606						603	НЧ серебра, кластеры серебра, в том числе $\operatorname{Ag}_{m}^{n+}(m\geq 8,n\leq 4)$
		664			670				НЧ серебра, кластеры серебра, в том числе $\mathrm{Ag}_m^{n_+}~(m\geq 8,~n\leq 4)$
739	734		742	747	735	740	745	748	НЧ серебра, кластеры серебра, в том числе $\mathrm{Ag}_m^{n+} \ (m \geq 8, n \leq 4)$

Таблица 2. Полосы поглощения (в диапазоне 270-900 nm), обнаруженные у КМ в зависимости от состава и температуры тепловой обработки

проявляются полосы с максимумами при 282 nm (~ 4.40 eV), 343 nm (~ 3.62 eV), 368 nm (~ 3.37 eV), 414 nm (~ 3.00 eV), 429 nm (~ 2.89 eV), 451 nm (~ 2.75 eV), 465 nm (~ 2.67 eV), 504 nm (~ 2.46 eV), 515 nm (~ 2.41 eV), 541 nm (~ 2.29 eV), 566 nm (~ 2.19 eV), 670 nm (~ 1.85 eV), 735 nm (~ 1.69 eV).

Для KM 100Ag/100La (800°С) видны полосы с максимумами при 285 nm (~ 4.35 eV), 341 nm (~ 3.64 eV), 353 nm (~ 3.51 eV), 370 nm (~ 3.35 eV), 376 nm (~ 3.30 eV), 411 nm (~ 3.02 eV), 430 nm (~ 2.88 eV), 453 nm (~ 2.74 eV), 475 nm (~ 2.61 eV), 503 nm (~ 2.47 eV), 515 nm (~ 2.41 eV), 533 nm (~ 2.33 eV), 541 nm (~ 2.29 eV), 566 nm (~ 2.19 eV),

575 nm (~ 2.16 eV), 603 nm (~ 2.06 eV), 748 nm (~ 1.66 eV).

Следует отметить, что для всех серий КМ (100Ag, 100Ag/10La и 100Ag/100La) при 800°С обнаружены полосы поглощения с максимумами при 282–286, 341–343, 411–414, 429–431, 449–453, 510–515, 566–569 nm. Дополнительные полосы при 388, 510, 606, 664 nm (KM 100Ag), при 368, 465, 504, 541, 670, 735 nm (KM 100Ag/10La) и при 353, 370, 376, 475, 503, 533, 541, 575, 603, 748 nm (KM 100Ag/100La) прямо указывают на влияние состава KM на спектральные свойства.

Перейдем к описанию обнаруженных полос поглощения в диапазоне 270-900 nm. УФ полосы с максимумами при 282–286 nm, наблюдаемые у КМ при 800°C, скорее всего, связаны с МК Ag_4 и кластерами Ag_4^{2+} и Ag_8^{2+} [35– 39]. Кроме того, УФ широкие полосы с максимумами при 282 и 285 nm могут относиться к переносу заряда ${\rm O}^{2-}
ightarrow {\rm La}^{3+}$, а также быть связанными с поглощением НЧ лантана [40,41]. УФ дополнительная полоса поглощения при 300 nm у КМ 100Ag/10La (при 500°C) может быть обусловлена образованием МК Ag1, МК Ag4, МК Ад₉ и нейтральными атомами Ag⁰ [35,42,43–45], а также из-за переноса заряда $O^{2-} \rightarrow La^{3+}$ (charge transfer) [40]. Для КМ 100Ag (при 500°C) наблюдаем УФ полосу при 315 nm, которую можно приписать к молекулярным ионам Ag₂⁺ и МК Ag₁ [11,43,44,46]. УФ полосы поглощения при 341-343 nm, наблюдаемые у КМ при 800°С, возможно связать с нейтральными атомами Ag⁰ и МК Аg₆ и Аg₇ [11,42,43,46]. УФ полоса при 353 nm может указывать на формирование МК Ag₃ [42,44], УФ полосы при 368 и 370 nm — на МК Ад₃, МК Ад₅ и МК Ag₅⁺ [36,43], а при 376 nm — на МК Ag₅ [42]. Полосы поглощения при 353, 368, 370, 376 nm, возможно, связаны также с поглощением La₂O₃ [47]. Полоса при 388 nm, скорее всего, вызвана образованием МК Ад₂, МК Ад₃, МК Ад₄ и МК Ад₈ [42-45]. Полосы поглощения слабой интенсивности при 397 и 400 nm у КМ 100Ag и КМ 100Ag/100La при 120°С могут относится к МК Ад4, Ag_6 и к кластерам Ag_8^{2+} [35–37,42]. Широкие полосы с максимумами при 411-414, 429-431, 449-453 nm характерны для НЧ серебра, обладающих поверхностным плазмонным резонансом (ППР) (см. обзор в [11]), [35,46,48-51]. Кроме того, полосы при 411-414 nm могут свидетельствовать об образовании МК Ад2 [43]. Полосы при 429-431 nm возможно приписать к МК Аg₄ [43], а полосы при 449–453 nm — к МК Аg₃ [44]. Полоса поглощения слабой интенсивности при 473 nm у КМ 100Ag при 120°С, скорее всего, относится к димерам Ад⁺-Ад⁺ [52], а сдвиг полосы в длинноволновую сторону (при 489 nm) у КМ 100Аg/100La при 120°С, возможно, связан с образованием МК Ag₃ и Ag₄ [42-44]. Наличие дополнительных полос поглощения при 465 и 475 nm у КМ 100Ag/10La и КМ 100Ag/100La при 800°С могут возникать из-за димеров Ag⁺-Ag⁺ [52]. Широкие полосы с максимумами при 503-504 и 515 nm у КМ 100Ag/10La и КМ 100Ag/100La при 800°C, а также полоса при 510 nm у КМ 100Ag при 800°С,

