19

# Теплопроводность монокристаллических твердых растворов ZrO<sub>2</sub>-Y<sub>2</sub>O<sub>3</sub> в интервале температур 50-300 К

© П.А. Попов<sup>1</sup>, В.Д. Соломенник<sup>1</sup>, Е.Е. Ломонова<sup>2</sup>, М.А. Борик<sup>2</sup>, В.А. Мызина<sup>2</sup>

<sup>1</sup> Брянский государственный университет им. акад. И.Г. Петровского, Брянск, Россия <sup>2</sup> Институт общей физики им. А.М. Прохорова РАН,

Москва, Россия

E-mail: tfbgubry@mail.ru

(Поступила в Редакцию 12 сентября 2011 г.)

В интервале температур 50–300 К экспериментально исследована теплопроводность монокристаллических образцов  $ZrO_2 - xY_2O_3$  (x = 0.5, 1.5, 2.0, 2.5, 3.0, 8.0 mol.%). Исследовано влияние на теплопроводность высокотемпературных отжигов.

Работа выполнена при частичной поддержке гранта РНП 2.1.1/10747 в рамках АВЦ программы Минобрнауки РФ "Развитие научного потенциала высшей школы" и программы президиума РАН № 22 "Основы фундаментальных исследований нанотехнологий и наноматериалов".

#### 1. Введение

Теплоизолирующие свойства материалов на основе диоксида циркония хорошо известны, эти соединения широко используются в технике в качестве теплоизолирующей керамики, а также в виде термобарьерных покрытий деталей, работающих в условиях повышенных нагрузок и агрессивных окислительных сред. Исследованию теплопроводности керамических и пленочных теплоизолирующих материалов посвящен ряд работ [1–5], в которых показано, что значения теплопроводности в области температур от комнатной и выше варьируются в узких пределах и обычно не превосходят величины  $k = 2.5 \text{ W}/(\text{m} \cdot \text{K})$ . Температурная зависимость теплопроводности k(T) при этом, как правило, слабая.

С разработкой метода прямого высокочастотного плавления диэлектриков в холодном контейнере [6-8] стал возможным синтез из расплава высокотемпературных монокристаллов на основе диоксида циркония. В настоящее время хорошо известны фианиты — однофазные монокристаллы кубических твердых растворов на основе диоксида циркония, обладающие уникальными оптическими и электрическими характеристиками: это изотропная оптическая среда с высоким показателем преломления (2.15-2.2) и широкой спектральной областью пропускания (250-7500 nm), обладающая большой твердостью (8.5 по Моосу), тугоплавкостью (2700-2800°С), ионной проводимостью при повышении температуры выше 300°С. Эти кристаллы широко используются в ювелирной промышленности, а также в технике [8]. Позднее были получены кристаллы частично стабилизированного диоксида циркония — монокристаллы тетрагональных твердых растворов, наноструктурированный особопрочный, износостойкий конструкционный материал, который получают путем контролированного наноструктурирования монокристаллов в процессе их фазовых превращений при выращивании из расплава [9-11]. Основой этих материалов является диоксид

циркония, но химический и фазовый состав материалов существенно различен, следствием чего является разная структура, а также прочностные, трибологические, теплофизические и другие физико-химические свойства этих твердых растворов [7-10]. Исследования фазового состава кристаллов на основе диоксида циркония с концентрацией стабилизирующего оксида иттрия от 0 до 35 mol.% показали следующее: чистый диоксид циркония имеет моноклинную фазу; при содержании оксида иттрия до 2 mol.% кристаллы представляли смесь моноклинной и тетрагональной фаз; в кристаллах с содержанием оксида иттрия 2.5 mol.% моноклинная фаза встречается лишь в отдельных областях образца, большая часть его содержит только тетрагональную фазу; начиная с концентрации Y2O3, равной 3 mol.%, кристаллы имеют тетрагональную структуру вплоть до концентрации 5 mol.%; при содержании оксида иттрия в пределах 8-35 mol.% кристаллы представляли собой кубические твердые растворы со структурой флюорита [11,12].

