Исследование Cr³⁺ примесной люминесценции в протонно-облученном β-Ga₂O₃

© В.Ю. Давыдов¹, А.Н. Смирнов¹, И.А. Елисеев¹, Ю.Э. Китаев¹, Ш.Ш. Шарофидинов¹, А.А. Лебедев¹, Д.Ю. Панов², В.А. Спиридонов², Д.А. Бауман², А.Е. Романов^{1,2}, В.В. Козловский³

 ¹ Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия
 ² Национальный исследовательский университет ИТМО, 197101 Санкт-Петербург, Россия
 ³ Санкт-Петербургский политехнический университет Петра Великого, 195251 Санкт-Петербург, Россия
 E-mail: valery.davydov@mail.ioffe.ru

Поступила в Редакцию 19 мая 2023 г. В окончательной редакции 18 июля 2023 г. Принята к публикации 30 октября 2023 г.

Установлено, что протонное облучение β -Ga₂O₃ приводит к существенному увеличению количества ионов Cr³⁺, активных в люминесценции. С использованием люминесценции с угловым разрешением изучены особенности спектров ионов Cr³⁺. Обнаружена высокая чувствительность спектров люминесценции и правил отбора для них к локальной симметрии ионов Cr³⁺ в матрице β -Ga₂O₃. Полученные результаты свидетельствуют о потенциальной возможности использования кристаллов β -Ga₂O₃ в качестве оптических дозиметров протонного облучения

Ключевые слова: β -Ga₂O₃, α -Ga₂O₃, протонное облучение, фотолюминесценция, симметрийный анализ.

DOI: 10.61011/FTP.2023.07.56794.5202C

Политип β-Ga₂O₃ с шириной запрещенной зоны ~ 4.9 эВ обладает электронными и электрофизическими свойствами, которые перспективны для использования в детекторах УФ-излучения, высокотемпературных газовых сенсорах, нанофотонных переключателях и т.д. Существует довольно значительное количество исследований, посвященных изучению влияния радиационного воздействия на устройства на основе оксида β-Ga₂O₃ (см., например, обзор [1] и ссылки в нем). Однако многие вопросы, связанные с влиянием радиационного воздействия на природу примесных состояний и структурных дефектов в этом материале, изучены недостаточно полно. Задача настоящего исследования заключалась в получении новой информации о возможности использования электронного и протонного облучения для контролируемого изменения зарядового состояния примесей в β-Ga₂O₃ с целью их идентификации оптическими методами.

Изучались исходно не легированные и легированные хромом объемные кристаллы β -Ga₂O₃, выращенные методом Чохральского [2], а также эпитаксиальные слои α -Ga₂O₃: Cr, выращенные на подложке Al₂O₃ (0001) методом хлорид-гидридной эпитаксии. Нелегированные кристаллы β -Ga₂O₃ были подвергнуты облучению электронами с энергией 0.9 МэВ дозами 2.0 · 10¹⁶ и 5.0 · 10¹⁶ см⁻² на ускорителе электронов РТЭ-1В и протонами с энергией 15 МэВ дозой 1.0 · 10¹⁶ см⁻² на изохронном циклотроне МГЦ-20 в СПбПУ Петра Великого. Измерения колебательных и электронных характеристик кристаллов методами микрокомбинационного

рассеяния света (μ -КРС) и микро-фотолюминесценции (μ -ФЛ) проводились с помощью спектрометра LabRAM HREvo UV-VIS-NIR-Open (Horiba, France). Для возбуждения спектров μ -КРС использовалась линия $\lambda = 532$ нм (2.33 эВ) Nd: YAG-лазера. Спектры μ -ФЛ с угловым разрешением в диапазоне температур (80–300 K) были измерены с использованием широкого набора энергий возбуждающего излучения (2.33–5.82 эВ).

Исследования методом μ -КРС подтвердили принадлежность объемных нелегированных и легированных Сг образцов Ga₂O₃ к β -политипу, а эпитаксиальных слоев Ga₂O₃ : Cr/Al₂O₃ — к α -политипу. В спектрах μ -КРС образцов, облученных электронами или протонами, не было обнаружено каких-либо заметных изменений по сравнению со спектрами исходных образцов. Также не было обнаружено заметных изменений в спектрах μ -ФЛ электронно-облученных образцов. Однако спектр μ -ФЛ протонно-облученного образца β -Ga₂O₃ существенно отличался от спектра необлученного образца.