возможно, связаны с наличием МК Ад₅ и МК Ад₃ соответственно [36,43], а также с формированием НЧ серебра, обладающих ППР [11,48]. Наблюдаемые у КМ 100Ag/100La при 500 и 800°C дополнительные полосы поглощения при 535 и 533 nm, возможно, приписать к формированию НЧ серебра, обладающих ППР, к МК Ад7 и к различным кластерам серебра, в том числе Ag_m^{n+} ($m \ge 8$, $n \le 4$) [11,43,48,53]. Полоса при 541 nm, обнаруженная у КМ 100Ag/10La и КМ 100Ag/100La при 800°С, может быть обусловлена наличием НЧ серебра, обладающих ППР, и различных кластеров серебра, в том числе Ag_m^{n+} $(m \ge 8, n \le 4)$ [48,53]. Полосы поглощения при 566-570 nm, которые характерны для КМ 100Ag/10La при 120°С и для всех серий КМ при 800°С, скорее всего, связаны с наличием НЧ серебра, обладающих ППР, и кластеров серебра, в том числе Ag_m^{n+} (m > 8, n < 4) [11,39,48,53]. Наличие дополнительных полос поглощения у образцов, подвергнутых тепловой обработке при 800°С, при 606 и 664 nm (КМ 100Ад), при 670 nm (KM 100Ag/10La) и при 575 и 603 nm (КМ 100Ag/100La) также, возможно, связано с формированием НЧ серебра (разной формы), обладающих ППР, и различных кластеров серебра, в том числе Ag_m^{n+1} $(m \ge 8, n \le 4)$ [11,39,48,53]. У всех КМ вне зависимости от состава и температуры тепловой обработки (кроме КМ 100Аg при 800°С) были обнаружены полосы с максимумами при 734-748 nm, которые, возможно, свидетельствуют об образовании кластеров серебра, в том числе Ag_m^{n+} ($m \ge 8, n \le 4$), и НЧ серебра, обладающих ППР [11,38,39 48].

Установлено влияние тепловой обработки КМ, которое приводит к росту интенсивности полос поглощения у КМ при 800°С. Кроме того, следует отметить, что тепловая обработка КМ при 800°С (у всех серий) приводит к тому, что в спектрах оптической плотности наблюдается бо́льшее количество полос поглощения, связанных с присутствием МК серебра, кластеров серебра, в том числе Ag_m^{n+} ($m \ge 8, n \le 4$), а также появляются сильные широкие полосы поглощения, связанные с НЧ серебра, обладающими плазмонным резонансом.