Для технического применения кристаллов на основе диоксида циркония весьма важной является информация об их теплофизических характеристиках, в частности теплопроводности, данных о которой в литературе явно недостаточно.

Высокотемпературная теплопроводность монокристаллических образцов  $ZrO_2-Y_2O_3$  (YSZ) была исследована авторами [13]. Слабое снижение величины теплопроводности сменялось слабым ее повышением при увеличении температуры выше ~ 400°С. Увеличение содержания  $Y_2O_3$  вплоть до максимального исследованного значения 12 mol.% также понижало теплопроводность в области комнатной температуры.

В работе [14] были экспериментально определены значения теплопроводности при комнатной температуре в локальных областях монокристаллических образцов  $ZrO_2$  с содержанием  $Y_2O_3$  от 0 до 43.7 mol.% с пространственным разрешением  $20\,\mu$ m. В случае чистого

диоксида циркония моноклинной структуры величина теплопроводности достигает максимального значения, равного  $8.2 \text{ W}/(\text{m} \cdot \text{K})$ .

Закономерно несколько меньшие значения теплопроводности были получены для плотных поликристаллических образцов YSZ в области комнатной температуры [15] и нанокристаллических образцов в высокотемпературном интервале 100–1000°C [16].

Целью настоящей работы является систематическое экспериментальное исследование теплопроводности монокристаллических образцов на основе диоксида циркония в зависимости от концентрации стабилизирующего оксида иттрия в области температур от 50 К до комнатной.

#### 2. Эксперимент

Монокристаллы на основе диокида циркония, стабилизированные оксидом иттрия с содержанием от 0.5 до 8.0 mol.%, были выращены направленной кристаллизацией расплава в холодном контейнере диаметром 130 mm со скоростью роста 10 mm/h.

Кристаллы с содержанием от 0.5 до  $3.0 \text{ mol.}\% \text{ Y}_2\text{O}_3$  были непрозрачными с молочной окраской, а содержащие  $8 \text{ mol.}\% \text{ Y}_2\text{O}_3$  — прозрачными и бесцветными.

Для исследования влияния на температурную зависимость теплопроводности кристаллов YSZ кислородных вакансий образцы, содержащие 0.5, 3.2 и 3.5 mol.% Y<sub>2</sub>O<sub>3</sub>, были подвергнуты вакуумному отжигу при температуре 2100°С в течение 2h. Вакуумный отжиг приводит к образованию дополнительного количества кислородных вакансий относительно их количества, обусловленного гетеровалентным замещением четырехвалентных катионов циркония трехвалентными катионами иттрия при образовании твердых растворов ZrO<sub>2</sub>-Y<sub>2</sub>O<sub>3</sub> [12,17,18]. Визуально это проявилось в возникновении насыщенной черной окраски кристаллов, являющейся результатом образования центров окраски. Диффузия кислорода из кристалла сопровождается появлением свободных электронов, которые и образуют центры окраски с кислородными вакансиями [18].

Измерения проводились на образцах, вырезанных параллельно оси роста, имеющих произвольную кристаллографическую ориентацию, так как в работе [14] была показана слабая анизотропия теплопроводности моноклинной и тетрагональной модификаций YSZ.

Экспериментальное определение теплопроводности в температурном интервале 50–300 К осуществлялось абсолютным стационарным методом продольного теплового потока. Описание аппаратуры и методики измерений приведено в [19]. Погрешность определения абсолютной величины теплопроводности не превышала ±6%.

## 3. Обсуждение результатов

Результаты измерения теплопроводности k(T) представлены графически на рис. 1, а в численном выражении для четырех значений температуры — в таблице.