Спектры μ -ФЛ необлученного, облученного протонами и легированного хромом образцов β -Ga₂O₃, измеренные при комнатной температуре и T = 80 K, показаны на рис. 1. Во всех спектрах в УФ области наблюдается широкая полоса с максимумом при ~ 3.25 эВ, параметры которой слабо зависят от типа исследуемого образца. Об этой особенности сообщалось в работах, связанных с исследованиями спектров ФЛ кристаллов β -Ga₂O₃, выращенных различными способами [3–5]. В большинстве случаев эту полосу разлагают на три компоненты: ультрафиолетовую (УФ), голубую (ГЛ) и зеленую (ЗЛ). УФ компонента, как правило, не зависит от примесей, и ее относят к рекомбинации свободных электронов и автолокализованных дырок. ГЛ компонента была приписана переходам донорно-акцепторных пар с участием глубоких доноров и глубоких акцепторов. Что касается ЗЛ компоненты, природа ее происхождения нуждается в дальнейших исследованиях.

Как видно на рис. 1, спектр облученного протонами β -Ga₂O₃, в дополнение к полосе в УФ диапазоне, демонстрирует широкую полосу в красном диапазоне с максимумом около 1.75 эВ (710 нм) и двумя узкими линиями, которые имеют энергии 1.782 и 1.801 эВ при T = 80 К. Этот спектр имеет небольшую интенсивность, однако полностью аналогичен представленному на том же рисунке спектру μ -ФЛ образца β -Ga₂O₃: Cr, в котором регистрируемые в спектре узкие особенности приписываются ${}^{2}E_{g} \rightarrow {}^{4}A_{2g}$ внутренним переходам Cr³⁺. Широкая полоса с максимумом около 1.75 эВ (710 нм), имеющая значительную интенсивность в спектре ФЛ образца β -Ga₂O₃: Cr при T = 300 K, приписывается ${}^{4}T_{2g} \rightarrow {}^{4}A_{2g}$ внутренним переходам Cr³⁺ (при этом в большинстве работ нижние индексы g опускаются) [6–8].

С уменьшением температуры заселенность ${}^{4}T_{2g}$ состояний уменьшается и широкая полоса при $T = 80 \,\mathrm{K}$

Рис. 1. Спектры ФЛ необлученного, облученного протонами и легированного хромом объемных образцов β -Ga₂O₃, измеренные при комнатной температуре и T = 80 К. Спектры в УФ области получены с использованием возбуждающего излучения 4.66 эВ, а в видимой области — с использованием возбуждающего излучения 2.33 эВ.

Рис. 2. Эволюция электронных состояний иона Cr^{3+} в матрице β -Ga₂O₃. На этом же рисунке показаны разрешенные правилами отбора поляризации ФЛ иона Cr^{3+} .

практически не наблюдается. В литературе за узкими особенностями закрепилось обозначение R_1 (1.78 эВ) и R_2 (1.80 эВ) линий, температурное поведение которых будет рассмотрено далее. Таким образом, можно сделать заключение, что в результате протонного облучения β -Ga₂O₃ происходит изменение зарядового состояния неактивной в ФЛ фоновой примеси Cr²⁺, приводящее к существенному увеличению количества ионов Cr³⁺, активных в ФЛ. Насколько нам известно, в литературе имеется только одна работа, где обнаружен эффект сильного увеличения красной ФЛ в образцах β -Ga₂O₃:Сг при протонном облучении [9]. Однако в отличие от наших исследований в указанной работе исследовались образцы, уже легированные Cr, а регистрация спектров ФЛ осуществлялась только при T = 300 К.