На рис. 6, а представлены рентгенограммы КМ 100Аg, 100Ag/10La и 100Ag/100La после тепловой обработки при 800°С. На приведенной рентгенограмме КМ 100Аg видны многочисленные пики при 20: 23.36°, 26.62°, 26.99°, 30.90°, 38.14°, 38.55°, 44.30°, 45.26°, 47.69°, 55.66°, 61.15°, 62.90°, 64.37°, 69.78° и 77.40°. Наблюдаемые пики при 2θ (*h k l*): 38.14° (111), 44.30° (200), 64.37° (220) и 77.40° (311) характерны для кубической модификации металлического Ag⁰ (JCPDS № 01-080-4432) [54-56]. Отражения при 20 (h k l): 26.62° (110), 38.55° (200), 47.69° (211) и 55.66° (220) относятся к кубической модификации Ag₂O (JCPDS № 00-043-0997) [57,58]. Пики при 20 (h k l): 23.36° (402), 30.90° (314), 44.30° (-808), 45.26° (226), 47.69° (-5111), 55.66° (131), 61.15° (136), 62.90° (137) связаны с кристаллизацией моноклинной модификации SiO₂, тридимита (Tridymite-M, JCPDS № 00-018-1170) [59,60].

Рис. 6. Рентгенограммы КМ при 800°С в зависимости от состава (*a*) (I - 100Аg, 2 - 100Аg/10La, 3 - 100Аg/10La). Данные EDS: концентрационные профили элементов по толщине образцов (b-d) и характерные спектры элементного состава центральной части образцов (e-g) КМ при 800°С в зависимости от состава (b, e) – 100Аg, c, f - 100Аg/10La, d, g - 100Аg/10La).

Видны пики при 20 (*h k l*): 26.99° (100), 55.66° (202) и 69.78° (301), которые относятся к гексагональной модификации Quartz low HP (High-Purity Quartz), SiO2 (JCPDS № 01-083-2470) [61]. Для КМ 100Ag/10La и 100Ag/100La характерно меньшее количество пиков при 20: 38.04°, 44.15°, 64.48°, 77.31° и 21.24°, 29.32°, 38.02°, 44.19°, 48.58°, 64.32°, 77.35 ° соответственно. Отражения, наблюдаемые у КМ 100Ag/10La и 100Ag/100La при 2 θ (*h k l*) = 38.02° (111), 38.04° (111), 44.15° (200), 44.19° (200), 64.32° (220), 64.48° (220), 77.31° (311) и 77.35° (311) относятся к кубической модификации металлического Ag (JCPDS № 01-071-4613) [62]. Наблюдаемые у КМ 100Ag/10La и КМ 100Ag/100La пики при 2 θ (*h k l*) = 29.32° (10-1), 38.02°, 38.04° (10-2), 44.15° и 44.19° (100) относятся к гексагональной модификации La₂O₃ (JCPDS № 00-040-1279) [63]. Слабые пики у КМ 100Ag/100La при 2θ (*h k l*) = 21.24° (-404), 29.32° (-604) и 48.58° (-8010) связаны с моноклинной модификацией Tridymite-M, syn SiO₂ (JCPDS № 00-018-1170) [59,60].

Методом энергодисперсионной рентгеновской спектроскопии были исследованы КМ в зависимости от их состава (100Ag, 100Ag/10La и 100Ag/100La) после термообработки при 800° С. На рис. 6, b-d представлены концентрационные профили элементов по толщине образцов КМ, а на рис. 6, e-g показаны характерные спектры элементного состава центральной части образцов КМ. Следует отметить, что бор и азот методом энергодисперсионной рентгеновской спектроскопии не

определяются из-за того, что являются легкими элементами. Распределение кислорода и кремния достаточно равномерное по всей глубине образцов КМ. Содержание кислорода и кремния для образцов КМ 100Ад находится в пределах 50.57-52.31 mas% (среднее значение: 51.61 ± 0.33 mas%) и 44.23-45.84 mas% (среднее значение: 45.23 ± 0.30 mas%), для КМ 100Ag/10La 51.52-52.86 mas% (среднее значение: 52.11 ± 0.33 mas%) и 45.12-46.36 mas% (среднее значение: 45.69 ± 0.30 mas%), для КΜ 100Ag/100La — 51.12-52.30 mas% (среднее значение: $51.81 \pm 0.34 \,\mathrm{mas\%}$) и $44.75 - 45.87 \,\mathrm{mas\%}$ (среднее значение: $45.40 \pm 0.31 \, mas\%)$ соответственно. Концентрация натрия во всех образцах была ниже уровня чувствительности прибора (наблюдаем нулевые значения по всей глубине образцов), а содержание лантана в КМ 100Ag/10La и КМ 100Ag/100La также было недостаточным (наблюдали нулевые значения почти по всей глубине образцов) для определения концентрации элемента, которая должна быть не ниже 0.1-0.2 mas%.