**Puc. 1.** Температурная зависимость теплопроводности монокристаллов  $ZrO_2-xY_2O_3$ . x = 0.5 (*I*), 1.5 (*2*), 2.0 (*3*), 2.5 (*4*), 3.0 (*5*) и x = 8.0 mol.% (*6*).

Видно, что во всех случаях температурная зависимость теплопроводности k(T) очень слабая. Это обстоятельство и малые значения низкотемпературной теплопроводности однозначно свидетельствуют о существенных процессах фононного рассеяния в данных кристаллических материалах.

За исключением самых низких исследованных температур, наблюдается уменьшение величины теплопроводности с ростом концентрации оксида иттрия. Этот результат является обычным для изоструктурных рядов твердых растворов. Однако в данном случае его нельзя считать тривиальным, учитывая структурные переходы при увеличении концентрации стабилизирующей добавки, отмеченные выше.

Полученное семейство кривых k(T) можно условно разделить на две группы. В первую входят k(T) для сравнительно малых концентраций  $Y_2O_3$  (0.5, 1.5 и 2.0 mol.%), во вторую — для более высоких концентраций (3.0 и 8.0 mol.%).

Для образца с 0.5 mol.%  $Y_2O_3$  имеет место хорошо выраженный низкотемпературный максимум k(T), характерный для диэлектрических монокристаллов [20]. Обычной является и следующая установленная закономерность: по мере увеличения ( $0.5 \rightarrow 1.5 \rightarrow 2.0 \text{ mol.}$ %) содержания оксида иттрия в кристалле этот максимум

Сглаженные значения теплопроводности (в  $W/(m\cdot K))$  образцов YSZ

|     | Содержание Y <sub>2</sub> O <sub>3</sub> , mol.% |         |      |      |      |      |         |         |      |
|-----|--------------------------------------------------|---------|------|------|------|------|---------|---------|------|
| T,K | 0.5                                              | 0.5     | 1.5  | 2.0  | 2.5  | 3.0  | 3.2     | 3.5     | 8.0  |
|     |                                                  | (после  |      |      |      |      | (после  | (после  |      |
|     |                                                  | отжига) |      |      |      |      | отжига) | отжига) |      |
| 50  | 6.53                                             | 6.59    | 4.44 | 2.44 | 3.27 | 2.31 | 2.58    | 2.27    | 1.20 |
| 100 | 6.77                                             | 6.76    | 4.92 | 3.16 | 3.07 | 2.55 | 2.83    | 2.69    | 1.43 |
| 200 | 6.12                                             | 5.88    | 4.76 | 3.60 | 3.31 | 2.96 | 3.28    | 3.16    | 1.98 |
| 300 | 6.52                                             | 5.17    | 4.34 | 3.68 | 3.49 | 3.24 | 3.36    | 3.24    | 2.38 |

становится более размытым и смещается в область более высоких температур.

Для кристаллов с содержанием 3 и 8 mol.%  $Y_2O_3$ зависимость k(T) кардинально меняется, и k монотонно возрастает с температурой. Поведение теплопроводности этих составов характерно для структурно-разупорядоченных сред [21,22]. В случае состава 8 mol.%  $Y_2O_3$ на зависимости k(T) наблюдается выход на низкотемпературное плато, характерное для стекол. Действительно, концентрации 3 и 8 mol.%  $Y_2O_3$  соответствуют тетрагональной и кубической модификациям YSZ со значительной степенью разупорядоченности структуры вследствие образования кислородных вакансий при гетеровалентном ионном замещении. Упорядоченность этих вакансий возникает при существенно бо́льших (40 mol.%) концентрациях  $Y_2O_3$  [23].