В статьях [10,11] классификация состояний иона Cr^{3+} в β -Ga₂O₃ приводится исходя из неприводимых представлений локальной кубической группы О_h. При этом симметрия состояний с учетом спин-орбитального взаимодействия (на основе неприводимых представлений двойных групп) вообще отсутствует. В результате не удается получить корректные правила отбора для спектров ФЛ. Для определения правил отбора в спектрах ФЛ иона Cr³⁺ в β-Ga₂O₃ в настоящей работе были заданы структура кристалла (т.е. его пространственная группа симметрии и размещение атомов по позициям симметрии) и группа локальной симметрии иона Cr³⁺. Изучаемая нами *β*-фаза кристалла Ga₂O₃ принадлежит к моноклинной системе и ее симметрия описывается пространственной группой $C12/m1 = \hat{C}_{2h}^3$ (No 12) с осью симметрии 2-го порядка, направленной вдоль вектора трансляции **b** [010] (ось y). Векторы трансляции **a** (ось x) и с (ось z) направлены вдоль кристаллографических направлений [100] и [001] соответственно. В *β*-фазе имеются две неэквивалентные орбиты из 4 атомов Ga 4*i* (х О z), имеющие одинаковую локальную симметрию, описываемую точечной группой $C_s(m)$. Одна из орбит атома Ga имеет октаэдрическое окружение атомов кислорода, а другая — тетраэдрическое. Примесные ионы Cr³⁺ занимают орбиту с октаэдрическим [12]. Результаты выполненного нами окружением симметрийного анализа представлены на рис. 2, на котором показана эволюция электронных состояний от свободного иона Cr³⁺ (через промежуточную кубическую локальную симметрию О_h) к его позиции

Рис. 3. Спектры μ -ФЛ при T = 80 и 300 К для α -Ga₂O₃ : Cr/Al₂O₃ и протонно-облученного β -Ga₂O₃ в области проявления R_1 и R_2 линий. Спектры получены с использованием возбуждающего излучения 2.33 эВ. (Цветной вариант рисунка представлен в электронной версии статьи).

с локальной симметрией C_s в β -Ga₂O₃. На этом же рисунке показаны разрешенные правилами отбора поляризации ФЛ иона Cr³⁺ как без учета, так и с учетом спин-орбитального взаимодействия. Нами был выполнен аналогичный анализ и для α -Ga₂O₃, в котором локальная симметрия иона Cr³⁺ описывается группой C_3 .

На рис. 3, а представлены низкотемпературные спектры ФЛ протонно-облученного β-Ga₂O₃ и эпитаксиального слоя α -Ga₂O₃: Cr в области проявления R_1 и R_2 линий. Так как эпитаксиальный слой *α*-Ga₂O₃: Cr был выращен на подложке Al₂O₃, в ФЛ спектре образца также хорошо видны линии, относящиеся к спектру подложки. Они обозначены $R_1^{\text{Sp}}(1.788 \text{ эB})$ и $R_2^{\text{Sp}}(1.792 \text{ эB})$; энергетическое расстояние между ними составляет 3.65 мэВ $(\sim 30\,{\rm cm}^{-1}).$ Несомненно, что эти линии связаны с внутренними (${}^{2}E_{g} \rightarrow {}^{4}A_{2g}$) переходами Cr³⁺, примесь которого в большинстве случаев содержится в подложках сапфира. В спектре образца α -Ga₂O₃ : Cr/Al₂O₃ регистрируется еще один дублет линий $R_1^{\alpha}(1.781 \text{ эB})$ и $R_2^{\alpha}(1.785 \text{ эB})$, энергетическое расстояние между которыми составляет $3.65 \text{ мэВ} (\sim 30 \text{ см}^{-1})$. С высокой долей вероятности, это линии, также связанные с внутренними $({}^{2}E_{g} \rightarrow {}^{4}A_{2g})$ переходами в Cr^{3+} , но уже в матрице α -Ga₂O₃.