На рис. 6, *c*, *d* видны отдельные концентрационные "всплески" распределения лантана для KM 100Ag/10La при 0.27 mas% и для KM 100Ag/100La в пределах 0.25–0.58 mas% (среднее значение 0.20 ± 0.15 mas%). Серебро распределено неравномерно по толщине образцов KM 100Ag и KM 100Ag/100La, напротив, у KM 100Ag/10La серебро достаточно равномерно распреде-

лено за исключением поверхностного слоя образцов ($\sim 100\,\mu m).$

Содержание серебра меняется по толщине у КМ 100Ag в пределах 0.00–2.60 mas% (среднее значение: 1.11 ± 0.20 mas%), у КМ 100Ag/10La в пределах 0.00–0.81 mas% (среднее значение: 0.55 ± 0.17 mas%), у КМ 100Ag/100La в пределах 0.00–1.41 mas% (среднее значение: 0.78 ± 0.17 mas%). На характерных спектрах элементного состава центральной части образцов КМ (рис. 6, e-g) были обнаружены пики, соответствующие основным компонентам (сильные пики — Si, O), слабые и сильные пики лантана, слабые пики серебра. Схожие данные по положению пиков серебра и лантана были обнаружены в [1,64,65].

Заключение

Синтезированы образцы КМ на основе матриц из высококремнеземных пористых стекол, активированных ионами серебра в присутствии или без ионов лантана, которые были подвергнуты тепловой обработке в воздушной атмосфере от 120 до 800°С. Методом рентгенофазового анализа установлено, что в КМ (при 800°C) есть наличие кристаллов кубической модификации металлического Ag⁰, кубической модификации Ag₂O, гексагональной модификации La2O3, моноклинной модификации Tridymite-М и гексагональной модификации Quartz low HP. Исследования КМ методом ближней ИК спектроскопии показали, что у КМ, активированных ионами серебра и лантана, проявляются дополнительные полосы, обусловленные присутствием ОН-групп, которые могут координироваться с несколькими соседними атомами лантана. Методом оптической спектроскопии подтверждено, что для КМ при различных условиях синтеза характерно наличие полос поглощения, которые отвечают за перенос заряда $O^{2-} \rightarrow La^{3+}$ (282, 285, 300 nm) и за НЧ лантана (282, 285 nm).

Благодарности

Авторы признательны А.В. Антонову (ФГУП ВСЕ-ГЕИ, Санкт-Петербург) за исследования КМ методом энергодисперсионной рентгеновской спектроскопии.

Исследование кристаллической структуры КМ методом рентгенофазового анализа выполнено при использовании оборудования Инжинирингового центра СПбГТИ (ТУ).