Для состава 2.5 mol.% Y<sub>2</sub>O<sub>3</sub>, промежуточного между двумя указанными группами образцов, зависимость k(T)можно охарактеризовать как суперпозицию концентрационных зависимостей с меньшими концентрациями (когда *k* уменьшается с повышением температуры) и концентрационных зависимостей с большими концентрациями  $Y_2O_3$  (когда *k* увеличивается с повышением температуры). В результате получается зависимость с минимумом, смещенным в сторону низких температур. Поскольку выше  $T = 150 \,\text{K}$  кривые k(T) для составов 2.0, 2.5 и 3.0 mol.% У2О3 проходят практически симбатно, указанный минимум на графике k(T) для состава 2.5 mol.% Y<sub>2</sub>O<sub>3</sub> затруднительно интерпретировать как проявление дополнительного резонансного (селективного в отношении температуры) механизма фононного рассеяния.

На рис. 2 приведены результаты исследования теплопроводности отожженных в вакууме образцов.

Кристалл с концентрацией 0.5 mol.%  $Y_2O_3$  имеет моноклинную структуру с небольшим содержанием закаленной тетрагональной фазы. На поверхности выращенных кристаллов с содержанием 0.5 mol.%  $Y_2O_3$ 



**Рис. 2.** Температурная зависимость теплопроводности монокристаллов  $ZrO_2 - xY_2O_3$ . 1 - x = 0.5 mol.%, до отжига; 2 - x = 0.5 mol.%, после отжига; 3 - x = 3.2 mol.%, после отжига; 4 - x = 3.5 mol.%, после отжига; 5 - x = 3.0 mol.%, без отжига.



**Рис. 3.** Ростовая поверхность кристалла состава  $ZrO_2-0.5 \text{ mol.}\% Y_2O_3$ .

хорошо видны система двойникования (характерная для моноклинной фазы) и сетка микротрещин (рис. 3), возникающих в результате перехода тетрагональная фаза→моноклинная фаза (сопровождается объемными изменениями до 5 vol.% [13]), а в объеме кристаллов микротрещины отсутствуют.

При отжиге после роста образцов кристаллов с таким содержанием оксида иттрия в них в процессе охлаждения при температуре  $1050 \pm 300^{\circ}$ С возникает дополнительное количество микротрещин, связанное с тетрагонально-моноклинным переходом [20]. Таким образом, при отжиге после выращивания кристаллов  $ZrO_2-0.5 \text{ mol.}\%$  Y<sub>2</sub>O<sub>3</sub> количество двумерных трещин и двойников в них увеличивается. По-видимому, это и приводит к снижению теплопроводности отожженных кристаллов в области температур выше T = 100 K. Сохранение величины теплопроводности в области максимума k(T) можно объяснить противоположным влиянием другого фактора, а именно снижением концентрации точечных структурных дефектов, происходящим обычно при высокотемпературных отжигах кристалла.

В случае отожженных в вакууме образцов, содержащих 3.2 и 3.5 mol.%  $Y_2O_3$ , полученные кривые k(T) мало отличаются от зависимости для неотожженного образца, содержащего 3.0 mol.%  $Y_2O_3$  (рис. 2). Можно констатировать, что при использованном в работе режиме отжига увеличение концентрации кислородных вакансий на теплопроводности этих материалов с изначально богатым спектром центров фононного рассеяния сказывается несущественно.

### 4. Заключение

Значения теплопроводности монокристаллических твердых растворов  $ZrO_2-Y_2O_3$  в интервале температур 50–300 К широко варьируются в зависимости от содержания стабилизирующей добавки оксида иттрия. Они значительно выше соответствующих величин для

керамических аналогов [1–5] и согласуются с известными высокотемпературными данными для моно- [13,14], поли- [15] и нанокристаллических[16] образцов.