Спектр ФЛ протонно-облученного образца β -Ga₂O₃ также представлен двумя линиями, имеющими обозначения $R_1^{\beta}(1.782 \text{ зB})$ и $R_2^{\beta}(1.801 \text{ зB})$, однако энергетическое расстояние между ними составляет 18.5 мэВ $(\sim 149 \, {\rm cm}^{-1})$. Известно, что энергия внутренних переходов в переходных металлах, каким являются Cr³⁺, зависит от локального кристаллического поля, сформированного атомами ближайшего окружения. В литературе встречаются утверждения, что увеличение энергетического расстояния между линиями R_{1.2} β-Ga₂O₃ по сравнению с их расстоянием в Al₂O₃ есть результат изменения величины локального кристаллического поля. Однако в работе [13] приводятся аргументы, что для Cr^{3+} только энергии переходов ${}^4\!A_{2g}
ightarrow {}^4T_{1g}$ и ${}^4\!A_{2g} \to {}^4T_{2g}$ существенно зависят от величины локального кристаллического поля, в то время как энергия перехода ${}^2E_g \rightarrow {}^4A_{2g}$ не зависит от этого параметра. Таким образом, предлагаемые в литературе объяснения увеличения энергетического расстояния между линиями $R_{1,2}$ в β -Ga₂O₃ не кажутся однозначными и нуждаются в дальнейшей проверке.

Отметим также значительные различия в ширине линий $R_{1,2}$, регистрируемые в спектрах ФЛ α -Ga₂O₃: Cr и протонно-облученного β -Ga₂O₃. Узкие линии R_1 и R_2 (их FWHM ~ 0.6 – 0.7 мэВ при T = 80 K) в Al₂O₃ и α -Ga₂O₃: Cr типичны для ФЛ, обусловленной внутренними переходами в ионах. Однако для протоннооблученного β -Ga₂O₃ при T = 80 K только линия R_1 имеет малую ширину (FWHM_{R1} ~ 0.8 мэВ), в то время как FWHM_{R2} ~ 2.7 мэВ. Следует также отметить, что ширина линий R_1 и R_2 в спектре протонно-облученного β -Ga₂O₃, в отличие от их ширины в спектре α -Ga₂O₃: Cr,

очень сильно увеличивается с повышением температуры. Еще одним отличием является различие в температурной зависимости интенсивностей линий I_{R1} и I_{R2} в α -Ga₂O₃: Сг и протонно-облученном β -Ga₂O₃. Из спектров, представленных на рис. 3, а и b, видно, что для Al₂O₃ и α-Ga₂O₃: Cr отношение интенсивностей $k = I_{R1}/I_{R2} > 1$ как при T = 80 К, так и при комнатной температуре. Это согласуется со схемой перехода ${}^{2}E_{g} \rightarrow {}^{4}A_{2g}$, где R_{2} линия возникает при переходе с верхнего, менее заселенного уровня Eg, на нижний уровень A2g. Однако для протонно-облученного образца β -Ga₂O₃ условие k > 1 имеет место только при T = 80 К, в то время как для T = 300 К параметр k < 1. Более того, как следует из наших измерений угловой зависимости параметра k для плоскости (100) протоннооблученного образца β -Ga₂O₃, его величина при одной и той же температуре зависит от соотношения между кристаллографическими направлениями и вектором поляризации линейно поляризованной ФЛ.

Суммируя полученные результаты, следует отметить высокую чувствительность спектров ФЛ и правил отбора для них к локальной симметрии ионов Cr^{3+} в матрице β -Ga₂O₃. Установлено, что в результате протонного облучения β -Ga₂O₃ происходит изменение зарядового состояния неактивной в ФЛ фоновой примеси Cr^{2+} , приводящее к существенному увеличению количества активных в ФЛ ионов Cr^{3+} . Полученные результаты свидетельствуют также о недостаточно полном понимании особенностей поведения линий R_1 и R_2 , наблюдаемых в спектрах β -Ga₂O₃, что требует дальнейших исследований природы их происхождения.