Финансирование работы

Работа выполнена в рамках государственного задания ИХС РАН при поддержке Минобрнауки России (Государственная регистрация № АААА-А19-119022290087-1 и № 1021050501068-5-1.4.3 (проект FFEM-2022-0004)).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- G. Abdulkareem-Alsultan, N. Asikin-Mijan, N. Mansir, H.V. Lee, Z. Zainal, A. Islam, Y.H. Taufiq-Yap. J. Analyt. Appl. Pyrolysis, 137, 171 (2019). DOI: 10.1016/j.jaap.2018.11.023
- [2] C.R. Michel, A.H. Martínez-Preciado. Sensors and Actuators B: Chemical, 208, 355 (2015).
 DOI: 10.1016/j.snb.2014.11.034
- [3] J. Fonseca. Frontiers of Materials Science, 16, 220607 (2022).
 DOI: 10.1007/s11706-022-0607-7
- [4] M.A.U. Haq, K. Hussain, Z. Aslam, A.R. Umar, M.R. Shan, Sirajuddin, Mujeeb-ur-Rehman, S.T.H. Sherazi, J. Nisar. Microchemical J., 185, 108289 (2023). DOI: 10.1016/j.microc.2022.108289
- [5] H.M.A. Dayem, S.S. Al-Shihry, S.A. Hassan. J. Rare Earths, 37 (5), 500 (2019). DOI: 10.1016/j.jre.2018.09.003
- [6] N. Zhao, M.-M. Yao, F. Li, F.-P. Lou. J. Solid-State Chemistry, 184 (10), 2770 (2011). DOI: 10.1016/j.jssc.2011.08.014
- [7] Y. Gao, Y. Masuda, K. Koumoto. J. Colloid and Interface Science, 274, 392 (2004). DOI: 10.1016/j.jcis.2004.02.050
- [8] G. Gao, L. Yang, B. Dai, F. Xia, Z. Yang, S. Guo, P. Wang, F. Geng, J. Han, J. Zhu. Surface & Coatings Technology, 365, 164 (2019). DOI: 10.1016/j.surfcoat.2018.07.001
- [9] Q. Mu, Y. Wang, J. Alloys and Compounds, 509 (2), 396 (2011). DOI: 10.1016/j.jallcom.2010.09.041
- [10] M.A. Girsova, T.V. Antropova, G.F. Golovina, I.N. Anfimova, L.N. Kurilenko, M.Yu. Arsent'ev. IOP Conference Series: Materials Science and Engineering, **704**, 012004 (2019). DOI: 10.1088/1757-899X/704/1/012004
- [11] М.А. Гирсова, Л.Н. Куриленко, И.Н. Анфимова, М.Ю. Арсентьев, Л.Ф. Дикая, Е.А. Семенова. Известия Академии наук. Серия химическая, **5**, 920 (2020). [М.А. Girsova, L.N. Kurilenko, I.N. Anfimova, M.Yu. Arsent'ev, L.F. Dikaya, E.A. Semenova. Russian Chemical Bulletin, **69** (5), 920 (2020). DOI: 10.1007/s11172-020-2849-9].
- [12] М.А. Гирсова, Г.Ф. Головина, Л.Н. Куриленко, И.Н. Анфимова. Физика и химия стекла, 46 (6), 574 (2020). DOI: 10.31857/S0132665120060098 [М.А. Girsova, G.F. Golovina, L.N. Kurilenko, I.N. Anfimova. Glass Physics and Chemistry, 46 (6), 541 (2020). DOI: 10.1134/S1087659620060097].
- [13] R. Jbeli, A. Boukhachem, I.B. Jemaa, N. Mahdhi, F. Saadallah, H. Elhouichet, S. Alleg, M. Amlouk, H. Ezzaouïa. Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, **184** (5), 71 (2017). DOI: 10.1016/j.saa.2017.04.072
- T. Antropova, M. Girsova, I. Anfimova, I. Drozdova,
 I. Polyakova, N. Vedishcheva. J. Non-Crystalline Solids, 401, 139 (2014). DOI: 10.1016/j.jnoncrysol.2014.01.033
- [15] M.A. Girsova, G.F. Golovina, L.N. Kurilenko, I.N. Anfimova.
 Glass Physics and Chemistry, 47 (Suppl. 1), S36 (2021).
 DOI: 10.1134/S1087659621070051
- [16] Р.А. Лидин, Л.Л. Андреева, В.А. Молочко. *Константы неорганических веществ: справочник* (Дрофа, М., 2008), с. 73, 124.