## Список литературы

- K.S. Ravichandran, K. An, Ft.E. Dutton, S.L. Semiatin. In: AGARD SMP Meeting on "Thermal barrier coatings". Aalborg, Denmark (1997). R-823. 14-1.
- [2] S. Ghosh, D. Teweldebrhan, J.R. Morales, J.E. Garay, A.A. Balandin. J. Appl. Phys. **106**, 113 507 (2009).
- [3] D.D. Hass, A.J. Slifka, H.N.G. Wadley. Acta Mater. 49, 973 (2001).
- [4] Y.J. Su, R.W. Trice, K.T. Faber, H. Wang, W.D. Porter. Oxidation of Metals 61, 253 (2004).
- [5] Q.S. Wang, F.C. Wang, Y.B. Liu, Z. Ma. In: Thermal Spray-2007: Global Coating Solutions (ASM International). Ohio, USA (2007). P. 468.
- [6] V.I. Aleksandrov, V.V. Osiko, A.M. Prokhorov, V.M. Tatarintsev. Current Topic Mater. Sci. 1, 421 (1978).
- [7] V.V. Osiko, M.A. Borik, E.E. Lomonova. In: Springer Hahdbook of Crystal Growth. Springer-Verlag, Berlin-Heidelberg (2010). P. 433.
- [8] E.E. Lomonova, V.V. Osiko. In: Crystal Growth Technology. John Wiley & Sons, Chichester, England (2003). P. 461.
- [9] Ю.С. Кузьминов, Е.Е. Ломонова, В.В. Осико. Тугоплавкие материалы из холодного тигля. Наука, М. (2004). 369 с.
  [10] VV Osiko Mandeleev Commun. 19, 117 (2009)
- [10] V.V. Osiko. Mendeleev Commun. **19**, 117 (2009).
- [11] M.A. Borik, E.E. Lomonova, V.V. Osiko, V.A. Panov, O.E. Porodinkov, M.A. Vishnyakova, Yu.K. Voronko, V.V. Voronov. J. Cryst. Growth 275, e2173 (2005).
- [12] V.V. Alisin, M.A. Borik, E.E. Lomonova, A.F. Melshanov, G.V. Moskvitin, V.V. Osiko, V.A. Panov, V.G. Pavlov, M.A. Vishnjakova. Mater. Sci. Eng. 25, 577 (2005).
- [13] G.E. Yougblood, R.W. Rice, R.I. Ingel. J. Am. Ceram. Soc. 71, 255 (1988).
- [14] J.-F. Bisson, D. Fornier, M. Poulain, O. Lavigne, R. Mevrel. J. Am. Ceram. Soc. 83, 1993 (2000).
- [15] D.P.H. Hasselman, L.F. Johnson, L.D. Bentsen, R. Syed, H.L. Lee, M.V. Swain. Am. Ceram. Soc. Bull. 66, 799 (1987).
- [16] S. Raghavan, H. Wang, R.B. Dinwidie, W.D. Porter, M.J. Mayo. Scripta Mater. 39, 1119 (1998).
- [17] М.А. Борик, М.А. Вишнякова, О.М. Жигалина, А.В. Кулебякин, С.В. Лаврищев, Е.Е. Ломонова, В.В. Осико. Рос. нанотехнологии 3, 76 (2008).
- [18] В.В. Алисин, Х.Б. Амосова, В.П. Войцицкий. В.В. Воронов, В.А. Гриненко, Е.Е. Ломонова, Н.И. Медведовская, В.И. Устинов. Тр. Междунар. науч.-практ. конф. по перспективным композиционным материалам: "Нанокомпозиты-2004". Торус Пресс, М. (2006). Т. 2. С. 183.
- [19] П.А. Попов. Автореф. канд. дис. Брянск (1993). 23 с.
- [20] Р. Берман. Теплопроводность твердых тел. Мир, М. (1979). 286 с.
- [21] П.А. Попов, П.П. Федоров, В.А. Конюшкин, А.Н. Накладов, С.В. Кузнецов, В.В. Осико, Т.Т. Басиев. Докл. РАН 421, 183 (2008).
- [22] П.А. Попов, П.П. Федоров, В.А. Конюшкин, А.Н. Накладов, С.В. Кузнецов, В.В. Осико, Т.Т. Басиев. Докл. РАН 421, 614 (2008).
- [23] S.P. Ray, V.S. Stubican. Mater. Res. Bull. 12, 549 (1977).