Финансирование работы

Исследования частично поддержаны Российским научным фондом (проект № 22-12-00003) и Министерством науки и высшего образования РФ (соглашение № 075-15-2021-1349).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- N. Manikanthababu, H. Sheoran, P. Siddham, R. Singh. Crystals, 12, 1009 (2022). DOI: 10.3390/cryst12071009
- [2] D.A. Bauman, D.I. Panov, D.A. Zakgeim, V.A. Spiridonov, A.V. Kremleva, A.A. Petrenko, P.N. Brunkov, N.D. Prasolov, A.V. Nashchekin, A.M. Smirnov, M.A. Odnoblyudov, V.E. Bougrov, A.E. Romanov. Phys. Status Solidi A, **218**, 2100335 (2021). DOI: 10.1002/pssa.202100335
- [3] L. Dong, R. Jia, B. Xin, Y. Zhang, J. Vac. Sci. Technol. A, 34, 060602 (2016). DOI: 10.1116/1.4963376

- [4] T. Onuma, Y. Nakata, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, S. Yamakoshi, M. Higashiwaki. J. Appl. Phys., **124**, 075103 (2018). DOI: 10.1063/1.5030612
- [5] T.T. Huynh, L.L.C. Lem, A. Kuramata, M.R. Phillips, C. Ton-That. Phys. Rev. Mater., 2, 105203 (2018). DOI: 10.1103/PhysRevMaterials.2.105203
- [6] Y. Tokuda, S. Adachi. J. Appl. Phys., 112, 063522 (2012). Doi.org/10.1063/1.4754517
- [7] A. Luchechko, V. Vasyltsiv, Ya. Zhydachevskyy, M. Kushlyk, S. Ubizskii, A. Suchocki. J. Phys. D: Appl. Phys., 53, 354001 (2020). DOI: 10.1088/1361-6463/ab8c7d
- [8] G. Naresh-Kumar, H. MacIntyre, S. Subashchandran, P.R. Edwards, R.W. Martin, K. Daivasigamani, K. Sasaki, A. Kuramata. Phys. Status Solidi B, 258, 2000465 (2021). DOI: 10.1002/pssb.202000465
- [9] M. Peres, D.M. Esteves, B.M.S. Teixeira, J. Zanoni, L.C. Alves, E. Alves, L.F. Santos, X. Biquard, Z. Jia, W. Mu, J.Rodrigues, N.A. Sobolev, M.R. Correia, T. Monteiro, N. Ben Sedrine, K. Lorenz. Appl. Phys. Lett., **120**, 261904 (2022). DOI: 10.1063/5.0089541
- [10] A. Fiedler, Z. Galazka, K. Irmscher. J. Appl. Phys., 126, 213104 (2019). DOI: 10.1063/1.5125774
- [11] J.E. Stehr, M. Jansson, D.M. Hofmann, J. Kim, S.J. Pearton, W.M. Chen, I.A. Buyanova. Appl. Phys. Lett., 119, 052101 (2021). DOI: 10.1063/5.0060628
- [12] H.H. Tippins. Phys. Rev., 137, A865 (1965).DOI: 10.1103/PhysRev.137.A865
- [13] R. Sun, Y.K. Ooi, P.T. Dickens, K.G. Lynn, M.A. Scarpulla. Appl. Phys. Lett., **117**, 052101 (2020). DOI: 10.1063/5.0012967

Редактор А.Н. Смирнов

Investigation of the Cr^{3+} impurity luminescence in proton-irradiated β -Ga₂O₃

V.Yu. Davydov¹, A.N. Smirnov¹, I.A. Eliseyev¹, Yu.E. Kitaev¹, S.S. Sharofidinov¹, A.A. Lebedev¹, D.I. Panov², V.A. Spiridonov², D.A. Bauman², A.E. Romanov^{2,1}, V.V. Kozlovski³

¹ Ioffe Institute,
 194021 St. Petersburg, Russia
 ² National Research University ITMO,
 197101 St. Petersburg, Russia
 ³ Peter the Great St. Petersburg Polytechnic University,
 195251 St. Petersburg, Russia

Abstract Proton irradiation of β -Ga₂O₃ crystals has been established to lead to a significant increase in the amount of Cr³⁺ ions being active in luminescence. Using angle-resolved luminescence, the features of the spectra of Cr³⁺ ions were studied. The high sensitivity of photoluminescence spectra and the related selection rules to the local symmetry of Cr³⁺ ions in the β -Ga₂O₃ matrix has been found. The results obtained indicate the potential possibility of using β -Ga₂O₃ crystals as optical dosimeters of proton irradiation.

Продолжение публикации материалов Конференции см. в No 8/23