- [17] K. Otto, I.O. Acik, M. Krunks, K. Tönsuaadu, A. Mere.
 J. Thermal Analysis and Calorimetry, **118**, 1065 (2014).
 DOI: 10.1007/s10973-014-3814-3
- [18] Т.В. Антропова. Физико-химические процессы создания пористых стекол и высококремнеземных материалов на основе ликвирующих щелочноборосиликатных систем. Автореф. докт. дис. (Институт химии силикатов им. И.В. Гребенщикова РАН, Санкт-Петербург, 2005), 588 с.
- [19] T.V. Antropova, I.A. Drozdova. Optica Applicata, 33 (1), 13 (2003).
- [20] T.V. Antropova, A.V. Volkova, D.V. Petrov, S.V. Stolyar, L.E. Ermakova, M.P. Sidorova, E.B. Yakovlev, I.A. Drozdova. Optica Applicata, 35 (4), 717 (2005).
- [21] Т.В. Антропова, И.А. Дроздова, Т.Н. Василевская, А.В. Волкова, Л.Э. Ермакова, М.П. Сидорова. Физика и химия стекла, **33** (2), 154 (2007). [T.V. Antropova, I.A. Drozdova, T.N. Vasilevskaya, A.V. Volkova, L.E. Ermakova, M.P. Sidorova. Glass Physics and Chemistry, **33** (2), 109 (2007). DOI: 10.1134/S1087659607020034].
- [22] Т.В. Антропова, С.В. Столяр, И.Н. Анфимова, М.А. Гирсова. Физика и химия стекла, 47 (4), 404 (2021). DOI: 10.31857/S0132665121040041 [T.V. Antropova, S.V. Stolyar, I.N. Anfimova, M.A. Girsova. Glass Physics and Chemistry, 47 (4), 329 (2021). DOI: 10.1134/S1087659621040040].
- [23] A. Igityan, N. Aghamalyan, S. Petrosyan, I. Gambaryan, G. Badalyan, R. Hovsepyan, Y. Kafadaryan. Appl. Phys. A, 123, 448 (2017). DOI: 10.1007/s00339-017-1057-4
- [24] T.A. Hamdalla, T.A. Hanafy. Optik, **127** (2), 878 (2016).
 DOI: 10.1016/j.ijleo.2015.10.187
- [25] В.А. Никитин, А.Н. Сидоров, А.В. Карякин. Журн. физ. хим., 30 (1), 117 (1956).
- [26] O. Humbach, H. Fabian, U. Grzesik, U. Haken, W. Heitmann. J. Non-Crystalline Solids, 203, 19 (1996). DOI: 10.1016/0022-3093(96)00329-8
- [27] A. Baraldi, R. Capelletti, N. Chiodini, C. Mora, R. Scotti, E. Uccellini, A. Vedda. Nuclear Instruments and Methods in Physics Research A, 486 (1–2), 408 (2002). DOI: 10.1016/S0168-9002(02)00743-X
- [28] М.А. Гирсова, Г.Ф. Головина, И.Н. Анфимова, Л.Н. Куриленко. Физика и химия стекла, 44 (5), 464 (2018).
 DOI: 10.7868/S0132665118050025 [М.А. Girsova, G.F. Golovina, I.N. Anfimova, L.N. Kurilenko. Glass Physics and Chemistry, 44 (5), 381 (2018).
 DOI: 10.1134/S1087659618050061].
- [29] М.А. Гирсова, Г.Ф. Головина. Физика и химия стекла, 44 (6), 599 (2018). DOI: 10.1134/S0132665118060070
 [М.А. Girsova, G.F. Golovina. Glass Physics and Chemistry, 44 (6), 569 (2018). DOI: 10.1134/S1087659618060068].
- [30] М.А. Гирсова, Г.Ф. Головина, Л.Н. Куриленко, И.Н. Анфимова. Физика и химия стекла, 46 (6), 560 (2020). DOI: 10.31857/S0132665120060086 [М.А. Girsova, G.F. Golovina, L.N. Kurilenko, I.N. Anfimova. Glass Physics and Chemistry, 46 (6), 531 (2020). DOI: 10.1134/S1087659620060085].
- [31] М.А. Гирсова, Т.В. Антропова, Г.Ф. Головина, И.Н. Анфимова, Л.Н. Куриленко. Опт. и спектр., **131** (1), 84 (2023).
 DOI: 10.21883/OS.2023.01.54542.4040-22 [М.А. Girsova, T.V. Antropova, G.F. Golovina, I.N. Anfimova, L.N. Kurilenko. Opt. Spectrosc., **131** (1), 80 (2023).
 DOI: 10.21092/2022.0223.01.555521 (2010).

DOI: 10.21883/EOS.2023.01.55521.4040-22].

- [32] J.T. Kloprogge, R.D. Schuiling, Z. Ding, L. Hickey, D. Wharton, R.L. Frost. Vibrational Spectroscopy, 28 (2), 209 (2002). DOI: 10.1016/S0924-2031(01)00139-4
- [33] U. Bauer, H. Behrens, M. Fechtelkord, S. Reinsch, J. Deubener. J. Non-Crystalline Solids, 423–424, 58 (2015). DOI: 10.1016/j.jnoncrysol.2015.05.004
- [34] R. Balzer, H. Behrens, S. Schuth, T. Waurischk, S. Reinsch,
 R. Müller, M. Fechtelkord, J. Deubener. J. Non-Crystalline Solids, 519, 119454 (2019).
 DOI: 10.1016/j.jnoncrysol.2019.05.030
- [35] D.A. Klyukin, V.D. Dubrovin, A.S. Pshenova, S.E. Putilin, T.A. Shakhverdov, A.N. Tsypkin, N.V. Nikonorov, A.I. Sidorov. Optical Engineering, 55 (6), 067101 (2016). DOI: 10.1117/1.OE.55.6.067101
- [36] М.В. Столярчук, А.И. Сидоров. Опт. и спектр., 125 (3), 291 (2018). DOI: 10.21883/OS.2018.09.46540.42-18
 [M.V. Stolyarchuk, A.I. Sidorov. Opt. Spectrosc., 125 (3), 305 (2018). DOI: 10.1134/s0030400x18090229].
- [37] B.G. Ershov, E.A. Abkhalimov, N.L. Sukhov. High Energy Chemistry, **39** (2), 55 (2005). DOI: 10.1007/s10733-005-00261
- [38] M. Mostafavi, M.O. Delcourt, G. Picq. Radiation Physics and Chemistry, 41 (3), 453 (1993). DOI: 10.1016/0969-806x(93)90004-e
- [39] Б.М. Сергеев, Г.Б. Сергеев. Коллоидный журн., 69 (5), 680 (2007).
 [В.М. Sergeev, G.B. Sergeev. Colloid J., 69(5), 639 (2007).
 DOI: 10.1134/S1061933X07050158].
- [40] J.-G. Kang, Y.-Il Kim, D.W. Cho, Y. Sohn. Materials Science in Semiconductor Processing, 40, 737 (2015). DOI: 10.1016/j.mssp.2015.07.050
- [41] Довнар Р.И., А.Ю. Васильков, И.С. Довнар, Н.Н. Иоскевич. Кардиология в Беларуси, 15 (1), 99 (2023).
 DOI: 10.34883/PI.2023.15.1.008 [R. Dovnar, A. Vasilkov, I. Dovnar, N. Iaskevich. Cardiology in Belarus, 15 (1), 99 (2023). DOI: 10.34883/PI.2023.15.1.008. In Russian].
- [42] S. Lecoultre, A. Rydlo, J. Buttet, C. Félix, S. Gilb,
 W. Harbich. The J. Chemical Physics, 134, 184504 (2011).
 DOI: 10.1063/1.3589357
- [43] G.A. Ozin, H. Huber. Inorganic Chemistry, 17 (1), 155 (1978).
- [44] S. Fedrigo, W. Harbich, J. Buttet. J. Chem. Phys., 99 (8), 5712 (1993). DOI: 10.1063/1.465920
- [45] C. Félix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, G. Ertl. Chem. Phys. Lett., 313, 105 (1999).
- [46] А.В. Востоков, А.И. Игнатьев, Н.В. Никоноров, О.А. Подсвиров, А.И. Сидоров, А.В. Нащекин, Р.В. Соколов, О.А. Усов, В.А. Цехомский. Письма в ЖТФ, 35 (17), 58 (2009). [A.V. Vostokov, A.I. Ignat'ev, N.V. Nikonorov, O.A. Podsvirov, A.I. Sidorov, A.V. Nashchekin, R.V. Sokolov, O.A. Usov, V.A. Tsekhomskii. Technical Phys. Lett., 35 (9), 812 (2009). DOI: 10.1134/S1063785009090089].
- [47] C.G. Hu, H. Liu, W.T. Dong, Y.Y. Zhang, G. Bao, C.S. Lao, Z.L. Wang. Advanced Materials, **19** (3), 470 (2007). DOI: 10.1002/adma.200601300
- [48] A.J. Haes, C.L. Haynes, A.D. McFarland, G.C. Schatz, R.P. Van Duyne, S. Zou. MRS Bulletin, **30**, 368 (2005). DOI: 10.1557/mrs2005.100
- [49] M.C. Mathpal, P. Kumar, S. Kumar, A.K. Tripathi, M.K. Singh,
 J. Prakash, A. Agarwal. RSC Advances, 5 (17), 12555 (2015).
 DOI: 10.1039/c4ra14061c

- [50] A.E. Abbass, H.C. Swart, R.E. Kroon. J. Sol-Gel Science and Technology, **76** (3), 708 (2015). DOI: 10.1007/s10971-015-3825-y
- [51] M.V. Shestakov, M. Meledina, S. Turner, V.K. Tikhomirov, N. Verellen, V.D. Rodríguez, J.J. Velázquez, G. Van Tendeloo, V.V. Moshchalkov. J. Appl. Phys., **114** (7), 073102 (2013). DOI: 10.1063/1.4818830
- [52] П.А. Образцов, А.В. Нащекин, Н.В. Никоноров, А.И. Сидоров, А.В. Панфилова, П.Н. Брунков. ФТТ, **55** (6), 1180 (2013).
 [P.A. Obraztsov, A.V. Nashchekin, A.V. Panfilova, P.N. Brunkov, N.V. Nikonorov, A.I. Sidorov. Physics of the Solid State, **55** (6), 1272 (2013).
 DOI: 10.1134/S1063783413060267].
- [53] J. Belloni, M. Mostafavi, H. Remita, J.-L. Marignier, M.-O. Delcourt. New J. Chemistry, 22 (11), 1239 (1998). DOI: 10.1039/a801445k
- [54] H.A. Oualid, Y. Essamlali, O. Amadine, K. Daanoun, M. Zahouily. Ceramics International, 43 (16), 13786 (2017). DOI: 10.1016/j.ceramint.2017.07.097
- [55] H.A. Oualid, O. Amadine, Y. Essamlali, I.M. Kadmiri, H.El. Arroussi, M. Zahouily. Nanoscale Advances, 1 (8), 3151 (2019). DOI: 10.1039/c9na00075e
- [56] C. Tonna, C. Wang, D. Mei, S.V. Lamaka, M.L. Zheludkevich, J. Buhagiar. Bioactive Materials, 7, 426 (2022). DOI: 10.1016/j.bioactmat.2021.05.48
- [57] H. Xu, J. Xie, W. Jia, G. Wu, Y. Cao. J. Colloid and Interface Science, 516, 511 (2018). DOI: 10.1016/j.jcis.2018.01.071
- [58] H. Yang, J. Tian, T. Li, H. Cui. Catalysis Communications, 87, 82 (2016). DOI: 10.1016/j.catcom.2016.09.013.
- [59] V.A. Kukartsev, A.I. Cherepanov, V.V. Kukartsev, V.S. Tynchenko, V.V. Bukhtoyarov, A.M. Popov, R.B. Sergienko, S.V. Tynchenko. Minerals, **12** (2), 233 (2022). DOI: 10.3390/min12020233
- [60] Е.Б. Шадрин, Д.А. Курдюков, А.В. Ильинский, В.Г. Голубев. ФТП, 43 (1), 110 (2009). [Е.В. Shadrin, D.A. Kurdyukov, A.V. Ilinskiy, V.G. Golubev. Semiconductors, 43 (1), 102 (2009).
 DOI: 10.1134/S1063782609010205].
- [61] W.S. Geleta, E. Alemayehu, B. Lennartz. Molecules, 27, 2527
- (2022). DOI: 10.3390/molecules27082527
 [62] S. Al-Thawadi, A.S.A. Rasool, K. Youssef, J. Bioanalysis & Biomedicine, 9 (6), 299 (2017). DOI: 10.4172/1948-593X.1000197
- [63] K. Shah, K. Agheda, M. Ahire, K.V.R. Murthy, B. Chakrabarty. Bull. Mater. Sci., 46, 186 (2023). DOI: 10.1007/s12034-023-03012-3
- [64] А. Игитян, Н. Агамалян, Р. Овсепян, С. Петросян, Г. Бадалян, И. Гамбарян, А. Папикян, Е. Кафадарян. ФТП, 54 (2), 117 (2020). DOI: 10.21883/FTP.2020.02.48915.9280
 [A. Igityan, N. Aghamalyan, R. Hovsepyan, S. Petrosyan, G. Badalyan, I. Gambaryan, A. Papikyan, Y. Kafadaryan. Semiconductors, 54 (2), 163 (2020). DOI: 10.1134/S1063782620020104].
- [65] K. Wang, Y. Wu, H. Li, M. Li, F. Guan, H. Fan. J. Inorganic Biochemistry, **141**, 36 (2014).
 DOI: 10.1016/j.jinorgbio.2014.08.009